

Evolutionary Computation for
Modeling and Optimization

Ashlock-FM.qxd 8/31/05 12:22 PM Page i

Daniel Ashlock

Evolutionary Computation for
Modeling and Optimization
With 163 Figures

Ashlock-FM.qxd 8/31/05 12:22 PM Page iii

Daniel Ashlock
Department of Mathematics and Statistics
University of Guelph
Guelph, Ontario NIG 2W1
CANADA
dashlock@uguelph.ca

Mathematics Subject Classification (2000): 6801, 68T20, 68T40

Library of Congress Control Number: 2005923845

ISBN-10: 0-387-22196-4
ISBN-13: 978-0387-22196-0

Printed on acid-free paper.

© 2006 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street,
New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and retrieval, electronic adap-
tation, computer software, or by similar or dissimilar methodology now known or hereafter
developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether
or not they are subject to proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1

springeronline.com

Ashlock-FM.qxd 8/31/05 12:22 PM Page iv

Daniel Ashlock

Evolutionary Computation for
Modeling and Optimization

October 21, 2005

Springer
Berlin Heidelberg NewYork
Hong Kong London
Milan Paris Tokyo

To my wife, Wendy

Preface

This book is an adaptation of notes that have been used to teach a class in
evolutionary computation at Iowa State University for eight years. A number
of people have used the notes over the years, and by publishing them in book
form I hope to make the material available to a wider audience.

It is important to state clearly what this book is and what it is not. It
is a text for an undergraduate or first-year graduate course in evolutionary
computation for computer science, engineering, or other computational science
students. The large number of homework problems, projects, and experiments
stem from an effort to make the text accessible to undergraduates with some
programming skill. This book is directed mainly toward application of evolu-
tionary algorithms. This book is not a complete introduction to evolutionary
computation, nor does it contain a history of the discipline. It is not a theoret-
ical treatment of evolutionary computation, lacking chapters on the schema
theorem and the no free lunch theorem.

The key to this text are the experiments. The experiments are small com-
putational projects intended to illustrate single aspects of evolutionary com-
putation or to compare different methods. Small changes in implementation
create substantial changes in the behavior of an evolutionary algorithm. Be-
cause of this, the text does not tell students what will happen if a given method
is used. Rather, it encourages them to experiment with the method. The ex-
periments are intended to be used to drive student learning. The instructor
should encourage students to experiment beyond the stated boundaries of the
experiments. I have had excellent luck with students finding publishable new
ideas by exceeding the bounds of the experiments suggested in the book.

Source code for experiments, errata for the book, and bonus chapters and
sections extending material in the book are available via the Springer website
www. Springeronline.com or at
www.eldar.http://eldar.mathstat.uoguelph.ca/dashlock/OMEC/

The book is too long for a one-semester course, and I have never managed
to teach more than eight chapters in any one-semester offering of the course.
The diagrams at the end of this preface give some possible paths through the
text with different emphases. The chapter summaries following the diagrams
may also be of some help in planning a course that uses this text.

VIII Evolutionary Computation for Modeling and Optimization

Some Suggestions for Instructors Using This Text

• Make sure you run the code for an experiment before you hand it out
to the class. Idiosyncratic details of your local system can cause serious
problems. Lean on your most computationally competent students; they
can be a treasure.

• Be very clear from the beginning about how you want your students to
write up an experiment. Appendix A shows the way I ask students to write
up labs for my version of the course.

• I sometimes run contests for Prisoner’s Dilemma, Sunburn, the virtual
politicians, or other competitive evolutionary tasks. Students evolve com-
petitors and turn them in to compete with each other. Such competitions
can be very motivational.

• Assign and grade lots of homework, including the essay questions. These
questions are difficult to grade, but they give you, the instructor, excellent
feedback about what your students have and have not absorbed. They also
force the students that make an honest try to confront their own ignorance.

Possible Paths Through the Text

The following diagrams give six possible collections of paths through the text.
Chapters listed in parentheses are prerequisite. Thus 13.3(6) means that Sec-
tion 13.3 uses material from Chapter 6.

6.1
6.2

8.1

9

7

3

2

1

13.1
13.2
13.3(6)
13.4(9)

1.1−1.2

2

3

4
9.1−9.2

10.1

12

15.1

14.1

13.1−13.2

A course on using evolutionary algo-
rithms for optimization.

A course on evolutionary algorithms
using only simple string data struc-
tures.

Preface IX

1

2

3.1−3.3

4 5
6

14.1−14.2
8.1

10

12
15.1

15.2(6)
15.4
15.5

1

2

3

5

7

8.1 8

9
10

11
12

13

14

A course on using evolutionary algo-
rithms for modeling.

A broad survey of techniques in evo-
lutionary computation.

1

2

3.1−3.3

10

12

9

13.1
13.4

14.4

8

1

2

3

6

13.1
13.2

8.1

9

15

A course focused on genetic pro-
gramming.

A course on evolutionary algorithms
potentially useful in bioinformatics.

X Evolutionary Computation for Modeling and Optimization

A Brief Summary of Chapters

Chapter 1 gives examples of evolutionary algorithms and a brief introduction
to simple evolutionary algorithms and simple genetic programming. There is
some background in biology in the chapter that may help a computational
specialist understand the biological inspiration for evolutionary computation.
There is also material included to help the instructor with students deeply
skeptical of the scientific foundations of evolution. Chapter 1 can typically
be skipped if there is a shortage of time. Most of the technically required
background is repeated in greater detail in later chapters.

Chapter 2 introduces simple string data structure evolutionary algorithms.
In this context, it surveys the “parts list” of most evolutionary algorithms
including mutation and crossover operators, and selection and replacement
mechanisms. The chapter also introduces two complex string problems: the
Royal Road problem and the self-avoiding walk problem. These set the stage
for the discussion of fitness landscapes in Chapter 3. The final section intro-
duces a technical flourish and can easily be skipped.

Chapter 3 introduces real function optimization using a string of real numbers
(array) as its representation. The notion of fitness landscape is introduced. The
idea of niche specialization is introduced in Section 3.3 and may be included or
skipped. Section 4 closely compares two fitness functions for the same problem.
Section 5 introduces a simplified version of the circuit board layout problem.
The fitness function is constant except where it is discontinuous and so makes
a natural target for an evolutionary computation.

Chapter 4 introduces the idea of a model-based fitness function. Both the star
fighter design problem (Sunburn) and the virtual politicians use a model of a
situation to evaluate fitness. The model of selection and replacement is a novel
one: gladiatorial tournament selection. This chapter is not deep, is intended
to be fun, and is quite popular with students.

Chapter 5 introduces the programming of very simple artificial neural nets
with an evolutionary algorithm in the context of virtual robots. These virtual
robots, the symbots, are fairly good models of trophic life forms. This chapter
introduces the problem of stochastic fitness evaluation in which there are a
large number of fitness cases that need to be sampled. The true “fitness” of a
given symbot is elusive and must be approximated. This chapter is a natural
for visualization. If you have graphics-competent students, have them build a
visualization tool for the symbots.

Chapter 6 introduces the finite state machine representation. The first section
is a little dry, but contains important technical background. The second sec-

Preface XI

tion uses finite state machines as game-playing agents for Iterated Prisoner’s
Dilemma. This section lays out the foundations used in a good deal of pub-
lished research in a broad variety of fields. The third section continues on to
other games. The first section of this chapter is needed for both GP automata
in Chapter 10 and chaos automata in Chapter 15.

Chapter 7 introduces the permutation or ordered list representation. The first
section introduces a pair of essentially trivial fitness functions for permuta-
tion genes. Section 2 covers the famous Traveling Salesman problem. Section
3 covers a bin-packing problem and also uses a hybrid evolutionary/greedy
algorithm. The permutations being evolved control a greedy algorithm. Such
hybrid representations enhance the power of evolutionary computation and
are coming into broad use. Section 4 introduces an applied problem with
some unsolved cases, the Costas array problem. Costas arrays are used as
sonar masks, and there are some sizes for which no Costas array is known.
This last section can easily be skipped.

Chapter 8 introduces genetic programming in its most minimal form. The
variable (rather than fixed) sized data structure is the hallmark of genetic
programming. The plus-one-recall-store problem, the focus of the chapter,
is a type of maximum problem. This chapter tends to be unpopular with
students, and some of the problems require quite advanced mathematics to
solve. Mathematicians may find the chapter among the most interesting in
the book. Only the first section is really needed to go on to the other chapters
with genetic programming in them. The chapter introduces the practice of
seeding populations.

Chapter 9 introduces regression in two distinct forms. The first section cov-
ers the classical notion of parameter-fitting regression, and the second uses
evolutionary computation to perform such parameter fits. The third section
introduces symbolic regression, i.e., the use of genetic programming both to
find a model and fit its parameters. Section 4 introduces automatically de-
fined functions, the “subroutine” of the genetic programming world. Section
5 looks at regression in more dimensions and can be included or not at the
instructor’s whim. Section 6 discusses a form of metaselection that occurs
in genetic programming called bloat. Since the type of crossover used in ge-
netic programming is very disruptive, the population evolves to resist this
disruption by having individual population members get very large. This is
an important topic. Controlling, preventing, and exploiting bloat are all cur-
rent research topics.

Chapter 10 introduces a type of virtual robot, grid robots, with the Tartarus
task. The robots are asked to rearrange boxes in a small room. This topic
is also popular with students and has led to more student publications than

XII Evolutionary Computation for Modeling and Optimization

any other chapter in the text. The first section introduces the problem. The
second shows how to perform baseline studies with string-based representa-
tions. The third section attacks the problem with genetic programming. The
fourth introduces a novel representation called the GP automaton. This is the
first hybrid representation in the text, fusing finite state machines and genetic
programming.

Chapter 11 covers a traditional topic: programming neural nets to simulate
digital logic functions. While there are many papers published on this topic it
is a little dry. The chapter introduces neural nets in a more complex form than
Chapter 5. The chapter looks at direct representation of neural weights and
at a way of permitting both the net’s connectivity and weights to evolve, and
finally attacks the logic function induction problem with genetic programming
in its last section.

Chapter 12 introduces a novel linear representation for genetic programming
called an ISAc list. ISAc lists are short pieces of simplified machine code. They
use a form of goto and so can be used to evolve fully functioning programs with
nontrivial flow of control. The chapter introduces ISAc lists in Section 1 and
then uses them on the Tartarus problem in Section 2. Section 3 introduces a
large number of new grid robot tasks. Section 4 uses ISAc lists as an inspiration
to create a more powerful type of string representation for grid robot tasks.
This latter section can be skipped.

Chapter 13 introduces a generic improvement to a broad variety of evolution-
ary algorithms. This improvement consists in storing the evolving population
in a geography, represented as a combinatorial graph, that limits selection and
crossover. The effect is to slow convergence of the algorithm and enhance ex-
ploration of the search space. The first section introduces combinatorial graphs
as population structures. The second section uses the techniques on string-
based representations. The third uses the graph-based population structure
on more complex representations, such as finite state machines and ordered
genes. The last section explores genetic programming on graphs. Other than
the first section, the sections of this chapter are substantially independent.

Chapter 14 contains four extended examples of a generic technique: storing
directions for building a structure rather than the structure itself. This type of
representation is called a “cellular” representation for historical reasons. The
first section uses a cellular representation to evolve two-dimensional shapes.
The second introduces a cellular representation for finite state automata. The
third introduces a novel editing representation that permits the evolution of a
class of combinatorial graphs. The fourth section uses context free grammars
to create a cellular encoding for genetic programming. This technique is quite
powerful, since it permits transparent typing of genetic programming systems

Preface XIII

as well as the incorporation of domain-specific knowledge. The sections of this
chapter may be used independently.

Chapter 15 gives examples of applications of evolutionary computation to
bioinformatics. The first three sections are completely independent of one an-
other. Section 1 gives an application of string-type genes to an applied (pub-
lished) problem in bioinformatics. It both aligns and characterizes an insertion
point of a type of genetic parasite in corn. Section 2 uses finite state machines
to attempt to learn sets of PCR primers that work well and poorly. The fi-
nite state machines are intended as filters for subsequently designed primers.
The third section introduces a hybrid evolutionary/greedy representation for
a hard search problem, locating error-tolerant DNA tags used to mark genetic
constructs. The last two sections give methods of visualizing DNA as a fractal.

Acknowledgments

I would like to thank my wife, Wendy, who has been a key player in preparing
the manuscript and helping me get things done, and who has acted as a sound-
ing board for many of the novel ideas contained in this text. I also owe a great
deal to the students who supplied ideas in the book, such as John Walker,
who thought up Sunburn and helped develop the symbots; Mark Joenks, the
creator of ISAc lists and virtual politicians; Mark Smucker, whose ideas led
to graph-based evolutionary algorithms; Warren Kurt vonRoeschlaub, who
started the symbots and other projects; and Mike McRoberts, who coded up
the first implementation of GP automata. I thank Jim Golden, who was a key
participant in the research underlying the fractal visualization of DNA. I am
also grateful to the numerous students who turned in edits to the manuscript
over the years, including Pete Johnson, Steve Corns, Elizabeth Blankenship,
and Jonathan Gandrud. The Bryden, Schnable, and Sheble labs at Iowa State
have supplied me with many valuable students over the years who have asked
many questions answered in this book. Mark Bryden, Pat Schnable, and Ger-
ald Sheble all provided a valuable driving force toward the completion of this
book.

Contents

Preface . VII

1 An Overview of Evolutionary Computation 1
1.1 Examples of Evolutionary Computation . 3

1.1.1 Predators Running Backward . 3
1.1.2 Wood-Burning Stoves . 5
1.1.3 Hyperspectral Data . 9
1.1.4 A Little Biology . 11
Problems . 15

1.2 Evolutionary Computation in Detail . 17
1.2.1 Representation . 19
1.2.2 Evolution and Coevolution . 21
1.2.3 A Simple Type of Evolutionary Computation 22
Problems . 24

1.3 Genetic Programming . 25
Problems . 29

2 Designing Simple Evolutionary Algorithms 33
2.1 Models of Evolution . 35

Problems . 39
2.2 Types of Crossover . 41

Problems . 44
2.3 Mutation . 46

Problems . 49
2.4 Population Size . 50

Problems . 51
2.5 A Nontrivial String Evolver . 51

Problems . 52
2.6 A Polymodal String Evolver . 53

Problems . 58
2.7 The Many Lives of Roulette Selection . 60

XVI Evolutionary Computation for Modeling and Optimization

Problems . 63

3 Optimizing Real-Valued Functions . 67
3.1 The Basic Real Function Optimizer . 69

Problems . 76
3.2 Fitness Landscapes . 77

Problems . 80
3.3 Niche Specialization . 82

Problems . 86
3.4 Path Length: An Extended Example . 88

Problems . 91
3.5 Optimizing a Discrete-Valued Function: Crossing Numbers 92

Problems . 95

4 Sunburn: Coevolving Strings . 99
4.1 Definition of the Sunburn Model . 99

Problems . 103
4.2 Implementing Sunburn . 105

Problems . 108
4.3 Discussion and Generalizations . 109

Problems . 113
4.4 Other Ways of Getting Burned . 114

Problems . 117

5 Small Neural Nets : Symbots . 119
5.1 Basic Symbot Description . 121

Problems . 130
5.2 Symbot Bodies and Worlds . 132

Problems . 135
5.3 Symbots with Neurons . 135

Problems . 139
5.4 Pack Symbots . 140

Problems . 142

6 Evolving Finite State Automata . 143
6.1 Finite State Predictors . 145

Problems . 151
6.2 Prisoner’s Dilemma I . 153

6.2.1 Prisoner’s Dilemma Modeling the Real World 153
Problems . 161

6.3 Other Games . 163
Problems . 165

Contents XVII

7 Ordered Structures . 167
7.1 Evolving Permutations . 173

Problems . 178
7.2 The Traveling Salesman Problem . 180

Problems . 187
7.3 Packing Things . 190

Problems . 195
7.4 Costas Arrays . 197

Problems . 204

8 Plus-One-Recall-Store . 207
8.1 Overview of Genetic Programming . 209

Problems . 212
8.2 The PORS Language . 215

Problems . 221
8.3 Seeding Populations . 223

Problems . 225
8.4 Applying Advanced Techniques to PORS 226

Problems . 230

9 Fitting to Data . 231
9.1 Classical Least Squares Fit . 231

Problems . 236
9.2 Simple Evolutionary Fit . 238

Problems . 245
9.3 Symbolic Regression . 248

Problems . 252
9.4 Automatically Defined Functions . 253

Problems . 256
9.5 Working in Several Dimensions . 257

Problems . 259
9.6 Introns and Bloat . 261

Problems . 262

10 Tartarus: Discrete Robotics . 263
10.1 The Tartarus Environment . 265

Problems . 270
10.2 Tartarus with Genetic Programming . 272

Problems . 277
10.3 Adding Memory to the GP language . 279

Problems . 280
10.4 Tartarus with GP Automata . 282

Genetic Operations on GP automata . 284
Problems . 288

10.5 Allocation of Fitness Trials . 289

XVIII Evolutionary Computation for Modeling and Optimization

Problems . 291

11 Evolving Logic Functions . 293
11.1 Artificial Neural Nets . 293

Problems . 297
11.2 Evolving Logic Functions . 298

Problems . 305
11.3 Selecting the Net Topology . 306

Problems . 311
11.4 GP Logics . 313

Problems . 316

12 ISAc List: Alternative Genetic Programming 319
12.1 ISAc Lists: Basic Definitions . 319

Done? . 322
Generating ISAc Lists, Variation Operators 323
Data Vectors and External Objects . 323
Problems . 324

12.2 Tartarus Revisited . 326
Problems . 328

12.3 More Virtual Robotics . 331
Problems . 338

12.4 Return of the String Evolver . 341
Problems . 345

13 Graph-Based Evolutionary Algorithms . 349
13.1 Basic Definitions and Tools . 352

Problems . 357
13.2 Simple Representations . 359

Problems . 362
13.3 More Complex Representations . 365

Problems . 370
13.4 Genetic Programming on Graphs . 372

Problems . 377

14 Cellular Encoding . 381
14.1 Shape Evolution . 382

Problems . 387
14.2 Cellular Encoding of Finite State Automata 389

Problems . 397
14.3 Cellular Encoding of Graphs . 400

Problems . 410
14.4 Context Free Grammar Genetic Programming 413

Problems . 422

Contents XIX

15 Application to Bioinformatics . 425
15.1 Alignment of Transposon Insertion Sequences 425

Problems . 433
15.2 PCR Primer Design . 434

Problems . 441
15.3 DNA Bar Codes . 442

Problems . 454
15.4 Visualizing DNA . 456
15.5 Evolvable Fractals . 460

Problems . 469

Glossary . 473

A Example Experiment Report . 507

B Probability Theory . 519
B.1 Basic Probability Theory . 519

B.1.1 Choosing Things and Binomial Probability 522
B.1.2 Choosing Things to Count . 523
B.1.3 Two Useful Confidence Intervals . 527

B.2 Markov Chains . 530

C A Review of Calculus and Vectors . 537
C.1 Derivatives in One Variable . 537
C.2 Multivariate Derivatives . 540
C.3 Lamarckian Mutation with Gradients . 542
C.4 The Method of Least Squares . 543

D Combinatorial Graphs . 545
D.1 Terminology and Examples . 545
D.2 Coloring Graphs . 550
D.3 Distances in Graphs . 552
D.4 Traveling Salesman . 553
D.5 Drawings of Graphs . 553

References . 555

Index . 559

1

An Overview of Evolutionary Computation

Evolutionary computation is an ambitious name for a simple idea: use the
theory of evolution as an algorithm. Any program that uses the basic loop
shown in Figure 1.1 could be termed evolutionary computation. In this text
we will explore some of the many ways to fill in the details to the simple
structure in Figure 1.1. Evolutionary algorithms operate on populations. We
will choose data structures to represent the population, quality measures, and
different ways to vary the data structures. We will need to decide how to tell
when to stop. For any given problem there are many ways to implement an
evolutionary computation system to attack the problem.

Generate a population of structures
Repeat

Test the structures for quality
Select structures to reproduce
Produce new variations of selected structures
Replace old structures with new ones

Until Satisfied

Fig. 1.1. The fundamental structure of an evolutionary computation.

The field of evolutionary computation has many founders and many names.
A concise summary of the origins of evolutionary computation can be found
in [8]. You may wonder how the notion of evolutionary computation could be
discovered a large number of times without later discoverers noticing those

2 Evolutionary Computation for Modeling and Optimization

before them. The reasons for this are complex and serve as a good starting
point.

The simplest reason evolutionary computation was discovered multiple
times is that techniques that cannot be applied yet are not remembered.
During the Italian Renaissance, Leonardo da Vinci produced drawings for
machines, such as the helicopter, that did not exist as working models for
centuries. If he were not a genius and well remembered for other works, his
version of the helicopter might well have faded into history. The idea of taking
the techniques used by nature to produce diverse complex systems and use
them as algorithms is a natural one. Fields like neural computation (compu-
tation with artificial neural nets) and fuzzy logic also draw inspiration from
biology. The problem is that before the routine availability of large powerful
computers these biologically derived ideas could not be implemented. With-
out big iron, even extremely simplified simulated biology is too slow for most
applications.

Limited work with various levels of application and interest began in the
1950s. Sustained and widespread research in evolutionary computation be-
gan in the 1970s. By the late 1980s, computer power and human ingenuity
combined to create an explosion of research. Vast numbers of articles can
be found by searching the World Wide Web with any of the keys “Artificial
Life,” “Evolutionary Algorithms,” “Genetic Algorithms”[29], “Evolutionary
Programming”[23, 24], “Evolution Strategies”[13], or “Genetic Programming”
[38, 39, 9]. To get a manageable-sized stack, you must limit these search keys
to specific application or problem domains.

The second reason that evolutionary computation was discovered a large
number of times is its interdisciplinary character. The field is an application
of biological theory to computer science used to solve problems in dozens of
fields. This means that different groups of people who never read one another’s
publications had the idea independently of using evolution as an algorithm.
Early articles appear in journals as diverse as the IBM Journal of Research
and Development, the Journal of Theoretical Biology, and Physica D. It is a
very broad-minded scholar who reads journals that many floors apart in the
typical university library. The advent of the World Wide Web has lowered,
but not erased, the barriers that enabled the original multiple discoveries of
evolutionary computation. Even now, the same problem is often attacked by
different schools of evolutionary computation with years passing before the
different groups notice one another.

The third source of the confused origins of evolutionary computation is
the problem of naming. Most of the terminology used in evolutionary compu-
tation is borrowed from biology by computational scientists with essentially
no formal training in biology. As a result, the names are pretty arbitrary and
also annoying to biologists. People who understand one meaning of a term
are resistant to alternative meanings. This leads to a situation in which a
single word, e.g., “crossover,” describes a biological process and a handful of
different computational operations. These operations are quite different from

An Overview of Evolutionary Computation 3

one another and linked to the biology only by a thin thread of analogy: a per-
fect situation for confusion over who discovered what and when they did so.
If you are interested in the history of evolutionary computation, you should
read Evolutionary Computation, the Fossil Record [22]. In this book, David
Fogel has compiled early papers in the area together with an introduction to
evolutionary computation. The book supplies a good deal of historically useful
context in addition to collecting the early papers.

As you work through this text, you will have ideas of your own about
how to modify experiments, new directions to take, etc. Beware of being ov-
erenthusiastic: someone may have already had your clever idea; check around
before trying to publish, patent, or market it. However, evolutionary compu-
tation is far from being a mature field, and relative newcomers can still make
substantial contributions. Don’t assume that your idea is obvious and must
have already been tried. Being there first can be a pleasant experience.

1.1 Examples of Evolutionary Computation

Having warned you about the extended and chaotic beginnings of evolution-
ary computation, we will now look at some examples of applications of the
discipline. These examples require no specific technical knowledge and are
intended only to give the flavor of evolutionary computation to the novice.

1.1.1 Predators Running Backward

In Chapter 5, we will be looking at a variation of an experiment [12] reported
in the first edition of the journal Adaptive Behavior. In this experiment, the
authors use evolutionary computation to evolve a simple virtual robot to find a
signal source. The robot’s brain is an artificial neural net. The robot’s sensors
are fed into two of the neurons, and the robot’s wheels are driven by two of the
neurons. Evolution is used to select the exact weight values that specify the
behavior of the neural net. Imagine the robot as a wheeled cart seeking a light
source. Robots that find (stay near) the light source are granted reproductive
rights. Reproduction is imperfect, enabling a search for robot brains that work
better than the current best ones.

A student of mine, Warren Kurt vonRoeschlaub, attempted to replicate
this experiment as a final project for an artificial intelligence class. Where
the published experiment used a robot with six nonlinear artificial neurons,
vonRoeschlaub created a robot with eight linear neurons. Without going into
the technicalities, there is good reason to think that linear neurons are a good
deal less powerful as a computational tool. In spite of this, the robots were
able to find the simulated light source.

VonRoeschlaub, who had a fairly bad case of “hacker,” modified the light
source so that it could drift instead of holding still. The robots evolved to
stay close to the light source. Not satisfied with this generalization, he then

4 Evolutionary Computation for Modeling and Optimization

went on to give the light source its own neural net and the ability to move.
At this point, the light source became “prey,” and the simulation became a
simulation of predator and prey. In order to generalize the simulation this
way, he had to make a number of decisions.

He gave the predator and prey robots the same types of sensors and wheels.
The sensors of prey robots could sense predators only in a 60-degree cone
ahead of the robot; likewise, predator robots could sense prey only in a 60-
degree cone ahead of them. Both species had two sensors pointing in parallel
directions on one side of their body. Neither could sense its own type (and
robots of the same type could pass through one another). If a predator and
prey intersected, then the prey was presumed to have been eaten by the preda-
tor. At this point, several things happened simultaneously. The prey robot
was deleted. The oldest surviving prey animal fissioned into two copies, one of
which had its neural net modified. The predator also fissioned, and one of the
two copies was also modified, and the oldest predator was deleted. This system
exhibits many of the features of natural evolution. Reproduction requires that
a creature “do a good job,” either by eating or avoiding being eaten for the
longest possible time. Children are similar but not always identical to their
parents.

VonRoeschlaub ran this system a number of times, starting over each time
with new randomly initialized neural nets for his predator and prey robots. In
all the populations, the creatures wandered about almost at random initially.
In most of the populations, a behavior arose in which a predator would leap
forward when the signal strengths of its sensors became equal. Unless multiple
prey are both in front of and near the predator, this amounts to the sensible
strategy of leaping at prey in front of you.

Once this predator behavior had arisen, the prey in many cases evolved an
interesting response. When their predator sensors returned similar strengths,
they too leaped forward. This had the effect of generating a near miss in
many cases. Given that the predators can see only in front of them and have
effectively no memory, a near miss is the cleanest possible form of getaway.
The response of some of the predators to this strategy was a little startling.
The average velocity of predators in three of the populations became negative.
At first, this was assumed to be a bug in the code. Subsequent examination
of the movement tracks of the predator and prey robots showed that what
was happening was in fact a clever adaptation. The predators, initially of the
“leap at the prey” variety, evolved to first lower their leaping velocity and
later to actually run backward away from prey.

Since the prey were leaping forward to generate a near miss, leaping more
slowly or even running backward actually meant getting more prey. We named
the backward predators the “reverse Ferrari lions,” and their appearance il-
lustrates the point that evolutionary computation can have surprising results.
There are a number of other points worth considering about this experiment.
Of about 40 initial populations, only three gave rise, during the time the ex-
periment was run, to backward-running predators. Almost all generated the

An Overview of Evolutionary Computation 5

forward leaping predator, and many produced the near-miss-generating prey.
It may be that all three of these behaviors would have been discovered in ev-
ery simulation, if only it had been run long enough. It may also be that there
were effective predator and prey behaviors that evolved that do not include
these three detected behaviors. These alternative evolutionary paths for the
robot ecology could easily have gone unnoticed by an experimenter with lim-
ited time and primitive analysis tools. It is important to remember that a run
of simulated evolution is itself a sample from a space of possible evolutionary
runs. Typically, random numbers are used to generate the starting population
and also in the process of imperfect reproduction. Different outcomes of the
process of evolution have different probabilities of appearing. The problem of
how to tell that all possible outcomes have been generated is unsolved. This
is a feature of the technique: sometimes a flaw (if all solutions must be listed)
and sometimes a virtue (if alternative solutions have value).

The experiment that led to the backward-running predators is one offshoot
of the original paper that evolved neural nets to control virtual robots. Chap-
ter 5 of this text is another. The experiments that led to Chapter 5 were mo-
tivated by the fact that on the robotic light-seeking task, eight linear neurons
outperformed six nonlinear neurons. The linear neurons were removed in pairs
until minimum training time was found. Minimum training time occurred at
no neurons. Readers interested in this subject will find a rich collection of
possible experiments in [14].

This example, a predator–prey system, is absolutely classical biology. The
advantage of adding evolutionary computation to the enterprise is twofold.
First, it permits the researcher to sample the space of possible strategies for
the predators and prey, rather than designing or enumerating them. Second,
the simulation as structured incorporates the vagaries of individual predators
and prey animals. This makes the simulation an agent-based one.

There are many different ways to derive or code biological models. Agent-
based models follow individual animals (agents) through their interactions
with the simulated environment. Another sort of model is a statistical model.
These are usually descriptive models, allowing a researcher to understand
what is typical or atypical behavior. Yet another sort of model is the equation-
based model. Predator–prey models are usually of this type. They use differ-
ential equations to describe the impact of prey on the growth rate of the
predator population as well as the impact of predators on the growth rate of
the prey [44, 46]. Equation-based models permit the theoretical derivation of
properties of the system modeled, e.g., that one should observe cyclic behavior
of predator and prey population sizes. Each of these types of model is good
for solving different types of problems.

1.1.2 Wood-Burning Stoves

Figure 1.2 shows the plan of a type of wood-burning stove designed in part
using evolutionary computation. In parts of Nicaragua, stoves such as these or

6 Evolutionary Computation for Modeling and Optimization

Burning
Wood

Chimney

Ceramic
Pipe

Pumice

Cook Top

Hot Gasses

Plancha Ecostove

Fig. 1.2. Side cutaway view of a wood-burning Plancha EcoStove.

open hearths are found in most households. People spend as much as a quarter
of their income on fuel wood for cooking. Indoor fires are often not vented, and
thus they put smoke into the home causing respiratory problems and infant
blindness. A not uncommon cause of injury is the “skirt fire.” Improving the
design of these stoves has the potential to dramatically improve the quality
of people’s lives. The stove design in Figure 1.2 has many advantages over
an open hearth and other stove designs in current use. It uses a good deal
less wood to cook the same amount of food, has a chimney to vent the fire,
and can be made with inexpensive local materials by local craftsmen. The
role of evolutionary computation in the project was to make a greater part of
the cooktop useful for cooking by finding a way to spread the heat out more
evenly.

The original design for the stove used a cooktop that was a square metal
box, open on one side, that fit over the rest of the stove. Hot air would flow
from the ceramic pipe where the wood was burned directly to the chimney.
Over the ceramic pipe the cooktop was hot enough to boil water. Along the
path from the hot spot to the chimney was a usefully hot cooking surface.

An Overview of Evolutionary Computation 7

The rest of the cooktop was not really hot enough for cooking. A solution to
the problem is to weld small, flat pieces of metal (baffles) to the underside of
the cooktop to break up the flow of the hot gas. The question is, How many
baffles and where do they go?

The stove’s original designers found a twelve-baffle solution that yielded
useful cooking heat over most of the cooktop. The field team in Nicaragua,
however, was unhappy with the design. In order to weld baffles, they had to
place hooks connected to cables over unshielded power lines running by the
town dump where the stoves were manufactured. The line current was then
used to charge a coil salvaged from an automobile. The coil was discharged
though the baffle and cooktop, via alligator clips like those on automobile
jumper cables, to create a spark-weld. This is not a rapid, or safe, process.
Twelve baffles per cooktop was, in the opinion of the field team, too many.
An example of a top view of a twelve-baffle design is shown in Figure 1.3.

Chimney

Hot Gas
Inlet

Fig. 1.3. A top view of a 12-baffle cooktop.

Figuring out where burning gases will go is itself a tricky problem. Com-
putational fluid dynamics (CFD) is the field of predicting what a fluid will do
next, given current conditions of momentum, pressure, etc. The equations that
describe fluid dynamics are difficult to solve, and in some cases they are the-
oretically impossible to solve. The typical method of finding an approximate
solution requires large computers. Another problem is that the solutions are
often unintuitive. Turbulence, vortices, and the mechanical properties of the
fluid interact to generate unpredictable behavior. Placing baffles with common
sense does not lead to effective designs. The design in Figure 1.3 will force the
hot gasses around and even the heating of the cooktop, but it may slow the
air flow enough to lead to inefficient combustion and, as noted, requires too
much welding.

8 Evolutionary Computation for Modeling and Optimization

The stove design team decided to use evolutionary computation to search
for a good set of baffles. The evolving population in this case was a collection
of baffle designs. Complete details of the experiment are available in [57]. The
downtime of a large array of computers normally used to run a virtual reality
system was salvaged to evaluate individual stove designs. A “stove design”
in this case is a selection of a set of baffles. Some numerical experimentation
showed that designs with 3 to 5 baffles achieved the same evenness of heating
as designs with more baffles. The structure used by the evolutionary algo-
rithm is a list of three baffles. Each baffle is given a starting position (x, y),
a direction (up, down, left, right), a length, and a depth (how far the baffle
projects below the cooktop). If two baffles intersect, they are counted as three
baffles because one would have to be welded on in two pieces. The final baffle
design found with the evolutionary computation system is shown in Figure
1.4. Notice that the design uses only three baffles, nine fewer than the design
worked out by common sense.

Chimney

Hot gas inlet

Fig. 1.4. The efficient three-baffle design located with evolutionary computation
(the horizontal baffle is quite deep, reaching almost to the pumice, the vertical
baffles are about half as deep).

At the beginning of the project, it took about a processor-hour to evaluate
each stove design using a commercial CFD software package. The evolutionary
computation system generated an input file and called the commercial pack-
age, examined the output file, and computed a figure-of-merit for evenness
of heating of the cooktop. Generating new baffle designs from old ones used

An Overview of Evolutionary Computation 9

techniques like those in Chapter 3 and required an essentially trivial fraction
of the total computation time.

Experimentally lowering the resolution of the CFD to where it was just
accurate enough to compare designs lowered the evaluation time for a stove
design to about five minutes. In a standard evolutionary computation run,
the number of cases examined varies from hundreds of thousands to tens of
millions. A five-minute evaluation for quality is exceedingly expensive. Even
with an entire array of large processors available most evenings, six months of
computation was required to produce the design shown in Figure 1.4. Tech-
niques of the sort described in Chapter 13 were applied to make the process
more efficient.

The final stove design was run through the commercial CFD software on
very high resolution to numerically validate the design, and then Mark Bryden,
the project leader, made a trip to Nicaragua to field-validate the design. At
the time of this writing, several hundreds of these stoves are in operation in
Nicaragua. Designing stoves in this fashion is an extreme case of evolutionary
computation in which only a few tens of thousands of designs are examined
with a very long, expensive fitness evaluation for each design.

1.1.3 Hyperspectral Data

Hyperspectral
Data

Feature
Selector

Modeling
Software

Evolving
Population

Yields
Fitness

Fig. 1.5. Block diagram of an evolutionary feature-selection system.

A major application of evolutionary computation is modeling data. In
Chapter 9, we will look at a number of methods for modeling data. If the
data you are modeling are simple, then you won’t need evolutionary compu-
tation. If the data you are modeling are complex and noisy, then evolutionary
computation, properly applied, can be a big help.

In the early days of remote sensing, an aircraft or satellite might collect
data on 3 to 7 frequencies. Depending on the application, these frequencies
might be visible light or in the near infrared. Near infrared light contains
a great deal of useful agricultural information. Corn that is about to shed
pollen and diseased plants are both examples of interesting phenomena with
detectable infrared signatures. Modern remote sensing platforms can collect
data on thousands of frequencies. Such sensors are said to be hyperspectral.
The data might be collected by a satellite, by aircraft overflight, or by sending

10 Evolutionary Computation for Modeling and Optimization

light across a conveyor belt in a processing plant through the material on the
belt. Even smokestacks are sometimes equipped with hyperspectral sensors
that collect data on stack emissions by looking at what frequencies of light
the smoke absorbs and transmits.

When you are collecting data on a small number of frequencies, you tend
to spread them out across the spectrum. This means that each frequency
contains fairly different information. If your sensors return data for thousands
of frequencies, the frequencies will be closer together. Two similar frequencies
tend to contain similar information. This means that a hyperspectral sensor
array tends to return a lot of redundant data. Since sensors are always at least
a little noisy, this redundancy (if you can find it) can be used to reduce the
impact of noise or random measurement errors.

Evolutionary computation can reduce a huge block of noisy data to useful
information while exploiting redundancy to compensate for noise. This is not
an easy problem, especially given that some of the real information in the data
may not be relevant to the phenomenon we are currently trying to detect.
One possible approach is the pipeline shown in Figure 1.5. The useful items
abstracted from the hyperspectral data are called features. The problem of
picking good features is the feature selection problem. The strategy is to make
a selection of features the data structure for the evolving population. The
fitness of a selection of features is the quality of the data model derived from
those features. An example of an evolutionary algorithm that performs this
sort of data model selection appears in [53].

In this case, 321 frequencies of infrared data were available in the form of
measured reflection off the canopy of a cornfield. Adjacent frequencies often
take on quite similar values, and so this is exactly the sort of data set under
discussion. The potential features were statistical abstractions of ranges of
data. A block of frequencies had a statistical operator from the following list
applied to them: average, median value, maximum value, minimum value,
variance, and slope of a regression line through the data. A single member of
the evolving population specified 47 such range abstractions. An individual
range abstraction was specified by a starting frequency, a length (number of
frequencies in the block), and a choice of one of the six operations.

The modeling software used to fit the model and check the fitness of the
choice of range abstractions was a commercial partial least squares (PLS) pack-
age. This package normalizes all its input variables into the range [0, 1] before
using them and so eliminates problems with, for example, the units of median
and slope being different. To evaluate a given choice of range abstractions, the
PLS software was used to generate a model from 80% of the data, and then
the quality of the model was checked for error on the remaining 20% of the
data. This procedure, intended to avoid overfitting, in essence memorizing the
data instead of modeling it, is called cross validation. The dependent variable
being fit was the degree to which the corn had tasseled, as assessed by human
experts on the ground at the time the data was acquired.

An Overview of Evolutionary Computation 11

This technique is an example of a range operator enhanced evolutionary
algorithm. This particular example generated good models, better than using
PLS on the raw data. This isn’t the end of the story. Some natural questions
that arise are, Do you need all six range operators? and Which parts of the
spectra are used the most? By looking carefully at the sets of features that
appeared in the evolved populations, the researchers could address these ques-
tions. Average and slope were the most useful operations, but all of them were
used. There were definitely parts of the spectrum that were used more often,
and a few regions appeared in almost every fit creature.

This example illustrates some valuable strategies that can be used in evo-
lutionary computation. The first is using hybrid techniques. An evolutionary
algorithm that tried to find the data model on its own, rather than handing
off its feature selection to a modeling package, would not have functioned as
well. The model-fitting package does not perform feature selection, and evolu-
tionary algorithms are not good at fitting precise models quickly. This division
of labor produced superior results.

A second notion is data mining. Data mining is the process of locating
useful information buried in voluminous data. The feature selection that was
the explicit purpose of the evolutionary algorithm in the example is one type
of data mining. Looking at the evolved populations to see which parts of
the spectrum and which range operators were useful is another. This latter
data mining can be used to direct which spectral data are collected next time
and also to simplify the evolutionary algorithm by reducing the set of range
operators used.

Finally, this process of evolving abstractions and passing them off to mod-
eling software, as shown in Figure 1.5, has the potential to be applied well
beyond the example given here.

1.1.4 A Little Biology

A better understanding of biological evolution is the most fundamental ap-
plication of evolutionary computation as well as its inspiration. The theory
of evolution is central to both the discipline and to this text. Evolution itself
is dead simple and widely misunderstood. The theory of evolution is subtle,
complex, and widely misunderstood. Misunderstanding of evolution and the
theory that describes evolution flows not from the topic’s subtlety and com-
plexity, though they help, but from active and malicious opposition to the
theory. Because of this, we stop at this point for a review of the broad outline
of the biology that inspires the techniques in the rest of the text.

The first thing we need is some definitions. If you don’t know what DNA
is or want a lot more detail on genes, look in any standard molecular biology
text, e.g., [41]. A gene is a sequence of DNA bases that code for a trait, e.g.,
eye color or ability to metabolize alcohol. An allele is a value of a trait. The
eye color gene could have a blue allele or a hazel allele in different people.

12 Evolutionary Computation for Modeling and Optimization

Definition 1.1 Evolution is the variation of allele frequencies in popula-
tions over time.

This definition is terse, but it is the definition accepted by most biologists.
The term frequency means “fraction of the whole,” in this case. Its precise
meaning is the one used in statistics. Each time any creature is born or dies,
the allele frequencies in its population change. When a blond baby is born,
the fraction of blond alleles for some hair color gene goes up. When a man
who had black hair in his youth dies, the frequency of black hair alleles drops.
Clearly, evolution happens all the time.

Why, then, is there any controversy? The controversy exists partly because
most people who oppose evolution have never even heard the definition given
here. Try asking people who say they dislike evolution what the definition
of evolution is. If you do this, try to figure out where (and from whom) the
person to whom you are talking learned his definition of evolution.

The main reason for the controversy surrounding evolution is that people
dislike the logical conclusions that follow from the above definition juxtaposed
with a pile of geological, paleontological, molecular, and other evidence. It is
not evolution, but the theory of evolution, that they dislike. The theory of
evolution is the body of thought that examines evidence and uses it to deduce
the consequences of the fact that evolution is going on all the time. In science,
a theory means “explanation” not “tentative hypothesis.” Scientific theories
can be anywhere from entirely tentative to well supported and universally
accepted. Within the scientific community, the theory of evolution is viewed
as well supported and universally accepted. However, you do not need to
accept the theory of evolution in biology to do evolutionary computation.
Evolutionary computation uses the ideas in the theory of evolution, asserting
nothing about their validity in biology. If you find some of the proceeding
material distressing, for whatever reason, I offer the following thought. The
concept of evolution exists entirely apart from the reality of evolution. Even
if biological evolution is a complete fantasy, it is still the source from which
the demonstrably useful techniques of evolutionary computation spring. We
may set aside controversy, or at least wait and discuss it over a mug of coffee,
later.

Why mention this in what is, essentially, an interdisciplinary computer sci-
ence text? Because of the quite vigorous opposition to the teaching of evolu-
tion, most students come into the field of evolutionary computation in a state
much worse than ignorance. Many have heard only myths, falsehoods, and
wildly inaccurate claims about evolution. A wonderful essay on this problem
is [17]. Since we will attempt to reforge evolution into an algorithm, funda-
mental misunderstandings about evolution are a handicap. So examine closely
what you have been taught about evolution. There are a few key concepts im-
portant for evolutionary computation: reproduction, variation, and selection.

Evolution produces new forms over time, as can be seen from examining
the fossil record and from looking at molecular evidence or “genetic fossils.”

An Overview of Evolutionary Computation 13

This ability to produce new forms, in essence to innovate without outside
direction other than the imperative to have children that live long enough to
have children themselves, is the key feature we wish to reproduce in software.

How does evolution produce new forms? There are two opposing forces
that drive evolution: variation and selection. Variation is the process that
produces new alleles and, more slowly, genes. Variation can also change which
genes are or are not expressed in a given individual. The simplest method of
doing this is sexual reproduction with its interplay of dominant and recessive
genes. Selection is the process whereby some alleles survive and others do not.
Variation builds up genetic diversity; selection reduces it.

In biology, the process of variation is quite complex and operates mostly at
the molecular level. At the time of this writing, biologists are learning about
whole new systems for generating variation at the molecular level. Biologi-
cal selection is better understood than biological variation. Natural selection,
the survival of forms better adapted to their current environment, has been
the main type of biological selection. Selective breeding, such as that which
produced our many breeds of dogs, is another example of biological selection.

Evolutionary computation operates on populations of data structures. It
accomplishes variation by making random changes in these data structures
and by blending parts of different structures. These two processes are called
mutation and crossover, and together are referred to as variation operators.
Selection is accomplished with any algorithm that favors data structures with
a higher fitness score. There are many different possible selection methods.

Some ideas work very differently in biology and evolutionary computation.
Consider the concept of fitness. The following is a common belief about evo-
lution: “Evolution is the result of survival of the fittest.” How do you tell who
is fit? Clearly, the survivors are the most fit. Who survives? Clearly, the most
fit are those that survive. This piece of circular logic both obscures the correct
notion of fitness in biological evolution and makes it hard to understand the
differences between biological evolution and the digital evolution we will work
with in this text. In biology, the only reasonable notion of fitness is related
to reproductive ability. If you have offspring that live long enough to have
offspring of their own, then you are fit. A Nobel prize–winning Olympic triple
medalist who never has children is completely unfit, by the simplest biological
definition of fitness. Consider a male praying mantis. As part of his mating
ritual, he gets eaten. He does not survive. The female that eats him goes on
to lay hundreds of eggs. A male praying mantis is, thus, potentially a highly
fit nonsurvivor. A better way to phrase the material in quotes might be “The
results of evolution follow from differential survival and reproduction which,
themselves, are the correct measure of fitness.”

Oddly enough, “evolution is the result of survival of the fittest” is a pretty
good description of many evolutionary computation systems. When we use
evolutionary computation to solve a problem, we operate on a collection (pop-
ulation) of data structures (creatures). These creatures will have explicitly
computed fitnesses used to decide which creatures will be partially or com-

14 Evolutionary Computation for Modeling and Optimization

pletely copied by the computer (have offspring). This fundamental difference
in the notion of fitness is a key difference between biological evolution (or mod-
els of biological evolution) and most evolutionary computation. Some sorts of
evolutionary computation do use computer models of the biological notion of
fitness, but they are a minority.

Mutations of data structures can be “good” or “bad.” A good mutation is
one that increases the fitness of a data structure. A bad mutation is one that
reduces the fitness of a data structure. Imagine, for the sake of discussion, that
we view our data structures as living on a landscape made of a vast flat plane
with a single hill rising from it. The structures move at random when mutated,
and fitness is equivalent to height. For structures on the plane, any mutation
that does not move them to the hill is neither good nor bad. Mutations that
are neither good nor bad are called neutral mutations. Most of these mutations
are neutral.

Let’s focus on structures on or near the hill. For structures at the foot
of the hill, slightly over half the mutations are neutral and the other half are
good. The average effect of mutations at the foot of the hill is positive. Once we
are well off the plane and onto the slope of the hill, mutations are roughly half
good with a slightly higher fraction being bad. The net effect of mutation is
slightly negative. Near or at the top of the hill, almost all movements result in
lower fitness; almost all mutations are bad. Using this palette of possibilities,
let’s examine the net effect of mutation during evolution.

Inferior creatures, those not on the hill, cannot be harmed by mutation.
Creatures on the hill but far from the top see little net effect from mutation.
Good creatures are affected negatively by mutation. If mutation were operat-
ing in a vacuum, creatures would end up mostly on the hill with some bias
toward the top. Mutation does not operate in a vacuum, however. Selection
causes better structures to be saved. Near the top of the hill, those structures
that leap downhill can be replaced and more tries can be made to move uphill
from the better structures. The process of selection permits us to cherry-pick
better mutations.

Biological mutations, random changes in an organism’s DNA, are typically
neutral. Much DNA does not encode useful information. The DNA that does
encode useful information uses a robust encoding so that many single-base
changes do not change what the gene does. The network of interaction among
genes is itself robust with multiple copies of some genes and multiple different
genes capable of performing a specific task. Biological organisms are often
“near the top of the hill” in the sense of their local environment, but the
hilltops are usually large and fairly flat. In addition, life has adapted over
time to the process of evolution. Collections of genes that are adapted to
other hilltops lie dormant or semifunctional in living organisms. Studying
these adaptations, the process of “evolving to evolve” is fascinating but well
beyond the scope of this text.

Since biological reality and evolutionary computation are not inextrica-
bly intertwined, we can harvest the blind alleys of biological science as valid

An Overview of Evolutionary Computation 15

avenues for computational research. Consider the idea of Lamarck that ac-
quired characteristics can be inherited. In Lamarck’s view, a muscular child
can result from having parents work out and build muscle tissue prior to con-
ceiving. Lamarck’s version of evolution would have it that a giraffe’s neck
is long because of stretching up to reach the high branches. We are certain
sure this is not how biology works. However, there is no reason that evolu-
tionary computation cannot work this way, and in fact, some types of it do.
The digital analogue to Lamarckian evolution is to run local optimization on
a data structure and save the optimized version: acquired characteristics are
inherited.

Issues to Consider

In the remainder of this text, you should keep the following notions in mind.

• The representation used in a given example of evolutionary computation
is the data structure used together with the choice of variation opera-
tors. The data structure by itself is the chromosome (or gene) used in the
evolutionary computation.

• The fitness function is the method of assigning a heuristic numerical esti-
mate of quality to members of the evolving population. In some cases, it
decides only which of two structures is better without assigning an actual
numerical quality.

The choice of representation and fitness function can have a huge impact on
the way an evolutionary computation system performs.

This text presumes no more familiarity with mathematics than a standard
introduction to the differential and integral calculus. Various chapters use
solid calculus, graph theory, Markov chains, and some statistics. The material
used from these disciplines appears, in summary form, in the appendixes. In-
structors who are not interested in presenting these materials can avoid them
without much difficulty: they are in specific chapters and sections and not
foundational to the material on evolutionary computation presented. The level
of algorithmic competence needed varies substantially from chapter to chapter;
the basic algorithms are nearly trivial qua algorithms. Genetic programming
involves highly sophisticated use of pointers and dynamic allocation. Students
whose programming skills are not up to this can be given software to use to
perform experiments.

Problems

Problem 1. In the wood-burning stove example of evolutionary computation,
the representation of the stove design was a list of baffles, each baffle being
described by position, orientation, length, and depth. When a pair of baffles
intersected, as shown below, one of the baffles was split into two baffles. If the

16 Evolutionary Computation for Modeling and Optimization

representation specifies three baffles that must be vertical or horizontal (no
diagonal baffles), then what is the largest number of baffles that can occur
after splitting?

Two Specified Three Welded

Problem 2. Read Problem 1. Suppose the representation specifies n baffles,
then how many welded baffles can result? You answer will be a function of n.

Problem 3. Consider a system in which the chance of a good mutation is
10%, the chance of a bad mutation is 50%, and the chance of a neutral mu-
tation is 40%. The population has two creatures. It is updated by copying
the better creature over the worse and then mutating the copy. A good mu-
tation adds one point of fitness and a bad mutation subtracts one point of
fitness. If we start with two creatures that have fitness zero, compute the ex-
pected fitness of the best creature as a function of the number of population
updatings.

Hill Function

-3
-2

-1
0

1
2

3 -3
-2

-1
0

1
2

3

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

An Overview of Evolutionary Computation 17

Problem 4. The function

f(x, y) =
1

x2 + y2 + 1

is graphed above. It is a single hill with its peak at (0, 0). Suppose we have
a data structure holding real values (x, y) with fitnesses f(x, y). Mutation
consists in moving a distance of exactly 1 in a direction selected uniformly at
random.

(i) Give a minimal-length sequence of mutations that take the point (2, 2) to
the point (0, 0) without ever lowering the fitness.

(ii) Prove that every point in the plane has a sequence of mutations that take
it to the top of the hill.

(iii) Give a point (x, y) that cannot be taken by a sequence of mutations to
(0, 0) without lowering the fitness along the way.

(iv) Compute the minimal number of mutations needed to take (x, y) to (0, 0)
as a function of x and y.

(v) For which points (x, y) can the paths found in (iv) avoid a step in which
fitness goes down?

Problem 5. Essay. Some genes generate traits fairly directly: if you block
the gene, that trait goes away and the organism is otherwise unchanged. Other
genes are more like control points. Knocking out a control gene can turn whole
complexes of other genes off (or on). Which of these two sorts of genes are
better targets for selective breeders? Imagine, for example, trying to breed
high-yield corn or a dog with an entirely new appearance.

Problem 6. Essay. Consider the following animals: rabbit, box turtle, and
deer. All three are herbivores living in North America. Do your best to assess,
or at least discuss, the relative fitness of these creatures.

Problem 7. Essay. Compare and contrast North American deer, African an-
telopes, and Australian kangaroos. Do these animals live in similar environ-
ments? Do they do similar “jobs?” Is there a best way to be a large herbivore.

1.2 Evolutionary Computation in Detail

We already know that evolutionary computation uses algorithms that operate
on populations of data structures by selection and variation. Figure 1.1 gave
a very simple version of the basic loop for an evolutionary algorithm.

In an evolutionary algorithm, the first step is to create a population of
data structures. These structures may be filled in at random, designed to some
standard, or be the output of some other algorithm. A fitness function is used
to decide which solutions deserve further attention. In the main loop of the
algorithm, we pick solutions so that on average more fit solutions are chosen.

18 Evolutionary Computation for Modeling and Optimization

This is the process of selection. The selected solutions are copied over other
solutions. The solutions slated to die may be selected at random or with a bias
toward worse solutions. The copied solutions are then subjected to variation.
This variation can be in the form of random tweaks to a single structure or
exchange of material between structures. Changing a single structure is called
unary variation or mutation. Exchanging material between structures is called
binary variation or crossover.

The main loop iterates this process of population updating via selection
and variation. In line with a broad outline of the theory of evolution, this
should move the population toward more and more fit structures. This con-
tinues until you reach an optimum in the space of solutions defined by your
fitness function. This optimum may be the best possible place in the entire
fitness space, or it may merely be better than all structures “nearby” in the
data structure space. Adopting the language of optimization, we call these
two possibilities a global optimum and a local optimum. Unlike many other
types of optimizer, an evolutionary algorithm can jump from one optimum to
another. Even when the population has found an optimum of the fitness func-
tion, the population members scatter about the peak of that optimum. Some
population members can leak into the area near another optimum. Figure 1.6
shows a fitness function with several optima. A well-scattered population on
the left peak may still be able to discover the right peak. This breadth of
search is a property of evolutionary algorithms that is both desirable for some
search problems and a source of inefficiency for others.

Keep in mind that during the design process an evolutionary algorithm
operates on a population of candidate solutions rather than on a single solu-
tion. Not all members of the population need to be fit for a population-based
search algorithm to function well. For many types of problems, it is important
that low-fitness members of the population exist: they can break through into
new areas of the search space. The low-fitness individuals in generation 60
may be the ancestors of the highest-fitness members of generation 120.

It is important to keep in mind that not all problems have solutions. Evo-
lutionary algorithms can also be used to solve problems that provably fail to
have optimal solutions. Suppose that the task at hand is to play a game against
another player. Some games, like tic-tac-toe, are futile, and you cannot learn
to win them when playing against a competent player. Other games, like chess,
may have exact solutions, but finding them in general lies beyond the compu-
tational ability of any machine envisioned within our current understanding
of natural law. Finally, games like Iterated Prisoner’s Dilemma, described in
Robert Axelrod’s book The Evolution of Cooperation [7], are intransitive: for
every possible way of playing the game in a multiplayer tournament, there is
another way of playing it that can tie or beat the first way. Oddly, this does
not put Prisoner’s Dilemma in a class with tic-tac-toe, but rather makes it
especially interesting. A simpler game with this same intransitivity property
is rock-paper-scissors. Every possible strategy has another that beats it.

An Overview of Evolutionary Computation 19

0

0.5

1

1.5

2

-4 -3 -2 -1 0 1 2 3 4

y=f(x)

Fig. 1.6. A function with two major optima and several local optima.

Many real-world situations have strategies that work well in some con-
texts and badly in others. The “best strategy” for Prisoner’s Dilemma varies
depending on whom you are playing and also on who is playing in general. Po-
litical science and evolutionary biology both make use of Prisoner’s Dilemma
as a model of individual and group interaction. Designing a good fitness func-
tion to evolve solutions to these kinds of problems is less straightforward. We
will treat Prisoner’s Dilemma in greater depth in Chapter 6.

Genetic algorithms are, perhaps, the best-known type of evolutionary al-
gorithm. Genetic algorithms are evolutionary algorithms that operate on a
fixed-sized data structure and that use both mutation and crossover to accom-
plish variation. It is problem- and context-dependent whether crossover helps
an evolutionary algorithm locate new structures efficiently. We will explore
the utility of crossover in later chapters. There is a large variety of different
types of crossover, even for fixed data structures. An example of crossover of
two 6-member arrays of real numbers and of two 12-character strings is shown
in Figure 1.7.

1.2.1 Representation

A central issue in evolutionary computation is the representation issue. Sup-
pose, for example, that you are optimizing a real function with 20 variables.
Would it be more sensible to evolve a gene that is an array of 20 real numbers

20 Evolutionary Computation for Modeling and Optimization

Parent 1 3.2 5.6 1.4 7.6 6.7 3.3
Parent 2 1.4 6.7 6.8 9.2 2.1 4.3
Child 1 3.2 5.6 6.8 9.2 2.1 4.3
Child 2 1.4 6.7 1.4 7.6 6.7 3.3

Parent 1 a a a b b b c c c d d d
Parent 2 A A A B B B C C C D D D
Child 1 a a a b B B C C C d d d
Child 2 A A A B b b c c c D D D

Fig. 1.7. An example of crossover of data structures consisting of 6 real numbers
and of 12 characters. (Crossover occurs after gene position 2 for the real-number
structures and between positions 5 and 9 for the strings.)

or a gene that is a 960-bit string that codes for real numbers in some fash-
ion? Should the crossover in the algorithm respect the boundaries of the real
numbers or be allowed to split the structure in the middle of a real number?
What about problems more complex than real function optimization? What
data structure works best for them?

The representation question ”What is the correct data structure and set
of variation operators for the current problem?” is a thorny one. While there
is theory in connection with some specific representations, there is not yet
a good general theory of representation. Creating a new representation for a
problem is an act of imagination. This is most easily seen when one is trying
to design a software framework for evolutionary computation. The framework
designers send a beta version of the framework to their test users. Within
days, the test users will turn up a conference paper, journal article, or idea of
their own that cannot be implemented smoothly in the framework because it
involves a novel structure, population structure, or variation operator.

Consider the n-queens problem. The goal is to place n chess queens on
an n × n board so that no two attack each other. Queens attack along rows,
columns, and diagonals. If we use, as a representation, the coordinates of the
queens on the board, then we must satisfy the obvious rule “one queen in each
row and column” as part of our fitness evaluation. Most random placements
of n queens will fail to satisfy this simple constraint. Vast amounts of time
will be spent evaluating configurations that are obviously wrong. If instead we
store an assignment of rows to columns (a bijection of the set of n rows with
the n available columns), then the row–column mapping places the queens
so that they do not attack along rows and columns. If, for example, we were
working on the 3-queens problem, then the row–column assignment “row 1 is
assigned to column 1, row 2 to column 3, and row 3 to column 2” produces the
configuration in Figure 1.8. This configuration happens to solve the problem;
in general, this is not true of row–column assignments. Now, is the row–
column assignment a superior representation to listing queen positions (x, y)?

An Overview of Evolutionary Computation 21

Probably: it satisfies many of the constraints of the problem intrinsically.
Where is there room for doubt? The possible variation operators for row–
column assignments encoded as permutations are more complex than those
for simple lists. This issue is discussed at some length in Chapter 7.

Q

Q

Q
Fig. 1.8. A solution to the 3-queens problem.

Much of the recent progress in evolutionary computation has resulted from
changing the representation used. Choosing a representation, as can be seen
from the 3-queens example, is a way of placing problem-specific knowledge into
the design of the evolutionary algorithm. The famous no free lunch theorem
[60] demonstrates that there is no efficient general-purpose search algorithm.
Evolutionary computation is quite general-purpose: this implies that it must
be inefficient unless it is specialized to the problem at hand. Careful design
of representation is a point at which such specialization can take place. We
will examine these issues with experiments, problems, and examples in later
chapters. This text introduces a broad variety of representations.

1.2.2 Evolution and Coevolution

Another important concept in evolutionary computation is coevolution. In
his paper on evolving sorting networks [34], W. Daniel Hillis built an evolving
system in which both the population of sorting networks and the collection of
test cases being used to evaluate fitness were allowed to evolve. The solutions
were judged to have fitness in proportion to the number of test cases they
solved, while the test cases were judged to have fitness in proportion to the
number of solutions they fooled. As Hillis’s sorters got better, the problems
they were tested on became harder (or at least focused on the weaknesses of
the current crop of sorters). The biological idea that inspired Hillis was para-
sitism; a biologist might more properly term the Hillis technique coevolution
of competing species. (The fact that a biologist might not like Hillis’s analogy
does not invalidate Hillis’s technique: exactness of biological analogy is not
only not required but may not really be possible.) The use of coevolving test
problems did indeed enhance the performance of his search algorithm over

22 Evolutionary Computation for Modeling and Optimization

that observed in earlier runs with a fixed set of test cases. By transforming a
system that evolved to one that coevolved, Hillis enhanced performance.

There are two broad classes of evolutionary software that we will call evolv-
ing and coevolving in this text. An evolving population has members whose
fitness is judged by some absolute and unchanging standard, e.g., smallness of
the dependent variable when a function is minimized. The smaller the value
of the evaluation function a given creature in an evolving system has found,
the more fit it is. In a coevolving population, the fitness of a member of the
evolving population is found by a context-dependent standard. A data struc-
ture may be quite fit at one time, unfit later in time, and then later return
to being very fit. For example, when we evolve creatures to play Prisoner’s
Dilemma, the fitness of a creature will depend on the exact set of strategies in
the current population. The intransitivity of Prisoner’s Dilemma makes every
strategy suboptimal in some situation.

Another example of transformation of an evolving system into a coevolving
system appears in David Goldberg’s classic Genetic Algorithms in Search,
Optimization, and Machine Learning [29]. He suggests reducing the fitness
of a member of a population in proportion to the number of other solutions
that are essentially the same. In a real function optimizer, this might be the
number of solutions that are close by in the domain space. The effect of this
is to make solutions less good once they have been discovered by several
members of the population. This reduces the accumulation of solutions onto
a good, but suboptimal, solution found early on in the search. This technique
is called niche specialization and is inspired by the notion of biological niches.
The kangaroo in Australia, the deer in North America, and the gazelle in
Africa are in the same biological niche. In theory, once a niche is filled, it
becomes hard for new species to enter the niche. This is because the existing
residents of the niche are already using the resources it contains.

Notice that niche specialization is a transformation from evolution to co-
evolution. The standard of fitness changes from an absolute one—the function
being optimized—to one in which the current membership of the population
is also relevant. This example, while coevolutionary, is in some sense closer to
being evolutionary than the Prisoner’s Dilemma example. There is not a strict
dichotomy between evolution and coevolution. Rather, there is a spectrum of
intermediate behaviors.

1.2.3 A Simple Type of Evolutionary Computation

Definition 1.2 A string evolver is an evolutionary algorithm that tries to
match a reference string starting from a population of random strings. The
underlying character set of the string evolver is the alphabet from which the
strings are drawn.

String evolvers often serve as a baseline or source of reference behavior
in evolutionary algorithm research. An evolutionary algorithm for a string

An Overview of Evolutionary Computation 23

evolver functions as follows. Start with a reference string and a population of
random strings. The fitness of a string is the number of positions in which
it has the same character as the reference string. To evolve the population,
split it into small random groups called tournaments. Copy the most fit string
(break ties by picking at random among the most fit strings) over the least
fit string in each tournament. Then, change one randomly chosen character
in each copy (mutation). Repeat until an exact match with the reference
string is obtained. Typically, one records the number of tournaments, called
generations, required to find a copy of the reference string.

A word of warning to student and instructor alike. The string evolver
problem is a trivial problem. It is a place to cut your teeth on evolutionary
algorithms, not an intrinsically interesting problem. It is an odd feature of
the human mind that people immediately think of fifty or sixty potential
improvements as soon as they hear a description of your current effort. If
you have a cool idea about how to improve evolutionary algorithms, then you
might try it out on a string evolver. However, bit-twiddling improvements
that are strongly adapted to the string evolver problem are probably not of
much value. An example of a string evolver’s output is given in Figure 1.9.

Appeared in
Best String Fitness Generation

HadDe Q‘/--<jlm’ 3 5
HadDe.em3m/<Ijm- 4 52
HadDe,em3m/<Ijm- 5 54
HadDm,ex3m/#Ijmj 6 73
HadDm,eI8m/#Ijmj 7 86
HadDm,eI8m[Ajjmt 8 118
HadDm,UI8m[Ajjm. 9 135
MadDm,zI8m4AJ1m. 10 154
Madam,zIXm4AJ1m. 11 163
Madam, InmqAJym. 12 256
Madam, I’mqArHm. 13 327
Madam, I’m AC˜m. 14 473
Madam, I’m APam. 15 512
Madam, I’m Adam. 16 647

Fig. 1.9. The output of a string evolver operating over the printable ASCII charac-
ters with a population of 60 strings. (The reference string is “Madam, I’m Adam.”
Shown are each string that achieves a new best fitness together with its generation
of appearance.)

24 Evolutionary Computation for Modeling and Optimization

Problems

Problem 8. Write and debug your own version of the string evolver described
following Definition 1.2. Let your population contain 60 strings and set the
size of the tournaments to n = 2. Run the algorithm 50 times and report the
mean, standard deviation, and maximum and minimum number of generations
needed to find solutions.

Problem 9. For the string evolver in Problem 8, what is the best value of
n for the tournament size? In this case, “best” means “minimizes time-to-
solution.”

Problem 10. Following the discussion in Section 1.2.1, construct and defend
a representation for the n-queens problem. Give the data structure and varia-
tion operators. State the advantages and disadvantages of your representation.

Problem 11. Assume that we are evolving strings of a fixed length l. Prove
that the amount of time it takes the string evolver to converge is independent
of the choice of characters in the reference string.

Problem 12. For tournament size 2, estimate mathematically and/or exper-
imentally (consult your instructor) the dependence of the number of genera-
tions needed on average to find the reference string on the length l of the refer-
ence string. If you are taking the experimental route, give a careful description
of your experiment. If you are estimating mathematically, the information on
Markov chains in Appendix B may be helpful.

Problem 13. Modify the string evolver from Problem 8 to have crossover. Use
tournament size n = 4. For each group of four strings, let the two with highest
fitness cross over to produce two children that replace the two strings with
lowest fitness. With probability m for each child, randomly change (mutate)
one character of the child. The probability m is termed the mutation rate. To
do crossover, as in the first part of Figure 1.7, select a random position in the
parental strings and exchange the suffixes starting at that position to obtain
the crossed-over strings of the children. Do 50 runs for m = 0.4 and m = 0.8
and compare the two mutation rates.

Problem 14. Implement an evolutionary algorithm that can find the maxi-
mum or minimum of a real function of n real variables. The real function can
be hard-coded into your algorithm, and the number of variables should be
something you can easily change. The data structures will be arrays of real
numbers whose dimension is equal to the number of variables in the function
you are optimizing. The fitness function is the function you are maximizing
(minimizing) with the functional values interpreted appropriately. Crossover
is done as in the string evolver, Problem 13, treating individual real numbers
as if they were characters. Mutation consists in adding a uniformly distributed
real number in the range −0.2 ≤ x ≤ 0.2 to some one random position in the
creature’s gene. Test your program on the following functions:

An Overview of Evolutionary Computation 25

Fig. 1.10. f(x, y) = 18 − �x2� − �y2�, −3 ≤ x, y ≤ 3.

(i) Minimize f(x, y, z) = x2 + y2 + z2, −2 ≤ x, y, z ≤ 2.
(ii) Maximize f(x, y, z) = 1

x2+y2+z2+1 , −2 ≤ x, y, z ≤ 2.

(iii) Maximize f(x, y) = cos(
√

x2+y2)
x2+y2+1 , −2π ≤ x, y ≤ 2π.

(iv) Maximize f(x, y) = 18 − �x2� − �y2�, −3 ≤ x, y ≤ 3.

The fourth function is shown in Figure 1.10 to aid your intuition. The symbol
�� means “floor” or round down to the nearest integer.

1.3 Genetic Programming

Genetic programming is an example of the use of a variable-sized data struc-
ture in evolutionary computation. We will explore genetic programming and
compare the technique with other evolutionary algorithms in Chapters 8–15.
In simple evolutionary algorithms, the data structure storing a member of the
evolving population of solutions is of fixed size. This means that care must be
taken to write a data structure that is general enough that it has the poten-
tial to contain a solution. For real function optimization this isn’t a terribly
difficult task: an array of real numbers sized to match the number of variables
in the function suffices.

In solving more subtle problems, having a sufficiently general data struc-
ture can be a significant problem. An approach to this problem was in-
vented by John Koza and David Rice and is called genetic programming

26 Evolutionary Computation for Modeling and Optimization

[38, 36, 39, 37, 9, 40]. Genetic programming (abbreviated GP) is, in spirit, the
same as other evolutionary algorithms. The major difference is that the so-
lutions are stored in variable-sized structures, most commonly in parse trees.
These parse trees represent general formulas, typically with an upper bound on
the size of the formulas. Operations are internal nodes of the trees; constants
and variables are leaves (called terminals). Taken together, the operations and
terminals of a parse tree are called the nodes of the parse tree.

Since almost any imaginable computational problem with a solution can be
solved with one or more formulas, possibly involving iterative operations, this
gives a general solution space. In fact, the problem becomes one of having a
gigantic solution space, large enough to be quite difficult to search efficiently.
Some example parse trees are given in Figure 1.11. To save space, we will
usually give parse trees in a LISP-like notation in which a node and all its
descendants are simply listed between parentheses, recursively. In LISP-like
notation, we replace f(x) with (f x) and (a + b) with (+ a b).

+

a b

+

+

a b

c

(+ a b), (+ (+ a b) c)

Fig. 1.11. Some parse trees, together with their LISP-like form.

Genetic programming is a good technique that often works well, but noth-
ing’s perfect. It sometimes changes a problem from being like searching for
a needle in a haystack to being like searching for a needle in Nebraska; the
search space gets quite a lot larger. Several well known techniques exist for
searching a haystack for a needle: sitting in the haystack and sifting through
it, burning it and sorting through the ash with a magnet, etc. There are
no known techniques for efficiently locating a needle randomly placed in the
state of Nebraska. If you use genetic programming to evolve formulas that
solve your problem, then you are in effect searching the space of formulas.
This solution space is extra large, and the search will take forever unless it is
done sensibly. You have to narrow your search to the right parts of Nebraska.
This involves writing special-purpose languages for the formulas you evolve
and using heuristics to bias the initial population of formulas.

Suppose, for example, that we are using genetic programming to find an
efficient formula for encoding and interpolating a data set with two indepen-
dent variables and one dependent variable. In addition, no pair of indepen-
dent variables occurs more than once. (In other words, the data set describes

An Overview of Evolutionary Computation 27

a function.) One possible special-purpose language for this genetic program-
ming task consists of real constants, the variables x and y, and the arithmetic
operators +, −, ×, and ÷. The fitness of a given parse tree is the sum over
the data set of the square of the difference between the function the parse
tree represents and the values given in the data set. In this case, we are min-
imizing the fitness function. This special-purpose language has no iterative
operations. Every “program” (formula) returns a real-number result. It may
be just complex enough to represent data sets that don’t have too much wrong
with them. An example of a function that could be encoded by this language
is

f(x, y) = x2 + y2,

shown in parse tree form in Figure 1.12.

x x

*

y y

*

+

Fig. 1.12. f(x, y) = x2 + y2.

Notice that every possible formula and subformula in the proceeding ex-
ample returns the same data type (real). This is done to simplify crossover
and mutation operators and the creation of “random” parse trees for the ini-
tial population. The recursive calls to generate subtrees are easier to write if
they need not do type-checking. Mutation in genetic programming consists in
picking a random node in the parse tree, deleting the subtree of which it is
the root, and then generating a new random subtree of about the same size
to replace it. Crossover consists in locating a random node in each parent tree
and then exchanging the subtrees of which they are the root. Examples of
crossover and mutation are given in Figure 1.13. Paradoxically, it turns out
that in genetic programming, crossover is computationally much easier than
mutation; it is just a simple exchange of pointers.

28 Evolutionary Computation for Modeling and Optimization

Parent 1 (+(+ a b) c)
Parent 2 (* (* a (+ x y)) (+ a x))
Child 1 (+ (+ a (* a (+ x y))) c)
Child 2 (* b (+ a x))

Crossover at b and (* a (+ x y))
Mutation (+ (+ a (* (+ x y) (+ x y))) c)

(of child 1) mutation takes a to (+ x y)

Fig. 1.13. Crossover and mutation.

One feature many GP implementations have is subroutines or automati-
cally defined functions (ADFs). The number of ADFs may be fixed (often at
one) or variable. When a creature has an ADF, its gene contains additional
parse trees, one for each ADF. There is an operation for each ADF, available
only outside the parse tree for which that ADF is defined, that is computed
by executing the ADF parse tree. There are terminals in each ADF parse tree
that give it access to the arguments from the calling parse tree. This chunking
of the functionality of the program into subroutines (ADFs) is useful for many
of the same reasons it is useful in standard programming. It also allows us to
draw on a powerful biological paradigm: evolution by subsumption.

In the cells of your body, there are many organelles: ribosomes, mitochon-
dria, etc. Some of these organelles have their own genetic code different from
the genetic code used by the cell nucleus. It is thought that these subcellular
organelles are descended from free living organisms that eons ago joined into
colonial association with the single-celled ancestors of the type of cells that
make up our body. This process, forming a colonial association that allows
diverse types of organisms to share functionality that they evolved indepen-
dently, is called evolution by subsumption. A variation operator that splices
together the parse trees of ADFs and the main part of a GP creature allows
this powerful sort of evolution to take place in a GP environment.

The preceding discussion suggests that GP has a more acute case of the
representation problem than even other branches of evolutionary computation.
In addition to selecting population size and structure, crossover and mutation
type, mutation rate, and the plethora of other relevant parameters, a genetic
programmer must select the parts of the special-purpose GP language.

Another issue that arises in genetic programming is that of disruption. In a
string evolver, the positions in the data structure each have a simple mission:
to match a character in the reference string. These missions are completely
independent. When we modified the string evolver to be a real function opti-
mizer, the mission specificity of each position in the array remained, but the
independence was lost. Parse trees don’t even have positions, except maybe
“root node,” and so they completely lack mission specificity of their entries.
A node on the left side of an ancestor may end up on the right side of a
descendant.

An Overview of Evolutionary Computation 29

Crossover in the real function optimizer could break apart blocks of vari-
ables that had values that worked well together. This is what is meant by dis-
ruption. It is intuitively obvious and has been experimentally demonstrated
that the crossover used in genetic programming is far more disruptive than
the crossover used in algorithms with data structures organized as arrays of
strings. Thus, the probability of crossover reducing fitness is higher in genetic
programming. Oddly enough, this means that evolving to evolve is easier to
observe in genetic programming. Contemplate the tree fragment (* 0 T),
where T is some subtree. This tree returns a zero no matter what. If T is
large, then there are many locations for crossover that will not change the
fitness of the tree. This sort of crossover resistance has been observed in many
genetic programming experiments. It leads to a phenomenon called bloat, in
which trees quickly grow as large as the software permits.

Problems

Problem 15. Suppose we are working in a genetic programming environment
in which the language consists of the constant 1 and the operation +. How
many nodes are in the smallest parse tree that can compute n? As an example,
computing 3 can be done with the tree (+ (+ 1 1) 1). This tree has 5 nodes.

1 1

+

Sto Rcl

+

Fig. 1.14. Computing 4 for Problem 16.

Problem 16. Start with the same setup as Problem 15. Add to the language
store (STO) and recall (RCL) instructions. The STO instruction takes a single
argument and puts it into an external storage location and returns its value.
The RCL instruction recalls the value in the storage location. Assume that
the left argument of a + is executed before the right one. Find the smallest
trees that compute the numbers n = 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. The parse tree
in Figure 1.14 computes 4, for example, using 6 nodes. (We would like to

30 Evolutionary Computation for Modeling and Optimization

ask how many nodes are in the smallest parse tree that can compute n, but
solving this problem in full generality is extremely hard.)

Problem 17. Using the language described in Problem 16, find the largest
number that can be computed by a parse tree with k nodes for k =
3, 4, 5, 6, 7, 8, 9, 10, 11, 12. Advanced students with a great deal of time might
want to solve this problem for general k.

Problem 18. Assume you are in a GP environment that has the operations
+,−, ∗, /, a variable x, and integer constants. Give an example of a parse tree
that can compute x5 + 3x3 − 4x2 − 4x + 1 with as few nodes as possible.
Advanced students should prove that they are using the smallest possible
number of nodes.

Problem 19. The STO operation given in Problem 16 is mathematically the
identity function; it simply returns its argument. It is valuable not for the
computations it performs but rather because of its side effect of storing its
argument into a memory location for later access with RCL. Using some sort
of node with a side effect, define a set of operations and terminals that will
let you compute the solutions to

ax2 + bx + c = 0.

Give a single parse tree that returns the first solution the first time it is called
and the second solution the second time it is called. The tree should also deal
in a reasonable fashion with cases in which there are not two roots. You may
use real or complex arithmetic as your base type.

Problem 20. One important difference between the string and tree crossover
operators given in this chapter is that the string crossover operator changes
nothing when it crosses over two identical structures, while the tree crossover
operator can create children quite unlike a pair of identical parents. Give
an example of two identical parents and crossover points that yield children
unlike the parents.

Problem 21. Essay. Suppose we have a large number of data structures
available and want to test a crossover operator for disruptiveness. Give and
defend a scheme for such testing.

Problem 22. Essay. In computer science, one of the famous and founda-
tional results concerns the halting problem. The main point of interest is that
it is, in principle, impossible to separate the set of all computer programs
into those that will eventually stop and those that will run forever. There
are some programs that obviously fit into each category, but some interesting
programs are utterly unclassifiable. Explain why the function approximation
scheme given in this section produces parse trees that always halt, and then
discuss methods for avoiding the halting problem even if the special purpose
language used in a given instance of genetic programming is rich enough to
allow general computer programs.

An Overview of Evolutionary Computation 31

Problem 23. Essay. Discuss how a genetic program could be used to enhance
the source code of other software. Be sure to discuss what notion of fitness
would be used by the genetic programming environment. You may want to
discuss trade-offs between accuracy and speed in the evolved code.

2

Designing Simple Evolutionary Algorithms

The purpose of this chapter is to show you how an evolutionary algorithm
works and to teach you how to design your own simple ones. We start simply,
by evolving binary character strings, and then try evolving more complex
strings. We will examine available techniques for selecting which population
members will breed and which will die. We will look at the available crossover
and mutation operators for character strings; we will modify the string evolver
to be a real function optimizer; and we will examine the issue of population
size. We will then move on to more complex problems using string evolvers:
the Royal Road problem and self-avoiding walks. The chapter concludes with a
discussion of the applications of roulette selection beyond the basic algorithm,
including a technique for performing a valuable but computationally difficult
type of mutation (probabilistic mutation) efficiently. An example of a binary
string evolver applied to a real world problem is given in Section 15.1. The
experiments with various string evolvers continue in Chapter 13. Figure 2.1
lists the experiments in this chapter and shows how they depend on one
another.

Evolutionary algorithms are a synthesis of several techniques: genetic algo-
rithms, evolutionary programming, evolutionary strategies, and genetic pro-
gramming. In this chapter, there is a bias toward genetic algorithms [29], be-
cause they were designed around the manipulation of binary character strings.
The terminology used in this book comes from many sources; arbitrary choices
were necessary when several terms exist for the same concept.

Figure 2.2 is an outline for a simple evolutionary algorithm. It is more
complex than it seems at first glance. There are five important decisions that
factor into the design of the algorithm:

What data structure will you use? In the string evolver and real function
optimizer in Section 1.2, for example, the data structures were a string
and an array of real numbers, respectively. This data structure is often
termed the gene of the evolutionary algorithm. You must also decide how
many genes will be in the evolving population.

34 Evolutionary Computation for Modeling and Optimization

Exp 2.1

Exp 2.5 Exp 2.10Exp 2.6

Exp 2.4

Exp 2.2 Exp 2.3 Exp 2.7 Exp 2.9

Exp 2.13

Exp 2.14

Exp 2.15

Exp 2.12

Exp 2.16

Exp 2.11

Exp 2.8

Ch 13

1 Basic string evolver.
2 Change replacement fraction.
3 Steady-state algorithm.
4 One- and two-point crossover.
5 Uniform crossover.
6 Adaptive crossover.
7 With and without mutation.
8 Basic real function optimizer.
9 Experimentation with population size.
10 Royal road function.
11 Royal Road with probabilistic mutation.
12 Introduce self avoiding walks.
13 The stochastic hill climber.
14 Stochastic hill climbing with more mutation.
15 Stochastic hill climbing with lateral movement.
16 Self-avoiding walks with helpful mutation derived from the

stochastic hill climber.

Fig. 2.1. The topics and dependencies of the experiments in this chapter.

Designing Simple Evolutionary Algorithms 35

Create an initial population.
Evaluate the fitness of the population members.
Repeat

Select pairs from the population to be parents, with a fitness bias.
Copy the parents to make children.
Perform crossover on the children (optional).
Mutate the resulting children (probabilistic).
Place the children in the population.
Evaluate the fitness of the children.

Until Done.

Fig. 2.2. A simple evolutionary algorithm.

What fitness function will you use? A fitness function maps the genes
onto some ordered set, such as the integers or the real numbers. For the
string evolver, the fitness function has its range in the natural numbers; the
fitness of a given string is the number of positions at which it agrees with
a reference string. For the real function optimizer, the fitness function
is simply the function being optimized (when maximizing) or its negative
(when minimizing).

What crossover and mutation operators will you use? Crossover
operators map pairs of genes onto pairs of genes; they simulate sexual
reproduction. Mutation operators make small changes in a gene. Taken
together, these are called variation operators.

How will you select parents from the population, and how will you
insert children into the population? The only requirement is that the
selection method be biased toward “better” organisms. There are many
different ways to do this.

What termination condition will end your algorithm? This could be
after a fixed number of trials or when a solution is found.

Our prototype evolutionary algorithm will be the string evolver (as in
Definition 1.2 and Problem 13). Our data structure will be a string of charac-
ters, and our fitness function will be the number of agreements with a fixed
reference string. We will experiment with different variation operators and
different ways of picking parents and inserting children.

2.1 Models of Evolution

Definition 2.1 The method of picking parents and the method of inserting
children back into the population, taken together, are called the model of
evolution used by an evolutionary algorithm.

The model of evolution used in Problem 13 is called single tournament
selection. In single tournament selection, the population is shuffled randomly

36 Evolutionary Computation for Modeling and Optimization

and divided into small groups. The two most fit individuals in each small
group are chosen to be parents. These parent strings are crossed over and the
results possibly mutated to provide two children that replace the two least fit
members of the small group.

Single tournament selection has two advantages. First, for small groups of
size n, the best n − 2 creatures in the group are guaranteed to survive. This
ensures that the maximum fitness of a group (with a deterministic fitness
function) cannot decline as evolution proceeds. Second, no matter how fit
a creature is compared to the rest of the population, it can have at most
one child in each generation. This prevents the premature loss of diversity
in a population that can occur when a single parent has a large number of
children, a perennial problem in evolutionary algorithms of all sorts. When
a creature that is relatively fit in the initial population dominates the early
evolved population, it can prevent the discovery of better creatures by leading
the population into a local optimum.

Definition 2.2 A global optimum is a point in the fitness space whose
value exceeds that of any other value (or is exceeded by every other value if
we are minimizing). A local optimum is a point in the fitness space that
has the property that no chain of mutations starting at that point can go up
without first going down.

Making an analogy to a mountain range, the global optimum can be
thought of as the top of the highest mountain, while the local optima are
the peaks of every mountain or foothill in the range. Even rocks will have
associated local optima at their high points. Note that the global optimum is
one of the local optima. Also, note that there may be more than one global
optimum if two mountains tie for highest.

When the members of a population with the highest fitness are guaranteed
to survive in an evolutionary algorithm, that algorithm is said to exhibit
elitism. Those members of the population guaranteed to survive are called
the elite. Elitism guarantees that a population with a fixed fitness function
cannot slip back to a smaller maximum fitness in later generations, but it
also causes the current elite to be more likely to have more children in the
future causing their genes to dominate the population. Such domination can
impair search of the space of genes, because the current elite may not contain
the genes needed for the best possible creatures. A good compromise is to
have a small elite. Single tournament selection has an elite of size 2. Half the
population survives, but only two creatures, the two most fit, must survive.
Other creatures survive only if they have the good luck to be put in a group
with creatures less fit than they.

In single tournament selection, the selection of parents and the method
for inserting children are wedded to one another by the picking of the small
groups. This need not be the case; in fact, it is usually not the case. There
are several other methods of selecting parents.

Designing Simple Evolutionary Algorithms 37

In double tournament selection, with tournament size n, you pick a group of
n creatures and take the single most fit one as a parent, repeating the process
with a new group of n creatures to get a second parent. Double tournament
selection may also be done with replacement (the same parent can be picked
twice) or without replacement (the same parent cannot be picked twice, i.e.,
the first parent is excluded during the selection of the second parent).

Roulette wheel selection, also called called roulette selection, chooses par-
ents in direct proportion to their fitness. If creature i has fitness fi, then the
probability of being picked as a parent is fi/F , where F is the sum of the
fitness values of the entire population.

Rank selection works in a fashion similar to roulette wheel selection except
that the creatures are ordered by fitness and then selected by their rank
instead of their fitness. If creature i has rank fi, then the probability of being
picked as a parent is fi/F , where F is the sum of the ranks of the entire
population. Note: the least fit creature is given a rank of 1 so as to give it the
smallest chance of being picked.

In Figure 2.3, we compare the probabilities for rank and roulette selec-
tion. If there is a strong fitness gradient, then roulette wheel selection gives a
stronger fitness bias than rank selection and hence tends to take the popula-
tion to a nearly uniform type faster. The utility of faster fixation depends on
the problem under consideration.

Creature # Fitness Rank P(chosen) P(chosen)
Roulette Rank

1 2.1 1 0.099 0.048
2 3.6 5 0.169 0.238
3 7.1 6 0.333 0.286
4 2.4 2 0.113 0.095
5 3.5 4 0.164 0.190
6 2.6 3 0.122 0.143

Fig. 2.3. Differing probabilities for roulette and rank selection.

A model of evolution also needs a child insertion method. If the population
is to remain the same size, a creature must be removed to make a place for
each child. There are several such methods. One is to place the children in the
population at random, replacing anyone. This is called random replacement.
If we select creatures to be replaced with a probability inversely proportional
to their fitness, we are using roulette wheel replacement (also called roulette
replacement). If we rank the creatures in the opposite order used in rank
selection and then choose those to be replaced with probability proportional to
their rank, we are using rank replacement. In another method, termed absolute
fitness replacement, we replace the least fit members of the population with
the children. Another possible method is to have children replace their parents

38 Evolutionary Computation for Modeling and Optimization

only if they are more fit. In this method, called locally elite replacement, the
two parents and their two children are examined, and the two most fit are
put into the population in the slots occupied by the parents. In random elite
replacement, each child is compared to a randomly selected member of the
population and replaces it only if it is at least as good.

With all of the selection and replacement techniques described above you
must decide how many pairs of parents to select in each generation of your
evolutionary algorithm. At one extreme, you select enough pairs of parents
to replace your entire population; this is called a generational evolutionary
algorithm. At the other extreme, a steady-state evolutionary algorithm, you
count each act of selecting parents and placing (or failing to place) the children
in the population as a “generation.” Such single-mating “generations” are
usually called mating events.

Generational evolutionary algorithms were first to appear in the litera-
ture and were considered “standard.” Steady-state evolutionary algorithms
are described very well by Reynolds [49] and were discovered independently
by Syswerda [54] and Whitley [59].

Experiment 2.1 Write or obtain software for a string evolver (defined in
Section 1.2). For each of the listed models of evolution, do 100 trials. Use 20-
character strings of printable ASCII characters and a 60-member population.
To stay consistent with single tournament selection in number of crossover
events, implement all other models of evolution so that they replace exactly
half the population. This updating of half the population will constitute a gen-
eration. For this experiment, use the type of crossover used in the first part
of Figure 1.7 and Problem 13 in which the children are copies of the parents
with their gene loci swapped after a randomly generated crossover point. For
mutation, change a single character in each new creature at random.

(i) Single tournament selection with small groups of size 4.
(ii) Roulette selection and locally elite replacement.
(iii) Roulette selection and random replacement.
(iv) Roulette selection and absolute fitness replacement.
(v) Rank selection and locally elite replacement.
(vi) Rank selection and random replacement.
(vii) Rank selection and absolute fitness replacement.

Write a few paragraphs explaining the results. Include the mean and stan-
dard deviation of the solution times (measured in generations) for each model
of evolution. (A population is considered to have arrived at a “solution” when
it contains one string that matches the reference string.) Compare your re-
sults with those of other students. Pay special attention to trials done by other
students with identical models of evolution that give substantially different re-
sults.

Designing Simple Evolutionary Algorithms 39

Experiment 2.2 Use the version of the code from Experiment 2.1 with
roulette selection and random replacement. Compute the mean and standard
deviation of time-to-solution of 100 trials in each of 5 identical populations in
which you replace 1/5, 1/3, 1/2, 2/3, and 4/5 of the population in each genera-
tion. Measure time in generations and in number of crossovers; discuss which
measure of time is more nearly a fair comparison of the different models of
evolution.

Experiment 2.3 Starting with the code from Experiment 2.1, build a steady-
state evolutionary algorithm. For each of the following models of evolution, do
20 different runs. Give the mean and standard deviation of the number of mat-
ing events until a maximum fitness creature is located. Cut off the algorithm
at 1,000,000 mating events if no maximum fitness creature is located. Assume
that the double tournament selection is with replacement.

(i) Single tournament selection with tournament size 4.
(ii) Single tournament selection with tournament size 6.
(iii) Double tournament selection with tournament size 2.
(iv) Double tournament selection with tournament size 3.

Problems

Problem 24. Assume that we are running an evolutionary algorithm on a
population of 12 creatures, numbered 1 through 12, with fitness values of 1,
4, 7, 10, 13, 16, 19, 22, 25, 28, 31, and 34. Compute the expected number of
children each of the 12 creatures will have for the following parent selection
methods: (i) roulette selection, (ii) rank selection, and (iii) single tournament
selection with tournament size 4. (The definition of expected value may be
found in Appendix B.) Assume that both parents can be the same individual
in the roulette and rank cases.

Problem 25. Repeat Problem 24 (i) and (ii), but assume that the parents
must be distinct.

Problem 26. Compute the numbers that would appear in an additional col-
umn of Figure 2.3 for P(chosen) using single tournament selection with small
groups of size 3.

Problem 27. Compute the numbers that would appear in an additional col-
umn of Figure 2.3 for P(chosen) using double tournament selection with small
groups of size 4 and with replacement.

Problem 28. First, explain why the method of selecting parents, when sep-
arate from the method of placing children in the population, cannot have any
effect on whether a model of evolution is elitist or not. Then, classify the fol-
lowing methods of placing children in the population as elitist or nonelitist. If

40 Evolutionary Computation for Modeling and Optimization

it is possible for a method to be elitist or not depending on some other factor,
e.g., fraction of population replaced, then say what that factor is and explain
when the method in question is or is not elitist.

(i) random replacement.
(ii) absolute fitness replacement.
(iii) roulette wheel replacement.
(iv) rank replacement.
(v) locally elite replacement.
(vi) random elite replacement.

Problem 29. Essay. Aside from the fact that we already know the answer
before we run the evolutionary algorithm, the problem being solved by a string
evolver is very simple in the sense that all the positions in the creature’s gene
are independent. In other words, the degree to which a change at a particular
location in the gene is helpful, unhelpful, or detrimental depends in no way
on the value of the gene in other locations. Given that this is so, which of
the possible models of evolution that you could build from the various parent
selection and child placement methods, including single tournament selection,
would you expect to work best and worst? Advanced students should support
their conclusions with experimental data.

Problem 30. Give a sketch or outline of an evolutionary algorithm and a
problem that together have the property that fitness in one genetic locus can
be bought at the expense of fitness in another genetic locus.

Problem 31. Invent a model of evolution not described in this section that
you think will be more efficient than any of those given for the string evolver
problem. Advanced students should offer experimental evidence that their
method beats both the models single tournament selection and roulette selec-
tion with random replacement.

Problem 32. Essay. Describe, as best you can, the model of evolution used
by rabbits in their reproduction. One important difference between rabbits
and a string evolver is that most evolutionary algorithms have a constant
population whereas rabbit populations fluctuate somewhat. Ignore this dif-
ference by assuming a population of rabbits in which births and deaths are
roughly equal per unit time.

Problem 33. Essay. Repeat Problem 32 for honeybees instead of rabbits.
Warning: this is a hard problem.

Problem 34. Suppose that we modify the model of evolution “single tourna-
ment selection with group size 4” on a population of size 4n as follows. Instead
of selecting the small groups at random, we select them in rotation as shown
in the following table of population indices.

Designing Simple Evolutionary Algorithms 41

Generation Group 1 Group 2 · · · Group n
1 0123 4567 · · · (4n − 4)(4n − 3)(4n − 2)(4n − 1)
2 (4n − 1)012 3456 · · · (4n − 5)(4n − 4)(4n − 3)(4n − 2)
3 (4n − 2)(4n − 1)01 2345 · · · (4n − 6)(4n − 5)(4n − 4)(4n − 3)
4 (4n − 3)(4n − 2)(4n − 1)0 1234 · · · (4n − 7)(4n − 6)(4n − 5)(4n − 4)

etc.

Call this modification cyclic single tournament selection. One of the qualities
that makes single tournament selection desirable is that it can retard the rate
at which the currently best gene spreads through the population. Would cyclic
single tournament selection increase or decrease the rate of spread of a gene
with relatively high fitness? Justify your answer.

Problem 35. Explain why double tournament selection of tournament size
2 without replacement and locally elite replacement is not the same as single
tournament selection with tournament size 4. Give an example in which a set
of 4 creatures is processed differently by these two models of evolution.

Problem 36. For double tournament selection with tournament size n with
replacement and then without replacement, compute the expected number of
mating events that the best gene participates in if we do one mating event for
n = 2, 3, or 4 in a population of size 8.

2.2 Types of Crossover

Definition 2.3 A crossover operator for a set of genes G is a map

Cross : G × G → G × G

or
Cross : G × G → G.

The points making up the pairs in the domain space of the crossover operator
are termed parents, while the points either in or making up the pairs in the
range space are termed children. The children are expected to preserve some
part of the parents’ structure.

In later chapters, we will study all sorts of exotic crossover operators.
They will be needed because the data structures being operated on will be
more complex than strings or arrays. Even for strings, there are a number of
different types of crossover. The crossover used in Experiment 2.1 is called
single-point crossover. To achieve a crossover with two parents, randomly
generate a locus, called the crossover point, and then copy the loci in the

42 Evolutionary Computation for Modeling and Optimization

genes from the parents to the child so that the information for each child
comes from a different parent before and after the crossover point.

There is a problem with single-point crossover. Loci near one another in
the representation used in the evolutionary algorithm are kept together with
a much higher probability than those that are farther apart. If we are evolving
strings of length 20 to match a string composed entirely of the character “A,”
then a creature with an “A” in positions 2 and 19 must almost be cloned during
crossover in order to pass both good loci along. A simple way of reducing this
problem is to have multiple-point crossover. In two-point crossover, as shown
in Figure 2.4, two random loci are generated, and then the loci in the children
are copied from one parent before and after the crossover points and from
the other parent in between the crossover points. This idea generalizes in
many ways. One could, for example, generate a random number of crossover
points for each crossover or specify fixed fractions of usage for different sorts
of crossover.

Parent 1 aaaaaaaaaaaaaaaaaaaa
Parent 2 bbbbbbbbbbbbbbbbbbbb
Child 1 aaaabbbbbbbbbaaaaaaa
Child 2 bbbbaaaaaaaaabbbbbbb

Fig. 2.4. Two-point crossover.

Experiment 2.4 Modify the version of the code from Experiment 2.1 that
does roulette selection with random elite replacement to work with different
sorts of crossover. Run it as a steady-state algorithm for 100 trials. Use 20-
character strings and a 60-member population. Measuring time in number of
crossovers done, compare the mean and standard deviation of time-to-solution
for the following crossover operators:

(i) one-point,
(ii) two-point,
(iii) half-and-half one- and two-point.

When writing up your experiment, consult with others who have done the
experiment and compare your trials to theirs.

Another kind of crossover, which is computationally expensive but elimi-
nates the problem of representational bias, is uniform crossover. This crossover
operator flips a coin for each locus in the gene to decide which parent con-
tributes its genetic value to which child. It is computationally expensive be-
cause of the large number of random numbers needed, though clever program-
ming can reduce the cost.

This raises an issue that is critical to research in the area of artificial life.
It is easy to come up with new wrinkles for use in an evolutionary algorithm;

Designing Simple Evolutionary Algorithms 43

it is hard to assess their performance. If uniform crossover reduces the average
number of generations, or even crossovers, to solution in an evolutionary algo-
rithm, it may still be slower because of the additional time needed to generate
the extra random numbers. Keeping this in mind, try the next experiment.

Experiment 2.5 Repeat Experiment 2.4 with the following crossover opera-
tors:

(i) one-point,
(ii) two-point,
(iii) uniform crossover.

In addition to measuring time in crossovers, also measure it in terms of ran-
dom numbers generated and, if possible, true time by the clock. Discuss the
degree to which the measures of time agree or fail to agree and frame and
defend a hypothesis as to the worth of uniform crossover in this situation.

In some experiments, different crossover operators are better during differ-
ent phases of the evolution. A technique to use in these situations is adaptive
crossover. In adaptive crossover, each creature has its gene augmented by a
crossover template, a string of 0’s and 1’s with one position for each item
in the original data structure. When two parents are chosen, the crossover
template from the first parent chosen is used to do the crossover. In positions
where the template has a 0, items go from first parent to the first child and
the second parent to the second child. In positions where the template has a
1, items go from the first parent to the second child and from the second par-
ent to the first child. The parental crossover templates are themselves crossed
over and mutated with their own distinct crossover and mutation operators to
obtain the children’s crossover templates. The templates thus coevolve with
the creatures and seek out crossover operators that are currently useful. This
can allow evolution to focus crossover activity in regions where it can help
the most. The crossover templates that evolve during a successful run of an
evolutionary algorithm may contain nontrivial useful information about the
structure of the problem.

Example 1. Suppose we are designing an evolutionary algorithm whose gene
consists of 6 real numbers. A crossover template would then be a string of six
0’s and 1’s, and crossover would work like this:

Gene Template
Parent 1 1.2 3.4 5.6 4.5 7.9 6.8 010101
Parent 2 4.7 2.3 1.6 3.2 6.4 7.7 011100
Child 1 1.2 2.3 5.6 3.2 7.9 7.7 010100
Child 2 4.7 3.4 1.6 4.5 6.4 6.8 011101

The crossover operator used on the crossover templates is single-point crossover
(after position 3).

44 Evolutionary Computation for Modeling and Optimization

Adaptive crossover can suffer from a common problem called a two-time-
scale problem. The amount of time needed to efficiently find those fit genes
that are easy to locate with a given crossover template can be a great deal less
than that needed to find the crossover template in the first place. For some
problems this will not be the case, for some it will, and intuition backed by
preliminary data is the best tool currently known for telling which problems
might benefit from adaptive crossover. If a problem must be solved over and
over for different parameters, then saving crossover templates between runs
of the evolutionary algorithm may help. In this case, the crossover templates
are being used to find good representations, relative to the crossover operator,
for the problem in general while solving specific cases.

Experiment 2.6 Repeat Experiment 2.4 with the following crossover opera-
tors:

(i) one-point,
(ii) two-point,
(iii) adaptive crossover.

For the variation operators for the crossover templates, use one-point crossover
together with a mutation operator that flips a single bit 50% of the time. When
comparing solution times, attempt to compensate for the additional computa-
tional cost of adaptive crossover. Using real time-to-solution would be one good
way to do this.

The last crossover operator we wish to mention is null crossover. In null
crossover there is no crossover; the children are copies of the parents. Null
crossover is often used as part of a mix of crossover operators or when debug-
ging an algorithm. We conclude with a definition that will become important
when we return to studying genetic programming.

Definition 2.4 A crossover operator is called conservative if the crossover
of identical parents produces children identical to those parents.

Problems

Problem 37. Assume that we are working with a string evolver. If the refer-
ence string is

11111111111111111111,

then what is the expected fitness of the children of

11111111000000000000
and

00000000000011111111
under:

(i) one-point crossover,

Designing Simple Evolutionary Algorithms 45

(ii) two-point crossover,
(iii) uniform crossover.

Problem 38. Assume that we are maximizing the real function f(x, y) =
1

x2+y2+1 with the technique described in Problem 14. Find a pair of parents
(x1, y1), (x2, y2) such that neither parent has a fitness of more than 0.1 but
one of their potential crossovers has fitness of at least 0.9. Crossover in this
case would consist simply in taking the x coordinate from one parent and the
y coordinate from the other. Fitness of a gene (a, b) is f(a, b).

Problem 39. Usually we require that a crossover operator be conservative.
Give a nonconservative crossover operator for use in the string evolver that
you think will improve performance and show why the lack of conservation
might help.

Problem 40. Essay. Taking the point of view that evolution finds pieces of
a solution and then puts them together, explain why conservative crossover
operators might be a good thing.

Problem 41. Suppose that we keep track of which pairs of parents have high-
or low-fitness children by simply tracking the average fitness of all children
produced by each pair of parents. We use these numbers to bias the selection
of a second parent after the first is selected with a pure fitness bias. If this
technique is used in a string evolver, will there be a two-time-scale problem?
Explain what two separate process are going on in the course of justifying
your answer. Hint: what is the average number of children a given member of
the population has?

Problem 42. Prove that for the string evolver problem, all of the conservative
crossover operators given in this section conserve fitness in the following sense:
if we have a crossover operator take parents (p1, p2) to children (c1, c2), then
the sum of the fitness of the children equals the sum of the fitness of the
parents.

Problem 43. Read Problem 42. Find a problem that does not have the con-
servation property described. Prove that your answer is correct.

Problem 44. Essay. In the definition of the term “crossover operator” there
were two possibilities, producing one or two children. If we transform a
crossover operator that produces two children into an operator that produces
one by throwing out the least fit child, then do we disrupt the conservation
property described in Problem 42? Do you think this would improve the av-
erage performance of a string evolver or harm it?

Problem 45. Suppose we are running a string evolver with a 20-character
reference string, a crossover operator producing two children, and no muta-
tion operator. What condition must be true of the original population for

46 Evolutionary Computation for Modeling and Optimization

there to be any hope of eventual solution? Does the condition that allows
eventual solution ensure it? Prove your answers to both these questions. Es-
timate theoretically or experimentally the population size required to give a
95% chance of satisfying this condition.

2.3 Mutation

Definition 2.5 A mutation operator on a population of genes G is a func-
tion

Mute : G → G

that takes a gene to another similar but different gene. Mutation operators are
also called unary variation operators.

Crossover mixes and matches disparate creatures; it facilitates a broad
search of the space of data structures accessible to a given evolutionary al-
gorithm. Mutation, on the other hand, makes small changes in individual
creatures. It facilitates a local search and also a gradual introduction of new
ideas into the population. The string evolvers we have studied use a single
type of mutation: changing the value of the string at a single position. Such
a mutation is called a point mutation. More complex data structures might
have a number of distinct types of minimal changes that could serve as point
mutations. Once you have a point mutation, you can use it in a number of
ways to build different mutation operators.

Definition 2.6 A single-point mutation of a gene consists in generating
a random position within the gene and applying a point mutation at that po-
sition.

Definition 2.7 A multiple-point mutation consists in generating some
fixed number of positions in the gene and doing a point mutation at each of
them.

Definition 2.8 A probabilistic mutation with rate α operates by going
through the entire gene and performing a point mutation with probability α at
each position. Probabilistic mutation is also called uniform mutation.

Definition 2.9 A Lamarckian mutation of depth k is performed by look-
ing at all possible combinations of k or fewer point mutations and using the
one that results in the best fitness value.

Definition 2.10 A null mutation is one that does not change anything.

Designing Simple Evolutionary Algorithms 47

Any mutation operator can be made helpful by comparing the fitnesses of
the gene before and after mutation and saving the better result. (Lamarckian
mutation is already helpful, since “no mutations” is included in “k or fewer
point mutations.”)

Any mutation operator may be applied with some probability, as was done
in several of the experiments in this chapter so far. The following experiment
illustrates the use of mutations.

Experiment 2.7 Modify the standard string evolver software used in Exper-
iment 2.1 as follows. Use roulette wheel selection and random elite replace-
ment. Use two-point crossover and put in an option to either use or fail to
use single-point mutation in a given run of the evolutionary algorithm. When
used, the single-point mutation should be applied to every new creature. Com-
pute the average time-to-solution, cutting off the algorithm at generation 3000
if it has not found a solution yet. Report the number of runs that fail and the
mean solution time of those that do find a solution. Explain the differences
the mutation operator created.

Definition 2.11 A mode of a function is informally defined as a high point
in the function’s graph. Formally, a point mode is a point p in the domain
of f such that there is a region R, also in the domain of f , about that point
for which, for each x �= p ∈ R, it is the case that f(x) < f(p). Another type
of mode is a contiguous region of points all at the same height in the graph
of f , such that all points around the border of that region are lower than the
points in the region. Figure 2.5 shows a function with two modes.

The string evolver problem is what is called a unimodal problem; that is to
say, there is one solution and an uphill path from any place in the gene space
of the problem to the solution. For any given string other than the reference
string, there are single character changes that improve the fitness.

Note: single-character changes (no matter whether they help, hurt, or fail
to change fitness) induce a notion of distance between strings. Formally, the
distance between any two strings is the smallest number of one-character
changes needed to transform one into the other. This distance, called Ham-
ming distance or Hamming metric, makes precise the notion of similarity in
Definition 2.5. Mutation operators on any problem induce a notion of distance,
but rarely one as nice as Hamming distance.

When designing an evolutionary algorithm, you need to select a set of
mutation operators and then decide how often each one will be used. The
probability that a given mutation operator will be used on a given creature
is called the rate or mutation rate for that operator. The expected number
of point mutations to be made in a new creature is called the overall muta-
tion rate of the evolutionary algorithm. For helpful and Lamarckian mutation
operators, computation of the overall mutation rate is usually infeasible; it
depends on the composition of the population.

48 Evolutionary Computation for Modeling and Optimization

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

-4 -3 -2 -1 0 1 2 3 4

Fig. 2.5. A function with two modes.

-3
-2

-1
0

1
2

3 -3
-2

-1
0

1
2

3

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Fig. 2.6. Fake bell curve f(x, y) = 1
1+x2+y2 in two dimensions.

Designing Simple Evolutionary Algorithms 49

To explore the effects of changing mutation rates, we will shift from string
evolvers to function optimizers. It is folklore in the evolutionary algorithms
community that an overall mutation rate equal to the reciprocal of the gene
length of a creature works best for moving between nearby optima of nearly
equal height when doing function optimization. Experiment 2.8 will test this
notion.

The fake bell curve in n dimensions is given by the function

Bn(x1, x2, . . . , xn) =
1

1 +
∑n

i=1 x2
i

. (2.1)

This function has a single mode at the origin of n-dimensional Euclidean
space, as shown for n = 2 in Figure 2.6 (it is unimodal). By shifting and
scaling this function we can create all sorts of test problems, placing optima
where we wish, though some care is needed, as shown in Problem 48. Figure
2.5 was created in exactly this fashion.

Experiment 2.8 Write or obtain software for a function optimizer with no
crossover operator that uses probabilistic mutation with rate α. Use rank se-
lection with random replacement. Use strings of real numbers of length n,
where n is one of 4, 6, 8, and 10. Use overall mutation rates of r/n where r
is one of 0.8, 0.9, 1, 1.1, 1.2. (Compute the α that yields the correct overall
mutation rate: r/n = n · α, so α = r/n2.) Run the algorithm to optimize
fn = Bn(x1, x2, . . . , xn) + Bn(x1 − 2, x2 − 2, . . . , xn − 2). Use a population of
200 creatures all initialized to (2, 2, . . . , 2). Do 100 runs. Compute the average
time for a creature to appear that is less than 0.001 in absolute value in every
locus.

In Figures 2.6 and 2.5 we give examples of functions with one and two
modes, respectively. The clarity of these examples relies on the smooth, con-
tinuous nature of the real numbers: both these examples are graphs of a con-
tinuous function from a real space to a real space. Our fundamental example,
the string evolver, does not admit nice graphs. A string evolver operating on
strings of length 20 would require a 20-dimensional graph to display the full
detail of the fitness function. In spite of this, the string evolver fitness function
is quite simple.

Problems

Problem 46. Suppose we modify a string evolver so that there are two ref-
erence strings, and a string’s fitness is taken to be the number of positions
in which it agrees with either of the reference strings. If the strings are of
length l over an alphabet with k characters, then how many strings in the
space exhibit maximum fitness? Hint: your answer will involve the number q
of characters on which the two reference strings agree.

50 Evolutionary Computation for Modeling and Optimization

Problem 47. Is the fitness function given in Problem 46 unimodal? Prove
your answer and describe any point or nonpoint modes.

Problem 48. Examine the fake bell curve, Equation 2.1, in 1 dimension,
f(x) = 1

1+x2 . If we want a function with two maxima, then we can take
f(x) + f(x − c) but only if c is big enough. Give the values of c for which
g(x) = f(x) + f(x − c) has one maximum, and those for which it has two.

Problem 49. Essay. Explain why it is difficult to compute the overall mu-
tation rate for a Lamarckian or helpful mutation. Give examples.

Problem 50. Construct a continuous, differentiable (these terms are defined
in calculus books) function f(x, y) such that the function has three local
maxima with the property that the line segment P (in x–y space) from the
origin through the position of the highest maximum intersects the line segment
Q joining the other two maxima, with the length of P at least twice the length
of Q. Hint: multiply, don’t add.

Problem 51. Suppose that we modify a string evolver to have two reference
strings, but, in contrast to Problem 46, take the fitness function to be the
maximum of the number of positions in which a given string matches one or
the other of the reference strings. This fitness function can be unimodal, or it
can have more than one mode. Explain under what conditions the function is
uni- or multimodal.

Problem 52. Suppose that we are looking at a string evolver on strings of
length 4 with underlying alphabet {0, 1}. What is the largest number of ref-
erence strings like those in Problem 51 that we could have and have as many
modes as strings?

2.4 Population Size

Definition 2.12 The population size of an evolutionary algorithm is the
number of data structures in the evolving population.

In biology it is known that small populations are likely to die out for lack
of sufficient genetic diversity to meet environmental changes or because all
members of the population share some defective gene. As we saw in Problem
45, analogous effects are possible even in simple evolutionary optimizers like
the string evolver. On the other hand, a random initial population is usually
jammed with average creatures. In the course of finding the reference string,
we burn away a lot of randomness at some computational cost. There is thus
a tension between the need for sufficient diversity to ensure solution and the
need to avoid processing a population so large that it slows time-to-solution.
Let’s experiment with the string evolver to attempt to locate the sweet region
and break-even point for increasing population size.

Designing Simple Evolutionary Algorithms 51

Experiment 2.9 Modify the standard string evolver operating on 20-character
strings as follows: Use roulette wheel selection, random elite replacement,
and one-point mutation applied with probability one. Use a steady-state evo-
lutionary algorithm and change the underlying alphabet to be {0, 1}. Put
into the code the ability to change the population size. Measure the time-to-
solution in crossover events, averaged over 100 runs, for populations of size
20, 40, 60, 80, 100, 110, and 120. Approximate the best size and do a couple of
additional runs near where you suspect the best size is. Graph the results as
part of your write-up.

Problems

Problem 53. Essay. Larger populations, having higher initial diversity, should
present less need to preserve diversity. Would you expect larger populations
to be of more value in preserving diversity in a unimodal or polymodal prob-
lem as compared to diversity preservation techniques like single tournament
selection?

Problem 54. Give a model of evolution that can process a large population
more efficiently (for the string evolver problem) than any of the ones given
in this chapter. Hint: concentrate on small subsets of the population without
completely ignoring anyone.

Problem 55. Essay. There is no requirement in the theory of evolutionary
algorithms that we have one population. In fact, when we do 100 experimental
runs, we are using 100 different populations. Give a specification, like those
in the text, for an experiment that will test into how many small populations
600 creatures should be divided for an arbitrary problem. It should explore
reasonably between the extremes of running one population of 600 creatures
and 600 populations of one creature each.

2.5 A Nontrivial String Evolver

An unfortunate feature of the string evolver is that it solves a trivial problem.
It is possible to build very difficult string evolution problems by modifying the
way in which fitness is computed. The standard example of this is the Royal
Road function (defined by John Holland), which is defined over the alphabet
{0, 1}. This function assumes a reference string of length 64, but blocks of 8
adjacent characters in positions 1–8, 9–16, . . ., 57–64 are given special status.
For each such block made entirely of 1’s, the string’s fitness is incremented
by 8. Blocks with only some 1’s give no fitness. This function is quite dif-
ficult to optimize and is a good test function for evolutionary optimization
systems of difficult unimodal problems. The length of 64 and block size of 8
are traditional, but varying these numbers yields many possibly interesting
test problems.

52 Evolutionary Computation for Modeling and Optimization

Definition 2.13 Define the Royal Road function of length l and block
size b, where b divides l evenly, to be a fitness function for strings where
fitness is assessed by dividing the string into l/b pieces of length b and then
giving a fitness of b for each piece on which a string in an evolving population
exactly matches the reference string.

Experiment 2.10 Take the software you used for Experiment 2.4 and mod-
ify it to work on the Royal Road function with reference string “all ones” and
alphabet {0, 1} with l = 16 and b = 1, 2, 4, 8. Report the mean and deviation
time-to-solution over 100 runs for a population of 120 creatures, cutting off an
unsuccessful run at 10,000 generations (do not include the cutoff runs in the
mean and deviation computations). If you have a fast enough computer, ob-
tain higher-quality data by increasing the cutoff limit. Use two-point crossover
and single-point mutation (with probability one). In addition to reporting and
explaining your results, explain why cutoff is probably needed and is a bad
thing. What is the rough dependence of time-to-solution on b?

Experiment 2.11 Modify the software from Experiment 2.10 so that it uses
probabilistic mutation with rate α. For l = 16 and b = 4 make a conjecture
about the optimum value for α and test this conjecture by finding average
time-to-solution over 100 runs for 80%, 90%, 100%, 110%, and 120% of your
conjectured α. Feel free to revise your conjecture and rerun the experiment.

Problems

Problem 56. Compute the probability of even one creature having nonzero
fitness in the original population of n genes in a string evolver on the alphabet
{0, 1} when the fitness function is the Royal Road function of length l and
block size b for the following values:

(i) n = 60, l = 36, b = 6,
(ii) n = 32, l = 49, b = 7,
(iii) n = 120, l = 64, b = 8,
(iv) n = 20, l = 120, b = 10.

Problem 57. Essay. Suppose we are running a string evolver with the clas-
sical Royal Road fitness function (l = 64, b = 8). Which of the mutation op-
erators in this section would you expect to be most helpful and why? Clearly,
Lamarckian mutation with a depth of 8 would guarantee a solution, but it is
computationally very expensive. Keeping this example in mind, factor com-
putational cost into your discussion.

Problem 58. Essay. Single tournament selection does not perform well rel-
ative to roulette selection with random elite replacement on the basic string
evolver. If possible, experimentally verify this. In any case, conjecture why

Designing Simple Evolutionary Algorithms 53

this is so and tell whether you would expect this also to be so with the classi-
cal Royal Road fitness function (l = 64, b = 8). Support your argument with
experimental data if it is available.

Problem 59. Read Problem 57. How many sets of point mutations must be
checked in a single Lamarckian mutation of depth 8?

Problem 60. Consider a string evolver over the alphabet {0, 1} using a Royal
Road fitness function with l = 4 and a population of 2 creatures. The evolver
proceeds by copying a single-point mutation of the best creature onto the
worst creature in each generation. Estimate mathematically or experimentally
the time-to-solution for b = 1, 2, 4 if the reference string is 1111 and the
population is initialized to be all 0000. Appendix B, on probability theory,
may be helpful.

Problem 61. Is the classical Royal Road fitness function unimodal?

2.6 A Polymodal String Evolver

In this chapter so far we have experimented with a number of evolutionary
algorithms that work on unimodal fitness functions. In addition, we have
worked, in Experiment 2.8, with a constructively bimodal fitness function.
In this section, we will work with a highly polymodal fitness function. This
polymodal fitness function is one used to locate self-avoiding walks that cover
a finite grid.

Definition 2.14 A grid is a collection of squares, called cells, laid out in a
rectangle (like graph paper).

Definition 2.15 A walk is a sequence of moves on a grid between cells that
share a side. If no cell is visited twice, then the walk is self-avoiding. If every
cell is visited, then the walk is optimal.

From any cell in a grid, then, there are four possible moves for a walk: up,
down, right, and left. We will thus code walks as strings over the alphabet
{U, D, L, R}, which will be interpreted as the successive moves of a walk.
Some examples of walks are given in Figure 2.7.

To evolve self-avoiding walks that cover a grid, we will permit the walks to
fail to be self-avoiding, but we will write the fitness function so that the best
score can be obtained only by a self-avoiding walk. Definition 2.16 gives such
a function. If we think of self-avoiding walks as admissible configurations and
walks that fail to avoid themselves as inadmissible, then we are permitting
our evolutionary algorithm to search an entire space while looking for islands
of admissibility. When a space is almost entirely inadmissible, attempting to
search only the admissible parts of it is impractical. It is thus an interesting
question, treated in the Problems, what fraction of the space is admissible.

54 Evolutionary Computation for Modeling and Optimization

UUURRRDDLULDDRR RRUULDLUURRRDRURDDDLULD

RRRUUULLLDDRURD URDRURDRRULURULLDLLLURR

Fig. 2.7. Optimal self-avoiding walks on 4 × 4 and 4 × 6 grids that visit every cell.
(The walks are traced as paths starting in the lower left cell and shown in string
form beneath the grids with U=up, D=down, R=right, and L=left.)

Definition 2.16 The coverage fitness of a random walk of length NM − 1
on an N × M grid is computed as follows: Begin in the lower left cell of the
grid, marking it as visited. For each of the moves in the random walk, make
the move (if it stays on the grid) or ignore the move (if it attempts to move
off the grid). Mark each cell reached during the walk as visited. The fitness
function returns the number of cells visited.

Notice that this fitness function requires that the walk have exactly one
fewer move than there are cells, so each move must hit a new cell. The exam-
ples given in Figure 2.7 have this property.

Experiment 2.12 Modify the basic string evolver software to work on a pop-
ulation of n strings with two-point crossover and k-point mutation. Use size-4
tournament selection applied to the entire population. Make sure that chang-
ing n and k is easy. Run 400 populations each using the coverage fitness on
15-character strings over the alphabet {U, D, R, L} on a 4 × 4 grid for
n = 200, 400 and k = 1, 2, 3. This is 2400 runs and will take a while on even

Designing Simple Evolutionary Algorithms 55

a fast computer. Stop each individual run when a solution is found (this is a
success) or when the run hits 1000 generations. Tabulate the number of suc-
cesses and the fraction of successes. Discuss whether there is a clearly superior
mutation operator and discuss the merits of the two population sizes (recalling
that the larger one is twice as much work per generation).

Fig. 2.8. A slightly suboptimal walk.

If the code used for Experiment 2.12 does a running trace of the best fit-
ness, then it is easy to see that the search “gets stuck” sometimes. If you save
time-to-solution for the runs that terminate in fewer than 1000 generations,
you will also observe that solution is often rapid, much faster than 1000 gener-
ations. This suggests that not only are there many global optima (Figure 2.7
shows a pair of global optima for each of two different grid sizes), but there is
probably a host of local optima. Look at the walk shown in Figure 2.8. It has
a coverage fitness of 24; the optimal is 25. It is also several point mutations
from any optimal gene. Thus, this walk forms an example of a local optimum.

As we will see in the Problems, each optimal self-avoiding walk has a
unique encoding, but local optima have a number of distinct codings that in
fact grows with their degree of suboptimality. As we approach an optimum,
the fragility of our genetic representation of the walk grows. More and more
of the loci are such that changing them materially decreases fitness. Let’s
take a look at how fitnesses are distributed in a random sample of strings
coding for walks. Figure 2.9 shows how the fitnesses of 10,000 genes generated
uniformly at random are distributed. Given that our evolutionary algorithms
can find solutions to problems of this type, clearly the evolutionary algorithm
is superior to mere random sampling. Our next experiment is intended to give
us a tool for documenting the presence of a rich collection of local optima
using the coverage fitness function.

56 Evolutionary Computation for Modeling and Optimization

1 13 25
0

750

1500

Fig. 2.9. A histogram of the covering fitness of 10,000 strings of 24 moves on a 5×5
grid. (The most common fitness was 10, attained by 1374 of the strings. The largest
fitness obtained was 20.)

Definition 2.17 A stochastic hill climber is an algorithm that repeatedly
modifies an initial configuration, saving the new configuration only if it is
better (or no worse).

Experiment 2.13 Write or obtain software for a stochastic hill climber that
requires that new results be better for length-24 walks on a 5 × 5 grid starting
in the lower left cell. Use single-point mutation to perform modifications. Run
the hill climber for 1000 steps each time you run it, and run it until you get
5 walks of fitness 20 or more. Make pictures of the walks, pooling results with
anyone else who has performed the experiment.

Figure 2.10 shows four walks generated by a stochastic hill climber. The
coverage fitnesses of these walks are 20, 16, 18, and 19, respectively. All four
fail to self-avoid, and all four arose fairly early in the 1,000-step stochastic
hill climb. If these qualities turn out to be typical of the walks arrived at
in Experiment 2.13, then it seems that a stochastic hill climber is not the
best tool for exploring this fitness landscape. In the interest of fairness, let us
extend the reach of our exploration of stochastic hill climber behavior with
an additional experiment.

Experiment 2.14 Modify the stochastic hill climber from Experiment 2.13
to use two-point mutation. In addition to this change, perform 10,000 rather
than 1000 mutations. (This is probably more than necessary, but it should

Designing Simple Evolutionary Algorithms 57

RULUUDRRDUULRRRDDLURUULL RRRLLLLULRUUUUURDRDDRURR

RLLURLULRRDDDRLURURULLUR DDUUURDDRDURRULULURLLLLL

Fig. 2.10. Examples of the output of a stochastic hill climber.

be computationally manageable.) Run both the old and new hill climbers 100
times and compare histograms of the resulting fitnesses.

The stochastic hill climbers in Experiments 2.13 and 2.14 require that new
results be better, so they will make a move only if it leads uphill. Taking the
mutated string only if it was no worse may tend to let the search move more,
simply because “sideways” moves are permitted. Let’s see what we can learn
about the effect of these sideways moves.

Experiment 2.15 Modify the stochastic hill climbers from Experiments 2.13
and 2.14 so that they accept mutated strings that are no worse. Repeat Exper-
iment 2.14 with the modified hill climbers. Compare the results.

A stochastic hill climber can be viewed as repeated application of a helpful
mutation operator to a single-member population. After having done all this
work on stochastic hill climbing, it might be interesting to see how it works
within the evolutionary algorithm.

58 Evolutionary Computation for Modeling and Optimization

Experiment 2.16 Modify the software from Experiment 2.12 to use helpful
mutation operators part of the time. Rerun the experiment for n = 200 and
k = 1, 2 with 50% and 100% helpful mutation. Compare with the corresponding
runs from Experiment 2.12. Summarize and attempt to explain the effects.

We conclude this phase of our exploration of polymodal fitness functions.
We will revisit this fitness function in Chapter 13, where a technique for
structurally enhancing evolutionary algorithms at low computational cost is
explored.

Problems

Problem 62. For a 3× 3 grid and walks of length 8 moves, give examples of:

(i) An optimal self-avoiding walk other than UURRDDLU (which is given
later in this section as part of a problem).

(ii) A non-self-avoiding walk.
(iii) A self-avoiding nonoptimal walk.

Notice that you will have to waste moves at the edge of the grid (which are
not moves at all) in order to achieve some of the answers. Be sure to reread
Definition 2.16 before doing this problem.

Problem 63. Give an example of a self-avoiding walk that cannot be ex-
tended to an optimal self-avoiding walk. You may pick your grid size.

Problem 64. Make a diagram, structured as a tree, showing all self-avoiding
walks on a 3×3 grid that start in the lower left cell, excluding those that waste
moves off the edge of the grid. These walks will vary in length from 1 to 8.
This is easy as a coding problem and a little time-consuming by hand. While
there are only 8 optimal self-avoiding walks, there are quite a few self-avoiding
walks.

Problem 65. Prove that the coverage fitness function given in Definition 2.16
awards the maximum possible fitness only to optimal self-avoiding walks.

Problem 66. Give an exact formula for the number of optimal self-avoiding
walks on a 1×n and on a 2×n grid as a function of n. Assume that the walks
start in the lower left cell.

Problem 67. Draw all possible optimal self-avoiding walks on a 3 × 3 grid
and a 3 × 4 grid. Start in the lower left cell.

Problem 68. Give an exact formula for the number of optimal self-avoiding
walks on a 3 × n grid as a function of n. Assume that the walks start in the
lower left cell. (This is a very difficult problem.)

Designing Simple Evolutionary Algorithms 59

UURRDDLU

Problem 69. Review the discussion of admissible and inadmissible walks at
the beginning of this section. For the length-8 walk given above, how many
of the one-point mutants of the walk are admissible? Warning: there are 38

one-point mutants of this walk; you need either code or cleverness to do this
problem.

Problem 70. Suppose that instead of wasting moves that move off the grid,
we wrap the grid at the edges. Does this make the problem harder or easier
to solver via evolutionary computation?

Problem 71. Prove that all single-point mutations of a string specifying an
optimal self-avoiding walk are themselves nonoptimal.

Problem 72. Find a walk with a coverage fitness one less than the maximum
on a 3 × 3 grid and then enumerate as many strings as you can that code for
it (at least 2).

Problem 73. On a 5 × 5 grid, make an optimal self-avoiding walk and find
a point mutation such that the fitness decrease caused by the point mutation
is as large as possible.

Problem 74. Construct a string for the walk shown in Figure 2.8 that ends
in a downward move off the grid (there is only one such string). Now find the
smallest sequence of point mutations you can that makes the string code for
an optimal self-avoiding walk.

Problem 75. Modify the software for Experiment 2.13to record when the
hill climber, in the course of performing the stochastic hill climb, found its
best answer. Give the mean, standard deviation, and maximum and minimum
times to get stuck for 1000 attempts.

Problem 76. Read the description of Experiments 2.13 and 2.14. Explain
why a stochastic hill climber using two-point mutation might need more trials
per hill climbing attempt than one using one-point mutation.

60 Evolutionary Computation for Modeling and Optimization

Problem 77. Given that we start in the lower left cell of a grid, prove that
there are never more than three choices of a way for a walk to leave a given
grid cell in a self-avoiding fashion.

Problem 78. Based on the results of Problem 77, give a scheme for coding
walks starting in the lower left cell of a grid with a ternary alphabet. Find
strings that result in the walks pictured in Figure 2.7.

Problem 79. Prove that the fraction of genes that encode optimal self-
avoiding walks is less than

(3
4

)NM−1 on an N × M grid.

Problem 80. Essay. Based on the sort of reencoding needed to answer Prob-
lem 78 (use your own if you did the problem), try to argue for or against the
proposition that the reencoding will make the space easier or harder to search
with an evolutionary algorithm. Be sure to address not only the size of the
search space but also the ability of the algorithm to get caught. If you are
feeling gung ho, support your argument with experimental evidence.

2.7 The Many Lives of Roulette Selection

In Section 2.1, we mentioned roulette selection as one of the selection tech-
niques that can be used to build a model of evolution. It turns out that the
basic roulette selection code, given in Figure 2.11, can be used for several
tasks in evolutionary computation. The most basic is to perform roulette se-
lection, but there are others. Let us trace through the roulette selection code
and make sure we understand it first.

The routine takes, as arguments, an array of positive fitness values f and
an integer argument n that specifies the number of entries in the fitness array.
It returns an integer, the index of the fitness selected. The probability that
a given index i will be selected is in proportion to the fraction of the total
fitness in f at f [i]. Why? The routine first totals f , placing the resulting
total in the variable ttl. It then multiplies this total by a random number
uniformly distributed in the interval [0, 1] to select a position in the range
[0, Total Fitness], which is placed in the variable dart. (The variable name is a
metaphor for throwing a dart at a virtual dart board that is divided into areas
that are proportional to the fitnesses in f .) We then use iterated subtraction,
of successive fitness values from the dart, to find out where the dart landed.
If the dart is in the range [0, f [0]), then subtracting f [0] from the dart will
drive the total negative. If the dart is in the range [f [0], f [0] + f [1]), then
the iterated subtraction will go negative once we have subtracted both f [0]
and f [1]. This pattern continues with the effect that the probability that the
iterated subtraction will drive the dart negative at index i is exactly f [i]/ttl.
We thus return the value of i at which the iterated subtraction drives the dart
negative.

Designing Simple Evolutionary Algorithms 61

//Returns an integer in the range 0 to (n-1) with probability of i
//proportional to f[i]/Sum(f[i]).

int RouletteSelect(double *f;int n){ //f holds positive fitness
values

//n counts entries in f

int i; double ttl,dart;

ttl=0;
for(i=0;i<n;i++)ttl+=f[i]; //compute the total fitness
dart=ttl*random01(); //generate randomly

//0<=dart<=(total fitness)
i=-1;
do {

dart-=f[++i]; //subtract successive fitnesses;
} while(dart>=0); //the one that takes you negative is

//where the dart landed

return(i); //tell the poor user what the decision is
}

Fig. 2.11. Roulette selection code.

Now that we have code for roulette selection, let’s figure out what else we
can do with it. It is often desirable to select in direct proportion to a function
of the fitness. If, for instance, we have fitness values in the range 0 < x < 1 but
we want some minimal chance of every gene being selected, then we might
use x + 0.1 as the “fitness” for selection. This could be coded by simply
preprocessing the fitness array f before handing it off to the RouletteSelect
routine. In general, if we want to select in proportion to g(fitness), then we
need only apply the function g(x) to each entry of f before using it as the
“fitness” array passed to RouletteSelect. It is, however, important for correct
functioning of both evolution and the selection code that g(x) be a monotone
function, i.e., a < b → g(a) < g(b).

The other major selection method in Section 2.1 was rank selection. There
we gave the most fit of n creatures rank n, the next most fit rank n − 1, etc.,
and then selected creatures to be parents in proportion to their rank. Rank
is thus nothing more than a monotone function of fitness. This means that
the roulette selection code is also rank selection code as long as we pass an
array of ranks. If we compute the ranks in reverse fashion, with the most fit
creature’s rank at 1, then the roulette selection code may be used to do the
selection needed for rank replacement. Roulette replacement is also achieved
by a simple modification of f . Let us now consider an application of roulette
selection to the computational details of mutation.

62 Evolutionary Computation for Modeling and Optimization

The Poisson Distributions and Efficient Probabilistic Mutation

When we place a probability distribution on a finite set, we get a list of
probabilities, each associated with one member of the finite set. Typically, a
programming language comes equipped with a routine that generates random
integers in the range 0, 1, . . . , n − 1 and with another routine that gener-
ates random floating point numbers in the range (0, 1). As long as a uniform
distribution on an interval is all that is required, an affine transformation
g(x) = ax + b can transform these basic random numbers into the integer or
floating point distribution required. Computing nonuniform distributions can
require a good deal of mathematical muscle. In Chapter 3 we will learn to
transform uniform 0-1 random numbers into normal (also called Gaussian)
random numbers. Here we will adapt roulette selection to nonuniform distri-
butions on finite sets and then give an application for efficiently performing
probabilistic mutation.

By now, the alert reader will have noticed that if we know a probability dis-
tribution on a finite set, then the roulette selection routine can generate proba-
bilities according to that distribution if we simply hand it that list of probabil-
ities in place of the fitness array. If, for example, we pass f = {0.5, 0.25, 0.25}
to the routine in Figure 2.11, then it will return 0 with probability 0.5, 1 with
probability 0.25, and 2 with probability 0.25. In the course of designing sim-
ulations and search software in later chapters, it will be useful to be able to
select random numbers according to any distribution we wish, but at present
we want to concentrate on a particular distribution, the Poisson distribution.

In Appendix B, the binomial distribution is discussed at some length. When
we are doing n experiments, each of which can either succeed or fail, the
binomial distribution lets us compute the probability of k of the experiments
succeeding. The canonical example of this kind of experiment is flipping a
coin with “heads” being taken as a success. Now imagine we were to flip 3000
(very odd) coins, and that the chance of getting a head was only one in 1,500.
Then, on average, we would expect to get 2 heads, but if we wanted to compute
explicitly the chance of getting 0 heads, 1 head, etc., numbers like 3000! (three-
thousand factorial) would come into the process, and our lives would become a
trifle difficult. This sort of situation, a very large number of experiments with
a small chance of success, comes up fairly often. A statistician examining data
on how many Prussian cavalry officers were kicked to death by their horses
(a situation with many experiments and few “successes”) discovered a short
cut.

As long as we have a very large number of experiments with a low proba-
bility of success, the Poisson distribution, Equation 2.2, gives the probability
of k successes with great accuracy:

P (k successes) =
e−m · mk

k!
(2.2)

Designing Simple Evolutionary Algorithms 63

The parameter m requires some explanation. It is the average number of
successes. For n experiments with probability α of success we have m = nα.
In Figure 2.12 we give an example of the initial part of a Poisson distribution,
both listed and plotted. How does this help us with probabilistic mutation?

When we perform a probabilistic mutation with rate α on a string with
n characters, we generate a separate random number for each character in
the string. If the length of the string is small, this is not too expensive. If
the string has 100 characters, this can be a very substantial computational
expense. Avoiding this expense is our object. Typically, we keep the expected
number of mutations, m = nα, quite small by keeping the string length times
the rate of the probabilistic mutation operator small. This means that the
Poisson distribution can be used to generate the number of mutations r, and
then we can perform an r-point mutation.

There is one small wrinkle. As stated in Equation 2.2, the Poisson distribu-
tion gives a positive probability to each integer. This means that if we fill an n-
element array with the Poisson probabilities of 0, 1, . . . , n−1, the array will not
quite sum to 1 and will hence not quite be a probability distribution. Looking
at Figure 2.12, we see that the value of the Poisson distribution drops off quite
quickly. This means that if we ignore the missing terms after n − 1 and send
the not-quite-probability distribution to the routine RouletteSelect(f, n), we
will get something very close to the right numbers of mutations, so close, in
fact, that it should not make any real difference in the behavior of the mu-
tation operator. In the Problems, we will examine the question of when it is
worth using a Poisson distribution to simulate probabilistic mutation.

Problems

Problem 81. The code given in Figure 2.11 is claimed to require that f be
an array of positive fitness values. Explain why this is true and explain what
will happen if (i) some zero fitness values are included and (ii) negative fitness
values creep in.

Problem 82. The code given in Figure 2.11 returns an integer value without
explicitly checking that it is in the range 0, 1, . . . , n − 1. Prove that if all the
fitness values in f are positive, it will return an integer in this range.

Problem 83. Modify the RouletteSelect(f, n) routine to work with an array
of integral fitness values. Other than changing the variable types, are any
changes required? Why or why not?

Problem 84. If C is not your programming language of choice, translate the
routine given in Figure 2.11 to your favored language.

Problem 85. Explicitly explain, including the code to modify the entries
of f , how to use the RouletteSelect(f, n) code in Figure 2.11 for roulette
replacement. This, recall, selects creatures to be replaced by new creatures
with probability inversely proportional to their fitness.

64 Evolutionary Computation for Modeling and Optimization

P(0)=0.135335
P(1)=0.270671
P(2)=0.270671
P(3)=0.180447
P(4)=0.0902235
P(5)=0.0360894
P(6)=0.0120298
P(7)=0.00343709
P(8)=0.000859272
P(9)=0.000190949
P(10)=3.81899e-05
P(11)=6.94361e-06

...

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10 12

Fig. 2.12. A listing and plot of the Poisson distribution with a mean of m = 2.

Designing Simple Evolutionary Algorithms 65

Problem 86. Give the specialization of Equation 2.2 to a mean of m = 1
and compute for which k the probability of k successes drops to no more than
10−6.

Problem 87. Suppose we wish to perform probabilistic mutation on a 100-
character string with rate α = 0.03. Give the Poisson distribution of the
number of mutations and give the code to implement efficient probabilistic
mutation as outlined in the text. Be sure to design the code to compute the
partial Poisson distribution only once.

Problem 88. For an n-character string gene being modified by probabilistic
mutation with rate α, compute the number of random numbers (other than
those required to compute point mutations) needed to perform efficient proba-
bilistic mutation. Compare this to the number needed to perform probabilistic
mutation in the usual fashion. From these computations derive a criterion, in
terms of n and α, for when to use the efficient version of probabilistic mutation
instead of the standard one.

Problem 89. Suppose we are using an evolutionary algorithm to search for
highly fit strings that fit a particular criterion. Suppose also that all good
strings, according to this criterion, have roughly the same fraction of each
character but have them arranged in different orders. If we know a few highly
fit strings and want to locate more, give a way to apply RouletteSelect(f, n)
to generate initial populations that will have above average fitness. (Starting
with these populations will let us sample the collection of highly fit strings
more efficiently.)

Problem 90. Suppose we have an evolutionary algorithm that uses a collec-
tion of several different mutation operators. For each, we can keep track of the
number of times it is used and the number of times it enhances fitness. From
this we can get, by dividing these two numbers, an estimate of the probability
each mutation operator has of improving a given gene. Clearly, using the most
useful mutation operators more often would be good. Give a method for using
RouletteSelect(f, n) to probabilistically select mutation operators according
to their estimated usefulness.

Problem 91. Essay. Read Problem 90. Suppose we have a system for es-
timating the usefulness of several mutation operators. In Problem 90, this
estimate is the ratio of applications of a mutation operator that enhanced
fitness to the total number of applications of that mutation operator. It is
likely that the mutation operators that help the most with an initial, almost
random, population will be different from those that help the most with a
converged population. Suggest and justify a method for estimating the recent
usefulness of each mutation operator, such as would enhance performance
when used with the system described in Problem 90. Discuss the computa-
tional complexity of maintaining these moving estimates and try to keep the
computational cost of your technique low.

3

Optimizing Real-Valued Functions

This chapter will expand the concept of string evolver, changing the alphabet
from the character set to the set of real numbers. This will lead to our first
problem of interest outside of the evolutionary computation community: max-
imization and minimization of real-valued functions of real variables. In this
chapter we will explore different types of functions, from the continuous ones
that can be optimized with classical methods like the calculus to more difficult
functions that are constant except where they are discontinuous. This latter
class of functions may sound artificial to someone whose mathematical educa-
tion has been rich in the beautiful theory of real analysis, but such functions
arise naturally in tasks like printed circuit board layout. The most difficult
issue we will deal with in this chapter is that of mutation. Real variables take
on continuous rather than discrete values, and so our mutation operators will
become probability distributions. The set of “mutants” of one structure is no
longer a finite set that can be enumerated with mere computer power, but
rather a set which is theoretically infinite and in practice gigantic that must
be handled with care.

In this chapter we will first create a basic evolutionary algorithm for opti-
mizing real-valued functions. With this software in hand we will discuss one of
the primary metaphors of evolutionary computation, the fitness landscape. We
will then explore niche specialization. This is a modification inspired by the
specialization of living organisms to different niches in nature. We will then
explore two illustrative examples, finding a minimal-length path through the
unit square and minimizing the crossing number of a combinatorial graph.
Figure 3.1 lists the experiments in this chapter and shows how they depend
on one another.

While optimizing real-valued functions we will call strings of real numbers
by the more standard name, arrays of real numbers. A knowledge of calculus is
helpful, and a few pertinent facts are included in Appendix C. We have already
previewed this area in Problems 14 and 38 and in Experiment 2.8. Using real
functions gives us some additional machinery. For example, we can use a much
more efficient Lamarckian mutation when the function is differentiable. This

68 Evolutionary Computation for Modeling and Optimization

Exp3.1

Exp3.2 Exp3.8

Exp3.11

Exp3.19

Exp3.17

Exp3.3 Exp3.5

Exp3.4

Exp3.13

Exp3.14

Exp3.15 Exp3.16

Exp3.10

Exp3.9

Exp3.20

Exp3.18

Exp3.21

Ch 6,9

Ch 13

Exp3.12

Exp3.6

Exp3.7

1 Basic real function optimizer.
2 Exploring types of mutation.
3 Real Lamarckian mutation.
4 Exploring types of crossover.
5 Comparing direct and binary representations.
6 Deceptive optima experiment.
7 The effects of space warp on deception.
8 Domain niche specialization, three optima.
9 Niche specialization, restricted initial range.
10 Niche specialization with nonpoint optima.
11 Testing range niche specialization.
12 Student’s choice domain and range niche specialization.
13 Introducing the path length problem.
14 Path length with Gaussian mutation.
15 Path length with decreasing mutation.
16 Path length with alternative fitness.
17 Path length with alternating fitness functions.
18 Introducing the crossing number function.
19 Crossing number with Gaussian mutation.
20 Crossing number with niche specialization.
21 Crossing number on sparser graphs.

Fig. 3.1. The topics and dependencies of the experiments in this chapter.

Optimizing Real-Valued Functions 69

mutation operator is explained in Appendix C. In this chapter, we will have
our first nontrivial representation issues: comparing atomic and nonatomic
representations of real numbers. (Recall that atom is from the Greek a (not)
tomos (cut), meaning uncuttable.)

Some terminology concerning optima will be useful in this chapter. An
optimum is a minimum or maximum of a function. An optimum is said to
be local if it is larger (respectively smaller) than all nearby points. An opti-
mum is global if it is larger (respectively smaller) than every other value the
function takes on over its domain space. Since minimizing f is equivalent to
maximizing −f , we will speak in the remainder of the chapter as if we were
maximizing functions and as if our optima were maxima. Following terminol-
ogy in statistics, optima are also sometimes called modes, and a function with
only one optimum, e.g., f(x) = 1−x2, is said to be unimodal. Compare these
with the definitions of mode and unimodal and local and global optimum from
Chapter 2.

3.1 The Basic Real Function Optimizer

The crossover operators on strings, given in Section 2.2, carry over directly as
crossover operators on arrays of real numbers. In one representation used for
optimization of real-valued functions, real numbers are represented as strings
of characters (representing bits), and the crossover operators are allowed to
split real numbers “in the middle.” This practice causes rather bizarre be-
havior in the split real numbers, and so we will avoid it for the most part by
forcing our crossover operators to respect real boundaries. In the last chapter
a point mutation consisted in replacing a character with another randomly
generated character; a point mutation for a real number will consist in adding
or subtracting small values to some locus of the gene.

Definition 3.1 For a real number ε, we define a uniform real point mu-
tation of a gene consisting of an array of real numbers to be addition of a
uniformly distributed random number in the range [−ε, ε] to a randomly cho-
sen locus in the gene. The number ε is called the maximum mutation size of
the mutation operator.

A uniform real point mutation with maximum mutation size ε causes one
of the loci in a gene to jump to a new value within ε of its current value. All
numbers that can be reached by the mutation are equally likely. This defini-
tion of point mutation gives us an uncountable suite of mutation operators by
varying the maximum mutation size continuously. Usually the problem under
consideration suggests reasonable values for ε. Once we have a point mutation,
we can build from it the one, two, and k-point mutations, probabilistic muta-
tions, and the helpful mutations described in Section 2.3. The “all” clause in

70 Evolutionary Computation for Modeling and Optimization

the definition of Lamarckian mutation makes it impossible to use that defini-
tion with the definition of point mutation we have above, but in Appendix C
we define a derivative-based Lamarckian mutation for differentiable functions.

Definition 3.2 For a real number σ, we define a Gaussian real point mu-
tation of a gene consisting of an array of real numbers to be addition of a
normally distributed random number with mean zero and standard deviation
σ to a randomly chosen locus in the gene.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-3 -2 -1 0 1 2 3

N(0,1)

P (x) = 1√
2π

e− x2
2

Fig. 3.2. A graph of the probability density function of the Gaussian distribution
with mean zero and deviation 1. (Note that the tails of the distribution continue
indefinitely.)

A Gaussian real point mutation shares with the uniform point mutation
the property that its average is zero. Therefore, increasing the value of the
number hit with the mutation is symmetric to decreasing its value. The Gauss-
ian mutation differs in being able to go farther. Where all possible numbers
are equally likely with a uniform mutation, the chance of reaching a number
drops off rapidly with a Gaussian mutation. The normal distribution has in-
finite tails: there is a positive probability of getting any number at all back
from a Gaussian mutation. Uniform mutation insists on local search; Gauss-
ian mutation permits distant search, but usually performs local search. The

Optimizing Real-Valued Functions 71

shape of the Gaussian distribution is shown in Figure 3.2. Generating Gauss-
ian random variables with mean 0 and standard deviation 1 can be done with
the formula given in Equation 3.1:

N(0, 1) = cos(2π · R) ×
√

−2 · S, (3.1)

where R and S are independently generated uniform random variables in the
range [0, 1]. In order to get Gaussian random numbers with standard deviation
σ, simply multiply the results by σ.

In the rest of this chapter, except for Section 3.5, we will be testing real
function optimizers on problems with known answers. We will say that we have
“found” an answer when a member of our evolving population of candidate
solutions is within a specified Euclidian distance, called a tolerance, of the
true answer. Suppose we were optimizing, for testing purposes, the function
f(x) = x2. If we were working with a tolerance of 0.01, then any population
member whose genes code for a number in the range −0.01 ≤ x ≤ 0.01 would
serve as a witness that the evolving population had “solved” the problem of
finding the minimum at x = 0.

Since models of evolution are independent of the problem being solved, we
have available all of the models of evolution discussed so far. Selecting a basic
real function optimizer requires that we go through the following steps. First,
pick a fitness function. This function will be the function being optimized or
its negative. Second, select a population size. The population will be made
of n-dimensional arrays of reals, where n is the number of variables in the
function being optimized. Third, select a suite of variation operators. You
may want a mix of mutations that includes different maximum mutation sizes
so that some mutations do a broad search, and others do a close search. The
smallest maximum mutation size in any of your mutation operators should be
small enough that you are unlikely to jump entirely past a nearby optimum
with one mutation. (The fact that your mutations can only be as small as the
real-number resolution of the computer you’re working with keeps this from
becoming an urgent concern.) Fourth, select a model of evolution. Fifth and
last, come up with a stopping condition.

Step five is a killer. Any good stopping condition that can say, “Yes, this
is it! We have found the true global optimum!” practically has to contain the
answer to the optimization problem in order to work as advertised. When you
are testing a real function optimizer on functions with known optima, optima
you yourself have constructed within the function, an omniscient stopping
condition is available. Normally, however, you have to make do with a second-
rate, substitute stopping condition. A couple of demonstrably bad but widely
used stopping conditions are (i) to stop if there has been no change in a long
time and (ii) to run your real function optimizer as long as you can. Both
of these stopping conditions can be marginally improved by rerunning the
algorithm on different populations and seeing what sort of optima pop out.
The values you get can be used to create new stopping conditions or restarting

72 Evolutionary Computation for Modeling and Optimization

conditions. If, for example, you know of a much better optimum than the one
you are in, and no progress has been made for several generations, it might well
be profitable to restart evolution with a new random population. You might
even share time among several evolving populations and delete the ones that
appear to be going nowhere, replacing them with copies of the populations
that are doing better. This is, in essence, an evolutionary algorithm whose
individual creatures are evolutionary algorithm populations. This sort of thing
is called a metaselection algorithm and is complex enough to be a technique
of last resort.

In practical or applied problems, a stopping condition is often implied
by the bounds implicit in reality. If your optimizer is stuck and has found a
solution that brings you in under budget, you can just accept that solution
and go home for the night. An applied problem usually has obvious bounds on
optima: the speed of light, the size of the federal budget, the amount of zinc
in North America, or whatever. Finally, in many optimization problems there
is an extensive literature containing proven or estimated bounds that you can
use as stopping conditions. If you are intending to use evolutionary algorithms
for optimization, then you should become familiar with the problems you are
solving to the greatest extent possible and use that knowledge to make the
best stopping condition you can.

In his doctoral thesis, Kenneth DeJong proposed five standard test func-
tions, f1 through f5, for evolutionary algorithms that optimize real functions.
We do not use all of these functions in our experiments; the test suite is in-
cluded for completeness and because of its historical importance in real func-
tion optimization with evolutionary algorithms. We generalize the test bed to
the extent of making the number of variables arbitrary in some cases. Many
of the functions in the test bed have optima that are very special points, e.g.,
the origin. It is considered good practice to shift the optima to points that
do not have special status in the representation used. Here are DeJong’s five
functions:

f1(x1, . . . , xn) =
n∑

i=1

x2
i (3.2)

with −5.12 ≤ xi ≤ 5.12. This function is to be minimized.

f2(x, y) = 100(x2 − y2)2 + (1 − x)2 (3.3)

with −2.048 ≤ x, y ≤ 2.048. This function is to be minimized.

f3(x1, . . . , xn) =
n∑

i=1

[xi] (3.4)

with −5.12 ≤ xi ≤ 5.12, where [x] is the greatest integer in x. This function
may be minimized or maximized.

Optimizing Real-Valued Functions 73

f4(x1, . . . , xn) =
n∑

i=1

i · x4
i + Gauss(0,1) (3.5)

with −1.28 ≤ xi ≤ 1.28 and where Gauss(0,1) is a Gaussian random variable
with a mean of zero and a standard deviation of 1. Recall that the formula
for Gaussian random numbers is given in Equation 3.1. The Gaussian random
variable is added each time the function f4 is called. This function is to be
minimized.

f5 = 0.002 +
25∑

j=1

1
j +
∑n

i=1(xi − ai,j)6
, (3.6)

with −65.536 ≤ xi ≤ 65.536 and where the ai,j are coordinates of a set of
points within the function’s domain generated at random and fixed before
optimization takes place. This function is to be maximized.

Let us look qualitatively at these functions. The function f1 has a single
mode at the origin and is the simplest imaginable real function that has an
optimum. The function f2 is still not hard, but has two areas that look like
optima locally with only one being a true optimum. The function f3 is uni-
modal, but where it is not constant, it is discontinuous. It thus serves as a
good example of a function for which the techniques of calculus are useless.
The function f4 is also unimodal with a mode at the origin, but it is flatter
near its optimum than f1 and has random noise added to it. The function
f5 simply has a large number of extremely tall, narrow optima with differing
heights at the positions (ai,j : i = 1, . . . , n and j = 1, . . . , 25). It could be used
in a destruction test for mutation operators that made too large jumps.

DeJong’s function test bed is a standard for testing evolutionary compu-
tation systems. Other functions can be used as building blocks to construct
your own test functions. The fake bell curve, Equation 2.1, is one. Another is
the sombrero function

cos
(√

x2
1 + x2

2 + · · · + x2
n

)
. (3.7)

To see where this function got its name, look at Figure 3.3, which shows the
two-dimensional version on a square of side length 4π centered at the origin.

Experiment 3.1 Write or obtain software for a real function optimizer for
use on functions 1 through 5 given below. Use tournament selection with tour-
nament size 4, two-point crossover, and uniform real single-point mutation
with ε = 0.2 on each new creature. Stop after 100 generations on functions 1
through 3; stop within a Euclidian distance of 0.001 of the true optimum on
functions 4 and 5. Use a population size of 120 individuals. For functions 1
through 3, do 30 runs and give the solutions found. See whether they cluster in
any way. For functions 4 and 5, find the mean and standard deviation of time-
to-solution, using a tolerance of 0.001, averaged over 30 runs. Be sure your

74 Evolutionary Computation for Modeling and Optimization

-5

0

5
-5

0

5

-1

-0.5

0

0.5

1

Fig. 3.3. The sombrero function in 2-D, −2π ≤ x, y ≤ 2π.

definition of two-point crossover does not choke in 2 dimensions; it should act
like one-point crossover in this case.
(1) Minimize

x4+2x2y2+y4−6x3−10x2y−6xy2−10y3+37y2+37x2−12x−20y+70, −10 ≤ x, y ≤ 10.

(2) Maximize
cos
(
5 ·
√

x2 + y2
)

x2 + y2 − 6x − 2y + 11
, 0 ≤ x, y ≤ 5.

(3) Maximize and minimize

3xy − 2
4x2 − 4xy + y2 + 4x − 2y + 2

, −5 ≤ x, y ≤ 5.

(4) DeJong function f1, Equation 3.2, in 10 dimensions.
(5) fake bell curve, Equation 2.1, in 4 dimensions, with −2 ≤ xi ≤ 2.

In Experiment 3.1, functions 1 to 3 have optima at fairly weird points. The
functions avoid “working out even,” and the optima are hard to find even by
staring at a graph of the functions, unless you play games with vertical scale.
Functions 4 and 5 commit the sin of having optima at special points—the
origin—and are the functions you should probably use when debugging your
code.

Optimizing Real-Valued Functions 75

Experiment 3.2 Redo functions 4 and 5 of Experiment 3.1, replacing single-
point mutation with (i) a probabilistic mutation operator that yields the same
overall mutation rate as the one-point mutation used in Experiment 3.1; (ii)
two-point mutation applied to each new creature; (iii) a probabilistic mutation
that yields the same overall mutation rate as two-point mutation; and (iv)
Gaussian mutation with standard deviation 0.1. In your write-up, compare
the performance by drawing confidence intervals of one standard deviation
about the mean solution times and checking for overlap.

Experiment 3.3 Redo Experiment 3.2, using single-point mutation and also
replacing the single-point mutation with the Lamarckian mutation operator
from Appendix C in 10% of the mutations. Compare the performance with the
algorithm used in Experiment 3.2.

Experiment 3.4 Redo Experiment 3.2, using only the mutation operator you
found to work best (this may be different for different functions). Rewrite
the evolutionary algorithm to use one- or two-point crossover or uniform
crossover. Compare the performance of the three different types of crossover,
measuring time-to-solution in both crossover events and real numbers gener-
ated.

In the next experiment, we will explore a representational issue: how does
representing points in the domain space of a function with real numbers com-
pare to a discrete representation of character strings coding for bits?

Experiment 3.5 Redo Experiment 3.2 with two-point crossover, but this
time radically modify your data structure be strings of 0’s and 1’s, twelve per
real variable. Interpret these as real numbers by taking the characters in blocks
of 12 as binary integers and then mapping those integers uniformly into the
specified range of the function. These integers are in the range 0 ≤ x ≤ 4095;
so to map them onto a real y in the interval (r, s), set y = (s− r) ·x/4095+ r.
Let the mutation operator be single-point mutation. Compare the performance
of this evolutionary algorithm with that of Experiment 3.2. Discuss the con-
nection, if any, between this experiment and the Royal Road function with
block size 12.

We conclude by reminding you of a standard and possibly useful formula.

Definition 3.3 The Euclidian distance between two points p = (p1, p2, . . . , pn)
and q = (q1, q2, . . . , qn) in R

n is given by the formula

d(p, q) =
√

(p1 − q1)2 + (p2 − q2)2 + · · · + (pn − qn)2.

76 Evolutionary Computation for Modeling and Optimization

Problems

Problem 92. Essay. Explain in detail why the unmodified Lamarckian mu-
tation operator from Chapter 2 cannot be reasonably applied with the defini-
tion of point mutation given in this section.

Problem 93. Suppose we are optimizing some real-valued function in 4 di-
mensions with an evolutionary algorithm. If we are using single-point mutation
with maximum mutation size ε, then what is the expected distance that 1,
2, 3, 4, or 5 single-point mutations will move us? Your answer should be in
terms of ε.

Problem 94. Do Problem 93 experimentally for ε = 0.2. In other words, gen-
erate k = 1, 2, 3, 4, or 5 single-point mutations of the gene (0, 0, 0, 0) and check
the average resulting difference for a large number of trials (e.g., thousands).
Use the results to check your theoretical predictions.

Problem 95. A neighborhood of radius r of a point p in R
n is the set of all

points within a distance r of p. Give an example of a continuous, nonconstant
function from R

2 to R and a point p such that for all choices of small r,
neighborhoods of p contain a point q other than p such that f(p) = f(q) and
for no x in the neighborhood is f(x) > f(p).

Problem 96. This problem requires you to compute functional gradients as
described in Appendix C. For each of the following functions and points,
compute a unit vector in the direction of maximum increase at the specified
point:

(i) f(x) = cos(x
x2+1) at x = 2.

(ii) f(x, y) = xy
x2+y2+1 at (1, 2).

(iii)f(x, y, z) = cos(x) sin(y)
z2+1 at (π/3, π/6, 1).

Problem 97. This problem requires you to compute functional gradients as
described in Appendix C. Compute and display the gradient vectors within
the square −5 ≤ x, y ≤ 5 of the function

f(x, y) = cos
(√

x2 + y2
)

.

You should compute the gradient at 25 points within the square. Choose each
point from a different square in a regular 5 × 5 grid.

Problem 98. Give a function with an infinite number of local optima with
distinct values on the interval −1 ≤ x ≤ 1. Can such a function be made to
have a global optimum? Can such a function be made not to have a global
optimum? For both questions give an example if the answer is yes and a proof
if it is no.

Optimizing Real-Valued Functions 77

Problem 99. The fake bell curve, Equation 2.1, produces values in the range
0 ≤ f(x, y) ≤ 1. Assume we are optimizing this curve. Give the range of
changes that are possible between the maximum fitness of a pair of parents
and the maximum fitness of the children resulting from two-point crossover of
those parents. In other words, what possible fitness difference can result from
best parent to best child as a result of crossover? Assume that this is the type
of crossover that treats creatures as strings of indivisible reals.

Problem 100. Do the results of Problem 99 change if we switch the data
representation to that used in Experiment 3.5?

3.2 Fitness Landscapes

Evolutionary algorithms operate on populations of structures. The structures
within a population are not all the same (if they were, there would be no point
in having them). Over algorithmic time, the population changes as better
structures are generated and selected. The space in which the population
lives is called the fitness landscape. The fitness landscape is a metaphor that
helps us to understand the behavior of evolutionary algorithms. Let us come
up with a formal definition sufficiently general to permit its use in almost any
evolutionary computation system.

Definition 3.4 Let G be the space of all the data structures that could ap-
pear as members of the population in some evolutionary algorithm. Then, the
fitness landscape of that evolutionary algorithm is the graph of the fitness
function over the space given by G.

As with many of the definitions in this text, Definition 3.4 cheats. It refers
to the space of all data structures upon which the evolutionary algorithm in
question might work. To generate an organized graph, there must be some
sort of relationship among the data structures. In this chapter this isn’t a
problem, because all the data structures are points in R

n. We are used to
doing graphs over R

n. When our evolutionary computation shifts to discrete
structures, as in genetic programming, the structure of the domain space of
the fitness landscape becomes far more complex.

For the type of evolutionary algorithms described in Section 3.1, the graph
of the fitness function is the fitness landscape. In the next couple of sections
of this chapter, we will attempt to enhance the performance of our evolution-
ary algorithms by modifying the fitness landscape or making the landscape
dynamic. We will now examine the notion of fitness landscapes.

Examine Figure 3.4. The fake bell curve in one dimension is extremely
simple to optimize, and as we see, the population rapidly moves from a disor-
dered random state to a pileup beneath the optimum. Since the evolutionary
algorithm running under Figure 3.4 had a relatively small mutation size and

78 Evolutionary Computation for Modeling and Optimization

Generation 1 Generation 3

Generation 2 Generation 9

Fig. 3.4. Graph of the fake bell curve with one variable together with a histogram
of the distribution of the population in the range [−3, 3] at various times during
evolution. (The evolutionary algorithm that generated these pictures used roulette
selection on a population of 100 data structures with uniform single-point mutation
of size 0.03 and no crossover. The algorithm is elitist, saving its best two genes.)

no crossover, this pileup is probably due mostly to reproduction and selection.
Since the fake bell curve has a single mode, nothing can go wrong in opti-
mizing it with an evolutionary algorithm. Selection and elitism ensure that
good genes remain, a “fitness ratchet,” and genes near the best genes are gen-
erated at random. This means that the population will rapidly pile up near
the unique optimum. There is no way to trap the population away from the
optimum: all roads are uphill toward the unique maximum. Let’s look at a
less friendly function.

In Figure 3.5, we see that when there is more than one optimum, the evolu-
tionary algorithm can find different optima in different “runs.” The difference
between the left- and right-hand diagrams is caused by the choice of initial
population. The function

f(x) =
3.1

1 + (40x − 4)2
+

3.0
1 + (3x − 2.4)4

(3.8)

Optimizing Real-Valued Functions 79

Initial Initial

Early Early

Late Late

Fig. 3.5. Graph of f(x) = 3.1
1+(40x−4)2 + 3.0

1+(3x−2.4)4 in the same style as Figure 3.4.
(The results of running two distinct initial populations are shown.)

has a pair of maxima. The left-hand optimum is slightly higher, while the
right-hand optimum is much wider and hence easier to find. An interesting
question is: What is the probability of finding each of the optima?

Experiment 3.6 Take the code from Experiment 3.1 and modify it to use
roulette selection and random replacement with an elite of size 2, to run with-
out crossover (on only one variable), and to use uniform mutation with size
0.01. Use this code with a population size of 50 to optimize Function 3.8 on
the interval [0, 1] and report how many times the algorithm “found” each of
the two optima. In your write-up, be sure to give a clear definition of what it
means for the population to have “found” an optimum.

This experiment gives us a way of measuring the way the “converged”
(final) population of an evolutionary algorithm samples between two optima.
It is clear that if we have a large number of distinct optima floating around,
the evolutionary algorithm will have some sort of probability distribution (see

80 Evolutionary Computation for Modeling and Optimization

Appendix B) on the optima of the function. This means that modifying the
way we sample to produce the population may help. Let’s try it.

Experiment 3.7 Repeat Experiment 3.6, except that before evaluating the
fitness of a point x, replace x with g(x), where

g(x) =
x

6 − 5x
.

Again: do everything as before, except that the fitness of a population member
x is f(g(x)) instead of f(x). For each run, report x, g(x), and f(g(x)) for the
best population member. The g(x) values are the ones used to judge which of
the two maxima the population has converged to. In your write-up, state the
effect of the modification on the chance of locating the left-hand optimum.

We will return to the issue of fitness landscapes many times in the sub-
sequent text. The idea of fitness landscapes is helpful for speculating on the
behavior of evolutionary algorithms, but should never be taken as conclusive
unless experiments or mathematical proof back the intuition generated. As the
dimension of a problem increases, the quality of human intuition degrades. If
we cease to consider functions of real variables, as we will in a majority of sub-
sequent chapters, the intuition generated by the nice smooth graphs presented
in this section will be even less helpful.

Problems

Problem 101. Prove that the function g(x) in Experiment 3.7 leaves popu-
lation members that start in the range [0, 1] in that range.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

f(x)

f(x)= 2
1+(40x−20)2

− 1
1+(4x−2)4

Problem 102. Examine the function above. This function is deceptive in the
sense that, unlike the fake bell curve, there are many points from which uphill
is away from the global maximum. Compute the probability that an algo-
rithm that picks a point uniformly at random in the interval [0, 1] and then

Optimizing Real-Valued Functions 81

heads uphill will find the true optimum of this function. Hint: this involves
computing the position of the two minima, which you may do numerically if
you wish.

Problem 103. Find an explicit formula for some f(x, y) that generalizes the
function given in Problem 102 to two dimensions. Having done this, compute
the probability of successful hill climbing for that function for points chosen
uniformly at random in the unit square. Will the problem get harder as the
dimension increases?

Problem 104. Explain, analytically, what the function g(x) in Experiment
3.7 does. Hint: start by graphing it.

Problem 105. Assuming that everything worked as intended, Experiment
3.7 modified the evolutionary algorithm to find the narrower but taller op-
timum more often. The function g(x) in that experiment is, in some sense,
“tailored” to Function 3.8. Examine, for positive α, the functions

gα(x) =
x

(α + 1) − αx
(3.9)

and

hα(x) =
(α + 1)x
1 + αx

. (3.10)

Suppose we are going to run an evolutionary algorithm, like the one in Ex-
periment 3.7, a large number of times. Using the functions gα(x) and hα(x),
come up with a scheme for running a different sampling of the space each
time. Explain what roles the functions play. Assume that we have no idea
where the optima are in the functions we are trying to optimize. You may
want to give your answer as pseudocode.

Problem 106. Prove that the functions gα(x) and hα(x) from Problem 105
have the following properties on the interval [0, 1]:

(i) gα(hα(x)) = hα(gα(x)) = x.
(ii) The functions are monotone for all choices of α. (A function q(x) is mono-

tone if a < b implies that q(a) < q(b).)
(iii) Both functions take on every value in the range [0, 1] exactly once each.

Problem 107. Generalize the scheme you worked out in Problem 105 to mul-
tivariate functions. Suggestion: Think of gα(x) and hα(x) as distortions; it may
be good to have different distortions for each dimension.

Problem 108. Essay. Speculate as to the effect of changing the population
size in Experiment 3.6. Advanced students should actually redo the experi-
ment with different population sizes to support their speculation.

82 Evolutionary Computation for Modeling and Optimization

Problem 109. Essay. Speculate as to the effect of changing the mutation size
in Experiment 3.6. Advanced students should actually redo the experiment
with different mutation sizes to support their speculation.

Problem 110. Essay. In Section 2.5, the Royal Road function is described.
What is the fitness landscape for the evolutionary algorithm described in
Experiment 2.10?

3.3 Niche Specialization

In this section we will tinker with the fitness function of our real function
optimizer to try to enhance performance. The idea of niche specialization for
use in evolutionary algorithms was proposed by David Goldberg [29]. It is in-
spired by a biological notion with the same name, discussed in Section 1.2. The
basic idea is simple: reduce or divide the fitness of a member of an evolving
population by a function of the number of other essentially similar members
of the population. In order to do niche specialization one needs to create a
similarity measure. In real function optimization at least two obvious similar-
ity measures are available. The population we operate on in our evolutionary
algorithm for optimizing real functions is just a collection of points in R

n, and
so proximity in R

n is one possible similarity measure. Call this domain niche
specialization. Let r be the similarity radius and define a new fitness measure
as follows. Where before we used the value of the function f being optimized
as a fitness function, we will now take the value of the function divided by
a penalty based on the number of members of the population nearby. Let
m be the number of members of the population at distance r or less from a
particular population member v. Let q(m) be the penalty function and set

Fitness(v) := f(v)/q(m). (3.11)

The effect of this will be to make an optimum less attractive as more creatures
find it. Since we are going to use it quite a lot, the function q(m) needs to
be inexpensive to compute but also needs to avoid throwing creatures out of
optima before they can explore them and find their true depth. One very easy
to compute function is q(m) = m, but this function may well be far too harsh
a penalty to the fitness. One might try a simple modification of the identity
function like

q(m) =

{
1, m ≤ 4,

m/4, m > 4.
(3.12)

The next experiment tests domain niche specialization on a function with
three modes.

Experiment 3.8 Recall that Bn is the fake bell curve, Equation 2.1. Use the
following function with three modes,

Optimizing Real-Valued Functions 83

f(x, y, z) = B3(x, y, z) + 2 · B3(x − 2, y − 2, z − 2) + 3 · B3(x − 4, y − 4, z − 4),

and then modify the software from Experiment 3.1 to test niche specialization
on f(x, y, z) as follows. Use an initial population of 60 creatures all of the form
(0, 0, 0). Test the time for a creature to get within distance 0.05 of (4, 4, 4) in
real time and in generations. Compute the mean and standard deviation of
these times over 50 runs in each of 3 sets of trials, as follows. The first set
of trials should be the basic real function optimizer. The second should be one
with domain niche specialization with similarity radius 0.05 and q(m) = m.
The third should be like the second, except that q(m) =

√
m. Recall that m ≥ 1

because the creature is close to itself.

Since the computation of m and q(m) are potentially quite expensive, the
measurement of real time taken is very important, a more objective measure
of efficiency than the generations or crossovers to solution. Notice that in Ex-
periment 3.8 we place the initial population in a very bad place, inside a local
optimum and with another local optimum between it and the unique global
optimum. This is very different from having an initial population uniformly
placed throughout the domain space.

Experiment 3.9 Redo Experiment 3.8 with a random initial population
placed uniformly on the domain −1 ≤ x, y, z ≤ 5. Emphasize the differences
in performance resulting from initial population placement in your write-up.

The similarity measure used in domain niche specialization seems to as-
sume that the optima are zero-dimensional, that is, that all directions away
from a local optimum result in points with lower fitness, as measured by the
function being optimized. Functions that attain their optimum on some non-
point region might prove a challenge for domain niche specialization. Instead
of forcing the creatures to move away from an optimum and find new optima,
domain niche specialization might well force them into different parts of the
“same” local optimum. In Problem 95, we asked you to construct a function
that had this property, and in fact Equation 3.7, the sombrero function, is
just such a function. All but one of its local optima are (n − 1)-dimensional
spheres centered at the origin. A problem with the sombrero function is that
all the local optima are global optima, but we can get around this by com-
bining the sombrero function with the fake bell curve. Examine the following
pair of equations:

f(x1, x2, . . . , xn) =
cos
(√

x2
1 + x2

2 + · · · + x2
n

)
x2

1 + x2
2 + · · ·x2

n + 1
; (3.13)

f(x1, x2, . . . , xn) =
cos
(√

x2
1 + x2

2 + · · · + x2
n

)
(
4 −
√

x2
1 + x2

2 + · · · + x2
n

)2
+ 1

. (3.14)

84 Evolutionary Computation for Modeling and Optimization

The first, Equation 3.13, is a sombrero function multiplied by a fake bell
curve, so that there is a single global optimum at the origin and sphere-shaped
local optima at each radius 2πk from the origin. The second, Equation 3.14,
is a sombrero function multiplied by a fake bell curve that has been modified
to have a single spherical global optimum at a radius of 4 from the origin,
placing the global optimum of the function in a spherical locus at a distance
of nearly 4 from the origin. Parts of the graphs of these functions are shown
in Figure 3.6.

Experiment 3.10 Redo Experiment 3.9 using Equations 3.13 and 3.14. If
you can, for the experiment in two dimensions dynamically plot the location
of each population member. Do the creatures spread out along the spherical
local optimum? Given that we have crossover available, is that a bad thing? In
any case, check the mean and standard deviation of time-to-solution to some
part of the global optimum in 2, 3, and 4 dimensions. Use a tolerance of 0.05
for stopping. Since testing tolerance is harder with nonpoint optima, carefully
document how you test the stopping condition.

The second sort of similarity measure we want to examine in this section
is based on the position a creature codes for in the function’s range space.
We retain the similarity radius r from the preceding discussion as well as the
penalty function q(m) but change the method of computing m, the number
of essentially similar creatures. If f is the function we are optimizing, then let
m for a creature y be the number of creatures x such that |f(x) − f(y)| ≤ r.
In other words, we are just computing the number of creatures that have
found roughly the same functional value. We call niche specialization on this
new similarity measure range niche specialization. Range niche specialization
avoids some of the potential pitfalls of domain niche specialization. It can
compensate for the funny spherical local optima that come from the sombrero
function. Imagine a function that jumps around quite a lot in a very small
region. Range niche specialization wouldn’t tend to drive creatures out of
such a region before it was explored. On the other hand, if there was a local
optimum with a steep slope leading into it, then range niche specialization
might create a population living up and down the sides of the optimum.

Experiment 3.11 Redo Experiment 3.10 with range niche specialization.
Does it help, hurt, or make very little difference?

Since the two types of niche specialization we have discussed have differ-
ent strengths and weaknesses and both also differ from the basic algorithm,
it might be worthwhile to use them intermittently. Given that they have non-
trivial computational costs, using them intermittently is a computationally
attractive option.

Experiment 3.12 Pick a function that has been difficult for both sorts of
niche specialization and modify your optimizing software as follows. Run the
basic real function optimizer for 20 generations and then one or the other sort

Optimizing Real-Valued Functions 85

-5

0

5
-5

0

5

-0.5

0

0.5

1

0 1 2 3 4 5 6 7 8 9 0
1

2
3

4
5

6
7

8
9

-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3

Fig. 3.6. Graphs of Equations 3.13 and 3.14.

of niche specialization for 10 generations, and repeat. Also try alternating the
types of niche specialization. Do you observe any improvement? Remember to
measure time-to-solution with both a “stopwatch” and in generations. Since
the directions given for this experiment are fuzzy and imprecise, you should
give a detailed write-up of exactly what you did and why.

86 Evolutionary Computation for Modeling and Optimization

Range niche specialization may be of more use in situations in which the
functions being optimized are not continuous. In the next section we will see
some examples of functions that are constant where they are not discontinu-
ous. These functions may be a more fruitful area for use of niche specialization.

Problems

Problem 111. Suppose we are optimizing the fake bell curve in two dimen-
sions with an 8 member population. If the creatures’ genes are as shown in the
following table, compute the modified fitness of each creature for domain niche
specialization with similarity radius r = 0.1 and penalty function q(m) =

√
m.

Do you think the use of niche specialization will help in this instance?

x y
0.042 0.043
0.047 0.048
0.051 0.066
0.121 0.136
0.077 0.081
0.166 0.135
0.042 0.055
0.211 0.056

Problem 112. Do Problem 111 over but for range niche specialization with
similarity radius r = 0.01.

Problem 113. In Experiment 3.8 it was asserted that the function being
optimized,

f(x, y, z) = B3(x, y, z) + 2 · B3(x − 2, y − 2, z − 2) + 3 · B3(x − 4, y − 4, z − 4),

has 3 modes. In Problem 48 we saw that if fake bell curves are put too close
together, the modes blend. Derive from f(x, y, z) a single-variable function
that will have the same number of modes as f and graph it to verify that f
has 3 modes.

Problem 114. Essay. Construct a function that you think will be more eas-
ily optimized by a basic real function optimizer than by that same optimizer
modified by domain niche specialization. Discuss how you construct the func-
tion and give your reasons for thinking that domain niche specialization might
run afoul of your function. Consult your instructor as to the degree of preci-
sion he demands in specifying a function. Advanced students should support
their conclusions experimentally.

Problem 115. Essay. Do Problem 114 for range niche specialization.

Optimizing Real-Valued Functions 87

Problem 116. Carefully graph

f(x, y) =
C(

d −
√

x2 + y2
)2

+ 1

for C = 1 and d = 3 and discuss its relationship to Equation 3.14 and the
fake bell curve, Equation 2.1. This function is called the crater function.

Problem 117. Essay. Assume that we are using the stopping condition that
says “stop if there has been no change in the gene of the most fit creature for
20 generations.” The crater function, introduced in Problem 116, creates an
annoying optimum that takes on its maximum value at an infinite number of
points. Since all these points are true global optima, this creates a problem
for our stopping criterion. Discuss what would happen to the optimization
process if we added a fake bell curve or other bounded, easily computed curve
to the crater function. Assume that the curve added has a very small max-
imum compared to the maximum of the curve actually being optimized. In
particular, would adding this other “bias” function ease the problem afflicting
the stopping criterion? What if the bias function was instead composed of a
fixed set of random noise of small amplitude? Remember to discuss not only
the effects on the population structure but the computational costs.

Problem 118. Essay. Suppose we are optimizing real functions with either
domain or range niche specialization. Try to characterize the set of continuous
functions that you think would be more likely to be optimized more efficiently
under each of these two specialization techniques.

Problem 119. Explain why the following are desirable properties of a penalty
function q(m), mε{1, 2, 3, . . .}:

(i) q(1) = 1,
(ii) q(m) ≥ 1 for all m, and
(iii) q(m + 1) ≥ q(m) for all m.

Problem 120. Essay. One potential problem with niche specialization is that
it may drive parts of a population out of a niche before it is explored. Discuss
how the choice of the penalty function can be used to combat this prob-
lem without removing all the benefits of niche specialization, e.g., by making
q(m) = 1. Give at least three penalty functions and discuss their advantages
and disadvantages both in terms of the population structures they encour-
age and their computational cost. The unpenalized local population size is the
size of a population that can exist within a single optimum smaller than the
similarity radius without any fitness decrease. For each penalty function you
discuss, compute the unpenalized local population size. How could this size
be zero and why would that be bad?

88 Evolutionary Computation for Modeling and Optimization

3.4 Path Length: An Extended Example

In this section we will work with minimizing the length or cost of a path (like
a garden tour in which you are given a list of addresses that you are to visit
in order). This is a rich class of minimization problems with some interesting
properties. An interesting thing about this class of problems is that there are
two different “natural” fitness functions that produce different fitness land-
scapes, but which both have a global optimum that solves the problem. We
note that an algorithm called dynamic programming, which appears in the
robotics literature, can be used to solve the type of problems treated in this
section far more efficiently than an evolutionary algorithm: we are using path
length optimization to illuminate some of the features of evolutionary com-
putation.

A path with n points is a sequence P = {(x0, x1), (x1, y1), . . . , (xn−1, yn−1)}
of points to be traversed in order.

The length of a path is the sum

Len(P) =
n−2∑
k=0

√
(xk − xk+1)2 + (yk − yk+1)2. (3.15)

Our paths will live in the unit square:

U = {(x, y) : 0 ≤ x, y ≤ 1} .

For the nonce we will anchor our paths at (0, 0) and (1, 1) by insisting that
(x0, y0) = (0, 0) and (xn−1, yn−1) = (1, 1).

An optimal solution for minimizing the length of a path is to place all of
the points in the path in order on the diagonal. There are a large number of
optimal solutions, since moving a point anywhere between its adjacent points
on the diagonal does not change the length of the path. This means that if we
were to use Equation 3.15 as a fitness function on a population of paths, there
would be a nontrivial flat space at the bottom (remember, we are minimizing)
of the fitness landscape. When there is only one unanchored point, the path
length is a function of its position (illustrated in Figure 3.7). Note that the
flat space is a line corresponding to placing the unanchored point on the line
segment joining (0, 0) with (1, 1).

For those familiar with the notion of dimension, the flat space, while larger
than a point optimum, is a lower-dimensional subset of the fitness landscape.
In this case, the fitness landscape is a two-dimensional surface, while the
optimal solutions all lie on a one-dimensional line segment.

Experiment 3.13 Write or obtain software for a real-function optimizer
evolutionary algorithm that can optimize the length of a path of the sort de-
scribed above. The function to be optimized is Equation 3.15 with the indepen-
dent variables being the x and y positions of the points other than the anchor

Optimizing Real-Valued Functions 89

(0,0)

(1,1)

(x,y)

L(x,y)

0

0.5

1 0

0.5

1

1.4

1.5

1.6

1.7

1.8

1.9

2

Fig. 3.7. A path with one nonanchored point and the graph of the length L(x, y)
of that path as a function of the unanchored point. (Note the trough-shaped set of
minima along the diagonal from (0, 0) to (1, 1).)

points. Make the number of points n ≥ 3 a parameter that you can change
easily.

Your algorithm should operate on a population of 100 paths. Use roulette
selection and random replacement with an elite of 2 paths. Use two-point
crossover and uniform two-point mutation with a size of 0.1. Run the al-
gorithm 50 times for n = 5 points (the 5 includes the 2 anchors). Save the
best (shortest) path from each run and plot the best, worst, and 3 others of

90 Evolutionary Computation for Modeling and Optimization

these “best of run” paths. Run until the path is within 5% of the true minimum
length or for 1000 generations, whichever is shortest.

Now repeat the experiment, but instead use a mutation operator that mu-
tates both coordinates of one point. Plot the same collection of paths and, in
your write-up, comment on the effect of the new mutation operator.

The point of Experiment 3.13 is to compare two mutation operators, one
of which “knows something” about the problem. The gene used in Experiment
3.13 has more obvious structure than the ones we’ve used so far. It is organized
into pairs of points. We said nothing in the experiment about how to organize
the variables. There are 720 possible orders for them, but in some sense, only
a few natural orders. We could group the x coordinates into one block and the
y coordinates into another, or we could group the variables in pairs giving the
position of each point. The next experiment compares uniform and Gaussian
mutations.

Experiment 3.14 Modify the software from Experiment 3.13 to use Gauss-
ian mutations in place of uniform ones. Compute a standard deviation for
the Gaussian mutation that is the same as that of the uniform mutation used
before. In your write-up, compare uniform and Gaussian mutations for this
problem.

So far, we have tinkered with the action of mutation on points and with the
shape of mutations. The next experiment suggests another potential avenue
for improvement, but you’ll have to hunt around for a way to make it work.

Experiment 3.15 Modify the software from Experiment 3.13 to let the size
of the mutations decrease as a function of the number of generations. Repeat
the experiment with at least two different schemes for decreasing the mutation
size as time passes. In your write-up, document whether this mutation-size
shrinking helped and speculate as to why or why not.

We are now ready to look at the second fitness function mentioned at
the beginning of the section. In Equation 3.15 we compute the length of the
line segments making up the path P. The square root function, which appears
numerous times in this computation, is a monotone function, and so removing
it will still permit us to minimize path length in some fashion. (Think about
why this is desirable.)

Len 2(P) =
n−2∑
k=0

(xk − xk+1)2 + (yk − yk+1)2 (3.16)

Experiment 3.16 Modify the software from Experiment 3.13 to use Equa-
tion 3.16 as a fitness function and perform the experiment again using the
mutation operator acting on both coordinates of a point. Compare both the
time required to get within 5% of optimum and the character of the “best of
run” paths.

Optimizing Real-Valued Functions 91

Having two different fitness functions for the same problem helps us avoid
traps in the fitness landscape. As we will see in the problems, the fitness
landscape for each function does contain traps, in the form of tortuous (mu-
tational) paths rather than direct paths to the optima. If we view the popula-
tion as moving across the fitness landscape, then one function may have a trap
where the other does not. Thus, alternating between the fitness functions may
permit more rapid convergence than the use of either fitness function alone.

Experiment 3.17 Modify the software from Experiment 3.13 to use either
Equation 3.15 or Equation 3.16 as a fitness function and perform the experi-
ment again using the mutation operator acting on both coordinates of a point.
Try alternating the use of the two fitness functions both every other genera-
tion and every fifth generation. In your write-up, compare the time required
for each version of the algorithm to get within 5% of optimum.

Problems

Problem 121. In Figure 3.7, there is a graph of Equation 3.15 for the case
of a path with one mobile point. Copy this graph and make a graph for both
Equation 3.16 and for the difference of Equation 3.15 and Equation 3.16.
Comment on the difference between their minima.

Problem 122. Prove that all optima of Equation 3.16 are also optima of
Equation 3.15, and give an example that shows that the reverse is not true.

Problem 123. Construct an example of a path with 5 total points (including
the 2 anchored points) and a mutation of both coordinates of a point such that
(i) the mutation makes the fitness of the path worse, and (ii) the mutation
moves the point to a place where it would be in an optimal solution.

Problem 124. Construct an example of a nonoptimal path and a mutation
of both coordinates of a point that does not change the fitness of the path.

Problem 125. Essay. Reread Problem 106. Does the use of the functions
gα(x) and hα(x) remove traps in the fitness landscape, as we hope the alter-
nation of fitness functions will do in Experiment 3.17, or does it do something
else? Explain.

Problem 126. Essay. Suppose that instead of alternating fitness functions,
as in Experiment 3.17, we instead added a small random number to the fitness
evaluation of a path. First of all, would this help us out of traps, and second,
what other benefits or problems might this cause? Give the design of an
experiment to test this hypothesis.

92 Evolutionary Computation for Modeling and Optimization

3.5 Optimizing a Discrete-Valued Function: Crossing
Numbers

The third function in DeJong’s test suite, Equation 3.4, has the property
that it is discontinuous everywhere it is not constant. When looking at the
definition of this function, one may be inspired to ask, “do functions like that
ever come up in practice?” The answer is a resounding yes! and in this section
we will define and optimize a class of such functions.

Our motivation for this class of functions will be circuit layout. Circuit
layout is the configuration of the components of an electric circuit on a printed
circuit board. Efficiency will be measured by the number of jumpers needed.
A printed circuit board is a nonconducting board with the wiring diagram of
a circuit printed on the board in copper. The parts are soldered into holes
punched inside the copper-coated regions. In laying out the circuit board, it
may be that two connections must cross one another on the two-dimensional
surface of the board without any electrical connection. When this happens
we need a jumper. Where the crossing happens, one of the two connections
in the copper to be printed on the board is broken, and an insulated wire is
soldered in to bridge the gap. It turns out that some circuit layouts require
far fewer bridges than others, so locating such good layouts is desirable.

Since representing actual circuit diagrams in the computer would be a
little tricky, we will formalize circuit layouts as drawings of combinatorial
graphs. The elementary theory of such graphs is discussed in Appendix D.
Briefly, a graph is a collection of points (called vertices) and lines (called edges)
joining some pairs of points. A drawing of a graph is simply a placement of
the vertices of the graph into the plane together with a representation of
the edges as simple curves joining their endpoints. A drawing is said to be
rectilinear if all the edges are line segments. The crossing number of a drawing
of a graph is the number of pairs of edges that intersect (other than at their
endpoints). The crossing number of a graph is the minimum crossing number
attained by any drawing. The rectilinear crossing number of a graph is the
minimum crossing number of any rectilinear drawing of that graph. It is known
that for some graphs, the rectilinear crossing number is strictly larger than
the crossing number. A theorem of graph theory says that any graph with a
crossing number of zero also has a rectilinear crossing number of zero. Graphs
with a crossing number of zero are said to be planar.

The complete graph on n vertices, denoted by Kn, is the graph with all
possible edges. A small amount of work will convince the reader that Kn is
planar only when n ≤ 4. In Figure 3.8, we show a standard presentation of
K5 and a rectilinear drawing of K5 that has crossing number one.

At the time of this writing, the crossing number and rectilinear crossing
number of Kn are known only for n ≤ 9. The known values for rectilinear
crossing numbers of Kn are given in Figure 3.9.

The first step in designing software to approximate the rectilinear crossing
number is to figure out when two lines cross. The specific problem is, given the

Optimizing Real-Valued Functions 93

Fig. 3.8. The complete graph K5 drawn with five crossings and with one crossing.

n 2 3 4 5 6 7 8 9
Crossing Number 0 0 0 1 3 9 19 36

Fig. 3.9. Known rectilinear crossing numbers for Kn.

endpoints of two line segments, how do you decide whether those line segments
cross other than at their endpoints? First, if two lines emanate from the same
point, then they do not contribute to the crossing number and need not be
compared. Such checks should be done by your algorithm before any question
of lines intersecting is treated. Suppose that we have two line segments with
endpoints (x1, y1), (x2, y2) and (r1, s1), (r2, s2) respectively, with x1 ≤ x2 and
r1 ≤ r2. Then, using simple algebra to compute the slopes m1 and m2 of the
lines respectively, we find that the x-coordinate of the intersection of the two
lines is

xi =
m1x1 − y1 − m2r1 + s1

m1 − m2
, (3.17)

and so we can check if x1 ≤ xi ≤ x2 and r1 ≤ xi ≤ r2.
There are some problems with this test: a Boolean predicate that computes

the intersection of lines would need to check for m1 = m2 or mi = ∞, i = 1, 2,
and deal with such situations appropriately. It is also possible for things to get
very confusing if 3 vertices are co-linear. In the event that 3 vertices are co-
linear, treat the structure as a single intersection. The task of avoiding all these
pitfalls is left for you in Problem 134. In addition, numerical precision issues
bedevil anyone who wishes to compute whether two line segments intersect
in their interior. These issues are beyond the scope of this text and are the
business of the field of computational geometry.

Assuming that we can compute when two line segments intersect in their
interior, we are ready to modify any of the real-function optimizers that we’ve

94 Evolutionary Computation for Modeling and Optimization

developed so far to estimate crossing numbers. The function we are optimizing
will have 2n variables for an n-vertex graph, where these variables are the x-
and y-coordinates of the vertices for the drawing of the graph. In the case
of the complete graph, Kn, we will be looking at all possible pairs of line
segments. In general, we will need an adjacency matrix for the graph as defined
in Appendix D. The fitness function to minimize is the following: for each pair
of edges in the graph that intersect but do not share a vertex, add 1 to the
fitness function.

Experiment 3.18 Write or obtain software for a real function optimizer that
estimates the rectilinear crossing numbers of complete graphs. Test this opti-
mizer on K4, K5, and K6. Use tournament selection with tournament size 4,
single-point mutation with mutation size ε = 0.1 applied to each new creature,
and two-point crossover. Force your starting drawing to lie in the unit square
but allow mutation to take the vertices outside the unit square if it wishes.
Compute the mean and standard deviation of time-to-solution over 30 runs
for each graph. Turn in the visually most pleasing drawings you obtain for
K4, K5, and K6.

Experiment 3.19 Modify Experiment 3.18 to use Gaussian point mutation
with the same variance as in Experiment 3.18 and compare with the results
from uniform mutation.

Experiment 3.20 Take the software from Experiment 3.18 and modify it to
use domain and range niche specialization. Taking the known answer for K6,
compare the raw algorithm with both domain and range niche specialization.
The comparison of time-to-solution should be made by comparing mean times
with a one standard deviation error bar. Use a similarity radius of 0.05 for the
domain niche specialization. Range niche specialization will consider creatures
the same if they have the same fitness. For both sorts of niche specialization
use the penalty function q(m) given in Equation 3.12.

Notice that in Experiment 3.20, the range niche specialization uses a sim-
ilarity radius of zero. This is sensible because we are optimizing an integer-
valued function. Zero isn’t the only possible sensible value in this case, but
for real-valued functions it is never sensible, since it might never happen in
practice that two creatures had the same fitness. One corollary of the fitness
function being integer-valued with real domain is that a great deal of infor-
mation must be lost. In other words, there are many, many genes that map
to the same fitness value.

Experiment 3.21 Modify the basic program from Experiment 3.18 so that
the algorithm incorporates a (possibly hard-coded) adjacency matrix for a
graph G and modify the algorithm so that the algorithm estimates the crossing
number for G. Try your optimizer on 12 vertices connected in a cycle and on
the graph with the following adjacency matrix:

Optimizing Real-Valued Functions 95⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 1 1 0 0 0 0
1 0 1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0 0
0 0 1 0 1 0 0 0 1 0
1 0 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 1 1 0
0 1 0 0 0 0 0 0 1 1
0 0 1 0 0 1 0 0 0 1
0 0 0 1 0 1 1 0 0 0
0 0 0 0 1 0 1 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Problems

Problem 127. Verify the formula given in Equation 3.17 showing your work
clearly. Obtain a similar formula for the y-coordinate of the intersection.

Problem 128. Do the evolutionary algorithms discussed in this section place
upper or lower bounds on crossing numbers? Justify your answer in a sentence
or two.

Problem 129. What is the maximum crossing number possible for a recti-
linear drawing of Kn? Advanced students should offer a mathematical proof
of their answer.

Problem 130. Essay. Would you expect domain or range niche specializa-
tion to be more effective at improving the performance of an evolutionary
algorithm that estimated rectilinear crossing number? Justify your answer
with logic and with experimental evidence if it is available. You may wish to
examine Problem 131 before commencing.

Problem 131. Shown below are two drawings of K4. Suppose we add a vertex
somewhere and connect it to all the other vertices so as to get a rectilinear
drawing of K5. First, give a proof that the crossing number of the new drawing
depends only on the region of the drawing in which the added vertex is placed.
Second, redraw these pictures and place the resulting crossing number in each
of the regions.

96 Evolutionary Computation for Modeling and Optimization

Problem 132. Problem 131 suggests a novel mutation operator for use in
computing crossing numbers. Discuss it briefly and outline an algorithm that
would implement such a mutation operator.

Problem 133. There are an infinite number of possible drawings of a graph
in the plane. (Given a drawing, just move a vertex of the drawing any distance
in any direction to get another drawing.) A little thought shows that this isn’t
a useful definition of the word “different” when one is attempting to compute
crossing numbers. Following Problem 131, come up with an alternative defi-
nition of when two drawings are the same or different and explain why your
definition is useful. You may want to glance at a book on topology to get some
of your terms. Consider the role of vertices, edges, and intersections of edges
in your definition of “different.” Is it easy to compute when two graphs are
different under your definition?

Problem 134. Give the code for a function that accepts two line segments
and returns true if they intersect in their interior. Intersection at the endpoints
or no intersection is returned as false. Make sure your code deals well with
parallel lines and lines with infinite slope.

Problem 135. Write a function such that given the number n of vertices in
a graph, two real arrays x and y that specify the vertex coordinates, and a
matrix A with ai,j = 1 if vertices i and j are joined by an edge and ai,j = 0
otherwise, the function returns the rectilinear crossing number of the graph.
It should use the code from Problem 134.

Problem 136. Essay. In a practical implementation of an evolutionary al-
gorithm to estimate rectilinear crossing number, there will be problems with
almost parallel and almost vertical lines. Discuss hacks to avoid having nu-
merical precision problems. You may wish to consider modifying the fitness
function to penalize certain slopes or pairs of slopes, moving vertices peri-
odically to avoid these sorts of problems, or moving vertices exactly when a

Optimizing Real-Valued Functions 97

vertex is apparently causing such problems. Be sure to discuss the computa-
tional cost of such changes as well as their efficiency in preventing numerical
precision problems. Would putting the vertices of the graph onto a discrete
grid help?

Problem 137. In this section, we developed evolutionary algorithms to esti-
mate rectilinear crossing numbers of graphs. Working with the true crossing
number would require that we somehow manipulate fully general curves in the
plane, which is very hard. Suppose that instead of representing edges as line
segments, we represent them as multiple line segments. This would bring the
rectilinear crossing number closer to the true crossing number. Find a graph-
ical construction that transforms a graph G into a graph G

′
by drawing the

edges of G using k consecutive line segments so that the rectilinear crossing
number of G

′
is an estimate of the crossing number of G.

Problem 138. Suppose we have a drawing of a graph in which one vertex
lies on a line segment joining two others. In the formal graph theory that
computes crossing numbers, this is viewed as a pathological case, repaired by
making a tiny change in the position of the vertex causing the problem. In
this chapter, this is counted as a crossing in order to get on with things. Our
motivating example was a circuit board. Argue from physical reality that a
vertex in the middle of an edge should not be counted as a crossing at all.
Give an example.

Problem 139. Using software that computes the crossing numbers of draw-
ings experimentally, estimate and graph the crossing number of randomly
drawn k-gons for k = 4, 5, . . . , 12. Also estimate the probability of getting a
correct solution in the initial population for the 12-cycle half of Experiment
3.21.

4

Sunburn: Coevolving Strings

Sunburn is a model for designing a simplified video-game spacecraft. The
model was proposed by John Walker. The model has a fitness function that
is predicated on winning battles with other spacecraft. The fitness function
explores the space of designs for spaceships without using actual numbers;
it just uses win, lose, or tie results. The genes for spaceships are character
strings augmented by an integer.

There are two important new ideas in this chapter. First, the model of
evolution used for Sunburn involves a strange variant on tournament selection,
termed gladiatorial tournament selection. Second, the strings used as genes
in Sunburn are tested against other strings. This means that Sunburn is a
coevolving evolutionary algorithm.

Somewhat surprisingly, for many choices of parameters, the Sunburn model
behaves like a unimodal optimizer rather than a coevolving system; evolution
does not appear to be contingent on the initial conditions. This suggests that,
for those choices of parameters, the system is quite likely to be very close to
a unimodal optimization problem.

Coevolving systems depend more strongly on the choices made in the de-
sign of the system than the fixed-fitness evolving systems we have studied thus
far. In this chapter we will explore variations of the coevolving Sunburn sys-
tem and so gain some knowledge and experience in designing and controlling
the behavior of such systems. Variations of the Sunburn system are explored
via experimentation. The final section of the chapter introduces a computa-
tionally similar evolutionary algorithm called VIP for VI(rtual) P(olitician),
which is entirely nonviolent. This system was invented by Mark Joenks. Figure
4.1 gives the dependencies of the experiments in this chapter.

4.1 Definition of the Sunburn Model

The gene for a spacecraft in the Sunburn model has a fixed number of slots
for ships’ systems (the character string) together with a desired distance the

100 Evolutionary Computation for Modeling and Optimization

Exp 4.2

Exp 4.3

Exp 4.4

Exp 4.5

Exp 4.11

Exp 4.6 Exp 4.7

Exp 4.8

Exp 4.9

Exp 4.10

Ch 13Exp 4.1

1 Basic Sunburn evolver.
2 Exploring weapons’ effectiveness curves.
3 Varying initial range.
4 Student exploration of weapons’ effectiveness curves.
5 Finding the true measure of weapons’ effectiveness.
6 Generational gladiatorial tournament selection.
7 Exploring the shield multiplier.
8 Weapons that don’t always fire.
9 Randomized hit location.
10 Exploring multiple shield types.
11 VIrtual Politicians.

Fig. 4.1. The topics and dependencies of the experiments in this chapter.

spacecraft wishes to be from an opponent during a battle (the integer). There
are five types of systems: guns, lasers, missiles, drives, and shields. Figure 4.2
shows a typical gene. We will use a value of 20 system slots and choose ranges
between 1 and 20.

Systems Preferred Range
GLMDSSMGLSDSMLGMLSDS 16

Fig. 4.2. A Sunburn gene.

In biology, the map from genes to creature can be quite complex; in most
artificial life systems, it is quite direct. The process of transforming a genome
into a creature is called the developmental biology of a creature. In Sunburn

Sunburn: Coevolving Strings 101

we have our first nontrivial developmental biology. The sense behind this de-
velopmental biology will become apparent as we describe the rules for combat,
and it is discussed explicitly in Section 4.3.

To derive a spaceship from a Sunburn gene, you count the number of loci
in which an S appears and then put 3 times that many shields on the front
of the ship. The remaining systems, G(uns), L(asers), M(issles), and D(rives),
are placed behind the shields in the order in which they appear in the gene.
Subscript the ship with its preferred range. The ship described by the gene in
Figure 4.2 looks like

SSSSSSSSSSSSSSSSSSGLMDMGLDMLGMLD16,
with the front of the ship being to the left. The shield multiplication factor
is the number of shields a ship receives for each genetic locus in which it has
an S. In this example and in most of this chapter, the shield multiplication
factor is 3.

Combat between two ships is conducted as follows: Combat is initiated
at a starting range. (We will explore different methods of generating starting
ranges.) Once combat has started, the ships iteratively go through turns con-
sisting of shooting and then moving. This loop continues until a winner and
loser are found or until a draw occurs. The two ships shoot simultaneously
using a gun, missile, or laser system once each turn. Each of the three types
of weapons has an effectiveness curve that specifies its probability of scoring
a hit at each possible range. These effectiveness curves are a very important
feature of the Sunburn model. Examples of gun, laser, and missile effectiveness
curves are shown in Figure 4.3.

The design of the effectiveness curves was inspired by imagining how space
weapons might work. A gun emits a physical missile fired at very high velocity
but with no guidance beyond initial efforts at aiming. The chance of hitting
a target with a gun thus drops off with distance, and guns are most effective
at short range. A laser moves at an incredible velocity (the speed of light)
in a very straight line and so is equally effective at all ranges where a target
can be detected. It does not have a high energy content compared to the
kinetic energy locked in a physical projectile like a missile or shell and so
has a relatively low kill rate. A missile, like the shells fired by a gun, is a
physical projectile. Unlike a shell, it picks up speed throughout its attack run
and has target-seeking qualities. At short range (low velocity), missiles are
relatively easy to intercept. Their effectiveness thus climbs as they approach
top velocity. This conception is helpful in framing the initial analysis of the
behavior of the system. Other conceptions and sets of weapons’ effectiveness
curves that match them are certainly possible.

Each hit scored removes one system from the front of a ship. After shoot-
ing, the ships move. Each drive enables a ship to move a distance of one.
The ships take turns moving a distance of one toward their preferred ranges,
dropping out when they run out of drives.

In order to win a combat, a ship must destroy all the systems on the other
ship and have at least one drive left itself. In the event that neither ship has

102 Evolutionary Computation for Modeling and Optimization

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20

Fig. 4.3. From the top, gun, laser, and missile weapons’ effectiveness curves.

Sunburn: Coevolving Strings 103

remaining drives or neither ship has remaining weapons systems, the fight is
a draw. If two ships have not fought to a draw or victory in 100 combat turns,
their combat is a draw by fiat. (Sometimes ships appear that take forever
to resolve a fight, slowing down evolution without substantial benefit. This
happens, for example, when the ship’s preferred range is badly mismatched
with its weapons mix.)

One point that may need emphasis is that the genes of the creatures are
separate from the ships built from them. When a ship loses systems, its gene
remains intact. When a ship wins, its gene, not itself, is used in reproduction.

Now that we have the gene, developmental biology, and combat described,
we can define gladiatorial tournament selection. In this model of evolution,
instead of generations there are mating events that asynchronously update the
population. This is a form of steady-state genetic algorithm. A mating event is
performed by conducting combat on randomly selected pairs of distinct ships,
returning pairs that draw to the population untouched, until two winners and
two losers are obtained. The losers are deleted from the population, and the
winners reproduce as in the algorithms in previous chapters. The two children
they produce replace the losers.

The fact that there is a group of 4, in which the two best mate and produce
children that replace the two worst, makes this sort of selection reminiscent of
tournament selection, but there are some important differences. The measure
of fitness is extremely local: all you really know is that a ship was good
enough to beat one other randomly selected ship in one particular combat.
The measure of fitness is not a heuristic estimation of quality, but entirely
objective within the bounds of luck. All that Sunburn ships do is fight other
Sunburn ships, and we are testing them on exactly this task. Since ships
are tested against other ships, Sunburn is clearly a coevolutionary genetic
algorithm.

The gladiatorial tournament selection model of evolution can be used
whenever two creatures are playing some sort of game against one another.
Since it grants fitness for beating one other creature, it is a model of evolu-
tion that rewards skill in pairwise interactions, unaffected by other pairwise
actions in the population. One might expect that it would be very bad for the
emergence of cooperation in a group; we shall test this expectation in Chapter
6 when we study Iterated Prisoner’s Dilemma.

Problems

Problem 140. With gladiatorial tournament selection, a creature may sur-
vive indefinitely by simply not being chosen for combat. Compute the proba-
bility that a creature remains untested after k mating events in a population
of n = 2m creatures. Compute also the expected waiting time until a test.

Problem 141. Reread Problem 140. Suppose that we want to know the time
until a creature undergoing evolution with gladiatorial tournament selection

104 Evolutionary Computation for Modeling and Optimization

breeds or dies. Compute the expected time to death or reproduction in terms
of the given probability p that any given encounter is a draw.

Problem 142. The gladiatorial tournament selection described in Section 4.1
uses groups of size 4. Give a reasonable description for how to do gladiatorial
tournament selection with larger groups. Avoid situations in which some of
the creatures are not at risk.

Problem 143. Gladiatorial tournament selection, as portrayed in this sec-
tion, is a steady-state evolutionary algorithm. Give a selection algorithm for
a generational version in which every ship engages in combat each generation.
Relative to your algorithm, identify at least two details that could have been
done in a different way and justify your choice.

Problem 144. Essay. One of the advantages of tournament selection in gen-
eral is its ability to preserve population diversity. If we define a generation to
be m mating events, where there are n = 2m creatures in the population, is
gladiatorial tournament selection better or worse at preserving diversity than
single tournament selection? Justify your answer logically or experimentally.
Be sure to fix a problem domain in which to make your judgment as to what is
better. The general answer is likely to be “it depends,” which is both correct
and uninformative. Possible problem domains are the various example targets
of evolutionary computation in the earlier chapters of the book.

Problem 145. Short Essay. Is gladiatorial tournament selection elitist when
it is used in Sunburn? If the answer were yes or no, this would not be an essay
question.

Problem 146. Come up with one or more techniques for converting an op-
timization that uses tournament selection to one that uses gladiatorial tour-
nament selection. For each such scheme, answer the following questions: Is
the scheme elitist? If there are n = 2m creatures in the population, what is
the expected number of children a creature will have in a mating event as a
function of its rank in the population?

Problem 147. Essay. In gladiatorial tournament selection one strategy that
avoids death is to fight to a draw every time. While this prevents you from
having children, it would seem to be a survival strategy. Under what sorts of
circumstances is it an effective survival strategy?

Problem 148. Suppose that we wish to redesign the Sunburn genetic algo-
rithm to evolve ships that beat a fixed, existing design. Give an outline of such
a genetic algorithm. Explain the degree to which the algorithm is evolutionary
or coevolutionary.

Sunburn: Coevolving Strings 105

4.2 Implementing Sunburn

Now that Sunburn is defined, we can play with it. What is the effect of chang-
ing the weapons’ effectiveness curves? How does the value of the initial range
affect the outcome? Which kinds of weapons are most effective? Which model
of evolution works best with Sunburn?

Experiment 4.1 Write or obtain software for a Sunburn evolutionary algo-
rithm using gladiatorial tournament selection on a population of 200 randomly
generated ship designs with 20 systems (G, L, M, S, or D) and a preferred
range ranging from 1 to 20. Use the weapons’ effectiveness curves from Figure
4.3, which are given by the following formulas. At a range r the probabilities
of hitting for guns, lasers, and missiles are

PG(r) = 0.6 − (r − 1)/38,

PL(r) = 0.35,

PM (r) = 0.1 + (r − 1)/38.

Use two-point crossover with the preferred range treated as the last charac-
ter in the string making up the ship design.Use single-point mutation which
replaces a ship’s system locus with a new random system, or increments or
decrements the preferred range by 1. Always use a starting range of 20.

In place of generations, do 100 mating events. After each 100 mating
events, report the fraction of the population’s genes devoted to each type of
system, the fraction of ships that have a drive in the last position (something
the rules favor), and the ratio of shields (genetic loci that are “S”) to weapons.
In addition, report the mean and standard deviation of the preferred ranges
and the fraction of combats that are draws. Run each population for 100 “gen-
erations,” i.e., 10,000 mating events, and run 20 populations with distinct
initial populations for comparison.

If you have implemented Experiment 4.1 correctly, it should often converge
to a design we call the “starbase” fairly quickly. A “starbase” has lots of
missiles, few other weapons, a respectable number of shields, and a single
drive on the end of the ship. Preferred ranges will tend to be large, but are
essentially irrelevant because of the speed with which combat is resolved. Let
us now make a foray into exploring other weapons’ effectiveness curves.

Experiment 4.2 Modify the software from Experiment 4.1 to use the follow-
ing weapons’ effectiveness curves:

PG(r) =
0.7

(r − 3)2 + 1
,

PL(r) =
0.6

(r − 6)2 + 1
,

106 Evolutionary Computation for Modeling and Optimization

PM (r) =
0.5

(r − 9)2 + 1
.

Gather the same data as before. These weapons’ effectiveness curves should
provide some small incentive for ships to have drive systems other than because
of the technicality that a drive system is required to win. Do they? Why or
why not? In addition to answering those questions, report the various statistics
mentioned in Experiment 4.1. A graph of these weapons’ effectiveness curves
is shown in Figure 4.4.

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20

Fig. 4.4. Modified weapons’ effectiveness curves.

Next, we will experimentally explore the effect of varying the initial range.
Intuitively, starting at long range favors starbases that can launch barrages
of highly effective missles. A very short starting range should create a sort of
opposite of a starbase, bristling with guns, but otherwise similar to a starbase.
We will test the effects of intermediate starting ranges where it is not clear
which weapons are best.

Experiment 4.3 Use the software from Experiment 4.1. Take either (con-
sult your instructor) of the two sets of weapons’ effectiveness curves we have
examined so far and change the starting range to be normally distributed with
a mean of 10 and a standard deviation of 2. You will need to round to the
nearest integer and throw out values larger than 20 or smaller than 1. Report
the same statistics as in Experiment 4.1. Does changing the starting range
have an effect on evolution? (If you have forgotten the formula to generate
normally distributed random numbers, refer to Equation 3.1.)

The dynamics of selection in Sunburn are strongly controlled by the
weapons’ effectiveness curves. In the next experiment, we have a more than

Sunburn: Coevolving Strings 107

usually open-ended setup in which you are sent off into the wilderness to find
interesting weapons’ effectiveness curves.

Experiment 4.4 If evolution is contingent, the fractions of various types of
systems at the end of the evolution should vary nontrivially from run to run.
Using the software from Experiment 4.1 with appropriate modifications, try to
find a set of weapons’ effectiveness curves for which evolution is more strongly
contingent. State in your report how you will document contingency and state
the degree to which you found contingency. Did initial findings cause you to
revise your method of documenting contingency?

One issue in the Sunburn system is the question of what makes evolution
favor a given type of weapon. The initial effectiveness of a weapon is its
expected probability of hitting at the initial range. The total effectiveness of
a weapon is the area under its weapons’ effectiveness curve. The maximal
effectiveness coefficient of a weapon is the fraction of the possible ranges
where the weapon is more likely to hit than any other. The range-weighted
effectiveness is the sum over possible ranges r of the weapons’ effectiveness
curve multiplied by a range weighting function ω(r). All of these measures are
related to effectiveness, but it isn’t very clear which one is closest to being the
thing optimized for by evolution. When reason does not speak to a question,
experimentation may help.

Experiment 4.5 Let ω(r) = 1
(r−s)2+1 , where s is the mean starting range for

ships. Give and logically justify a hypothesis about which of initial effective-
ness, total effectiveness, maximal effectiveness coefficient, and range-weighted
effectiveness the Sunburn genetic algorithm is in fact optimizing. Then design
and perform an experiment to test that hypothesis for a variety of weapons’
effectiveness curves and starting ranges. Advanced students may also wish to
test other possible choices of ω(r).

One of the themes that appears over and over in this book is that the
choice of model of evolution can have a substantial effect on the results. We
will now experimentally test the effect of changing the model of evolution on
Sunburn.

Experiment 4.6 If you have not done Problem 143 yet, do so. Now modify
the code from Experiment 4.1 to use a generational version of gladiatorial
tournament selection. Perform the experiment again, keeping the number of
mating events roughly constant (within two times). In your write-up, discuss
the changes in the dynamics of evolution and the difference in final designs,
if any.

There are a lot of other experiments we could perform. Sunburn has been
a rich source of interesting student projects over the years (see Section 4.4).
We will cut off the parade of experiments with the basic Sunburn model here
and look at less-than-basic models in the next section.

108 Evolutionary Computation for Modeling and Optimization

Problems

Problem 149. There are several ways to detect the outcome of a combat
without fighting to the bitter end. Give at least one set of circumstances
where a combat must end in a draw and one where it is clear which ship will
win even though both ships still have working systems.

Problem 150. Suppose we have a simplification of the Sunburn model in
which there are only missiles and shields. Ships don’t move, and the winner is
the last ship with any systems. If the probability that a missile hit will destroy
a system is p, then what is the optimal number of shields in a gene with 20
systems slots and a shield multiplication factor of 3? Attack this problem by
thinking of the ships as pairs of numbers that add to 20 and saying that one
pair dominates another if there is a probability of more than 0.5 that the
corresponding ship will win a fight. This gives you a domination relationship
on these pairs of numbers that you can compute by hand or machine. If there
are ships not dominated by any other, they are the optimal designs; otherwise,
there is no optimum. If the problem seems too hard, try working with a smaller
number of system slots until you get a feel for the problem.

Problem 151. In a given turn, a ship in the Sunburn genetic algorithm may
fire several weapons that all have the same probability p of hitting. Each
weapon needs its own random number. Each such event is a Bernoulli trial
as defined in Appendix B. If you have several, say more than 3, independent
Bernoulli trials, then they are very close to being normally distributed with
mean np and standard deviation

√
np(1 − p). This means that we could sub-

stitute a single normal random variable for a large number of uniform random
variables. In order to get a normal random variable with mean µ and standard
deviation σ, denoted by G(µ, σ), you set

G(µ, σ) = σ · G(0, 1) + µ,

where the formula for G(0, 1) is given after Equation 3.5.
Assuming that we wish to replace any set of 4 or more weapon resolutions

of weapons of the same type with a normal random variable, give pseudocode
for doing so for missiles, lasers, and guns. Truncate the normal random vari-
able when it produces unreasonable values. Advanced students may wish to
experimentally measure the amount of time saved by this technique.

Problem 152. Please compute the total effectiveness, maximal effectiveness
coefficient, and range-weighted effectiveness of missiles, lasers, and guns for
the weapons’ effectiveness curves in Experiments 4.1 and 4.2. Assume that
ω(r) = 1

(r−20)2+1 .

Problem 153. Come up with a better algorithm than the one given in the
text for figuring out the change in position of Sunburn ships during the move-
ment part of a turn. You should produce pseudocode that accepts current

Sunburn: Coevolving Strings 109

positions, desired ranges, and number of drives for two ships and returns
their new positions.

4.3 Discussion and Generalizations

Why does the developmental biology of Sunburn have a shield multiplication
factor? Well, shields do nothing except soak up damage. If one shield locus
in the gene corresponded to one shield in the finished ship, then evolution
would quickly replace the shields with a system that did something. This
system, whatever it was, could still absorb one hit and the ship would get
some additional use out of it. If a shield gene can soak up more than one
hit, it has some nontrivial usefulness compared to other systems, and there is
reason for a gene to contain some nontrivial number of shield loci.

Experiment 4.7 Using the software from Experiment 4.1 with appropriate
modifications, repeat the experiment with shield multiplication factors of 2 and
4. Compare the results to the original experiment with a shield multiplication
factor of 3.

Drives, which are far less useful in the basic Sunburn model than the de-
signer thought they would be, are used to move ships to where their weapons
are more effective. A large part of the reason drives, other than the one re-
quired for victory, are not useful is that ships quickly evolve to be maximally
effective at the mean initial range. Experiment 4.2 tries to prevent this by
making all weapons woefully ineffective at the starting range. If you are in-
terested, you could try a more extreme tactic by making weapons completely
useless at the initial range.

The three sorts of weapons in the initial Sunburn work done by John
Walker were thought of as effective at short range (guns), effective at long
range (missiles), and somewhat effective at all ranges (lasers), which is re-
flected in the weapons’ effectiveness curves shown in Figure 4.3. Changing
the weapons’ effectiveness curves can radically affect the outcome of evolu-
tion. Also somewhat surprising is the apparent unimodality of the coevolving
space of designs for Sunburn for the weapons’ effectiveness curves tried thus
far. For these curves the evolution of the resulting populations seems to close
in on a single optimal design with a few ineffective forays into dead ends. A
few choices of weapons’ effectiveness curves do yield contingent evolution, but
these sets of curves seem rare.

It is obvious that one could increase or decrease the number of types of
weapons in Sunburn to get different systems. A model with a single type of
weapon is easier to analyze theoretically, as we saw in Problem 150. In the
remainder of this section we will suggest other possible modifications of the
Sunburn model that make good term projects.

110 Evolutionary Computation for Modeling and Optimization

Limited Shots

One completely unrealistic feature of the Sunburn model is the unlimited use
of the ships’ weapons. The ships fire as many shots as they like, one per
turn per weapons system. Removing this implausible feature leads to several
variations. First one might try simply imposing a maximum on the total uses
of each weapon type, perhaps with less-effective weapon types having more
shots. Choose these limits carefully. If they are too high, they do not change
the behavior of the model at all. If they are too low, they cause a high number
of stalemates.

It is plausible that limiting weapon use would encourage the creatures to
learn to move to effective ranges as fast as possible before those weapons were
used up. The need to use weapons effectively so as not to waste shots also
suggests another possible addition to the Sunburn model: a way of deciding
when to fire. The technology for such a decision maker could be quite simple,
e.g., a real number for each weapon type that serves as a probability threshold.
The creature fires a given type of weapons system only when the range is such
that the probability of hitting equals or exceeds the threshold.

Experiment 4.8 Suppose we are doing a Sunburn model with a single type
of weapon and that we have augmented the genetics with the probability thresh-
old described above. Running several populations with starting range 20 and
weapons’ effectiveness curve

fw(r) =
0.7

(r − 10)2 + 1
,

ascertain whether there is a single optimum weapons’ threshold or whether the
weapons’ threshold is contingent on the initial conditions. Describe carefully
the design of trials you use to settle this question. Does it matter how you
incorporate the threshold into the data structure used to hold the spaceship
design?

Another natural choice for a decision-to-fire device is a small neural net.
The net might take as inputs range, remaining charges, distance from the
weapons system to the front of the ship, hit probability at current range, or
number of shields remaining. Its output would be a fire/don’t fire decision.
Even a very small neural network (see Section 11.1) with one to three neurons
could make fairly complex decisions. The ship should have three neural nets,
one for each weapon type, rather than one net per weapons system. Ships
without a given type of weapon could have vestigial neural control systems
for that weapon type. The connection weights for these neural nets would
need to be incorporated into the data structure holding a spaceship design.

Another control technology that would be interesting but much more diffi-
cult to implement is genetic programs (see Section 1.3). As with neural control
structures, there should be one GP parse tree for each weapon type that takes

Sunburn: Coevolving Strings 111

integer parameters and outputs a fire/no fire decision. Since the constant func-
tion “fire” is a tolerable program for some parts of the parameter space, there
is room for evolution to take an extremely simple control strategy and improve
it. This is typically an evolution-friendly situation in which an evolutionary
algorithm can shine.

For each of the three possible control technologies we mention above and
any other that you think up on your own, it may be best to start with a
single type of weapon until the control-strategy-evolving software is working
properly. Only after this software is working in a predictable fashion should
you diversify the weapons mix. Keep in mind that the “always fire” weapons’
control of the basic Sunburn model, when using one weapon type, is an invi-
tation for evolution to solve the optimization problem given in Problem 150.
With the control systems in place, however, nontrivial evolutionary behavior
is possible even with a single weapons’ type.

Another variation that could make the Sunburn model more plausible
is to add a type of ship’s system called a magazine, which contains some
fixed number of missiles, laser charges, and shells for guns. This way, the
evolutionary algorithm would have to figure out how many magazines there
are and where they should be placed. Taking this variation further, there could
be three types of magazine: one for missiles, one for laser charges, and one for
shells. Other variations might include being able to use magazines only if they
are adjacent to appropriate weapons’ types or destroying systems adjacent to
magazines when the magazine is hit.

Sensible Movement

The movement in the original Sunburn model is as simple as possible and could
easily be made more realistic and difficult. One could change the drives from
devices that churn out distance to devices that churn out acceleration. This
would probably require placing the ships on a real number line. Acceleration
requires three variables: position (s), velocity (v), and acceleration (a). A
simple algorithm for acceleration is as follows:

For each drive available do
Begin

If we are too close a := a-1 else a := a+1
end;
v := v+a;
s := s+v;

This model of acceleration is very primitive. When farther away than its
preferred range, the ship simply accelerates toward the other ship; otherwise,
it accelerates away. This will result in very little time spent at optimum range
and, interestingly, with the ships having their highest velocity when they are
near their desired range. This doesn’t have to be a bad thing. Our semantic
interpretation of the number we call the ship’s “preferred range” is the range

112 Evolutionary Computation for Modeling and Optimization

the ship wants to be at during combat. With the more complex movement
system in place, evolution may well find another use for that number, in
essence changing the “meaning” of the number. Instead of using this number as
a range to maintain, it will become the useful mark for starting to decelerate.
It is not unintuitive that this range be chosen so that the ship is slowing down
and turning around at a point where its weapons are most effective.

From our knowledge of basic physics, we can guess that a much larger
space will be needed for ships with drives that generate acceleration than for
ones that generate just position changes. Once you have chosen your larger
board size, you may wish to make moving beyond maximum range a condition
that leads to stalemate.

As with the weapons systems, it may also be desirable to have a neural net
or genetic program that decides whether it wants to use the ship’s drives in a
given turn. The inputs to this net or GP could include current range, number
of ship’s systems left, number of drives left, number of weapons left, and
current velocity. This opens up the possibility that a ship will try to run away
and achieve stalemate when victory has become impossible, an action that
will require some revision to the methods of early detection of stalemates.
The more sophisticated drive controls could be used in either the position-
or acceleration-generating environments. Given that a severely damaged ship
would want to flee, one also might simply add the following rule to the basic
Sunburn model: when a ship is out of weapons systems, it will use all remaining
drives to increase range. The thought here is that the ship is attempting to
achieve stalemate.

Finally, if you implement a more complex model of movement, it might be
sensible to factor the ship’s relative velocity into the weapons’ effectiveness
curves. A faster-moving ship might be harder to hit (recall that velocity is a
relative not an absolute quantity). Some thought should be given to determin-
ing how speed affects weapons’ effectiveness. It may be that it affects different
weapons to different degrees, and it is almost certainly not linear.

Variations in Taking Damage

It is implausible that a ship’s systems would be destroyed in order. The po-
sition of systems would provide a strong bias for the order of destruction but
not utterly control it. One simple method of dealing with this is to place a
distribution on the systems that favors the front. Pick some probability p and
then, each time a ship is hit, do the following: with probability p, the first
system remaining is destroyed; with probability 1−p, you skip the first system
and go on to the rest of the ship. If p = 1

2 , then the probability of systems
being destroyed is, starting from the front, 1

2 , 1
4 , 1

8 ,

Experiment 4.9 Modify the software from Experiment 4.1 to use the prob-
abilistic hit evaluation described above. For p = 0.75 and p = 0.5, rerun the

Sunburn: Coevolving Strings 113

experiment and report on the differences that this type of hit location assess-
ment causes. In particular, does the number of drives go up and does the ratio
of shields to weapons change?

Another implausible feature of damage assessment in Sunburn is that the
same generic shield can stop three very different sorts of weapons. This im-
plausibility can be remedied in a fashion that will also make the evolution more
complex and perhaps more interesting. Instead of a single type of shield, there
will be one type of shield per type of weapons system. In the original Sunburn
model this would mean a missile shield, a laser shield, and a gun shield. These
three types of shield would be represented in the genome by distinct letters.
The developmental biology is modified as follows: take the pattern of shield
genes in the order they appear in the gene; place this pattern of shields on the
front of the ship repeated a number of times equal to the shield multiplication
factor.
Example 2. If we had a Sunburn simulation with multiple shield types, SM ,
SL, and SG, and the following gene,

GLMDSM SM MGLSLDSGMLGMLSM DSL 16,

then the resulting ship would look like

SM SM SLSGSM SLSM SM SLSGSM SLSM SM SLSGSM SLGLMDMGLDMLGMLD16.

Here is one possible way to modify the combat rules in order to accommo-
date multiple shield types. In combat, a shield is transparent to the type of
weapons it is not intended for and is still destroyed by them. Suppose we had
a ship with 3 missile shields and then a laser shield as its front 4 systems. If
a laser hit the ship, then those 3 missile shields would be destroyed without
doing anything, and the laser shield would be destroyed stopping the laser.
Notice that having different types of shields makes the order in which various
attacks hit important. Assume that the enemy’s hits are generated from the
front to the back of his ship. If his forward missile launcher and aft laser turret
are hit, the missile hit is processed first. This gives the ordering of weapons
systems a new importance.

Experiment 4.10 Modify the software from Experiment 4.1 to have multiple
shield types as described above. What differences do the multiple shield types
make?

There are many, many other modifications one could make to the Sunburn
model, but we leave these to your inventiveness.

Problems

Problem 154. There is at least one obvious and stupid method of choosing
weapons’ effectiveness curves that will force the fraction of the gene devoted
to each type of weapons system to be a contingent feature of evolution. Find
an example of such a method.

114 Evolutionary Computation for Modeling and Optimization

Problem 155. Give a choice of weapons’ effectiveness curves and a fixed
starting range for a Sunburn model that will coerce the use of drives. Make
your example substantially different from those discussed in the text.

Problem 156. For p equal to each of 0.9, 0.75, 0.5, and 0.3, graph on the
same axes the probability of systems being destroyed starting from the front
of the ship using the probabilistic hit location system described in Section 4.3
(Variations in Taking Damage).

Problem 157. In Example 2, we repeat the pattern of shields in the gene 3
times. Why is this better or worse than taking the pattern once and triplicating
each shield as we go? Give an example.

Problem 158. Essay. Describe a Sunburn variation in which there are two
or more weapon types and for which weapons, shields, and drives all draw
off a common reserve of energy. Make predictions about the behavior of your
system. Advanced students should test these predictions experimentally.

4.4 Other Ways of Getting Burned

One objection that has been raised to the Sunburn model as an example of
coevolving strings is that it is violent. The author, being a fairly typical re-
covering video and war game addict, simply did not imagine that abstract
warfare between character strings was offensive. Once made aware that Sun-
burn was sufficiently violent to offend some portion of the public, the author
put it as a challenge to his students to take the basic notion of Sunburn and
find a nonviolent fitness function that could be used to experiment with a
similar set of issues. This section is inspired by one of the better attempts to
meet the challenge invented by Mark Joenks as a term project for the class.

The essence of Sunburn is to have strings that compete in some fashion
and whose genes spell out how that competition is approached by the entities
derived from those genes. In this section, we will develop such a model for
individuals participating in political campaigns. It is for you to decide whether
this is more or less offensive than simulated warfare.

In Sunburn, the character strings had five letters: D, G, L, M, and S. These
character strings were developed into abstract models of fighter craft. For our
model of political campaigns we need a new alphabet as follows: Adopting
popular programs, Bribing, Doing what your opponent did in the last move of
the campaign, Fund-raising, Laying low, Negative campaigning, Pandering,
and having a Scandal. The artificial agents in this simulation of politics will
be called virtual politicians, or VIPs.

Of prime importance in evaluating a character string representing a VIP
is our model of the behavior of the electorate. Our fitness evaluation, still
used for gladiatorial tournament selection, will run through the campaign

Sunburn: Coevolving Strings 115

season. At regular intervals, the genes of each of our virtual politicians will be
expressed, one location at a time, in order. A series of variables will change
value during the campaign, depending on the actions of the competitors. At
the end, the electorate will vote, probabilistically, deciding the contest. The
state variables stored for each candidate are given in Table 4.1.

Credentials C the candidate’s standing with his single-issue voters
Credibility R the candidate’s perceived ability to serve competently
Name Recognition N related to being recognized by a voter
Scandal Factor S the degree to which the candidate is tainted by scandal
Finances B powers everything else

Table 4.1. State variables for VIPs.

The way we initialize the candidates’ state variables describes how the
candidates start the campaign season. We update the variables according to
the following rules, as we scan down the candidate’s gene strings.

Rule 1. Credentials, credibility, name recognition, and scandal factor all un-
dergo exponential decay. At the beginning of each period of the campaign,
they are multiplied by rC , rR, rN , and rS , all smaller than 1. Since the voters
have short memories for anything complicated, we insist that

rN > rR > rC > rS .

Rule 2. Finances grow exponentially. At the beginning of each period of
the campaign, a candidate’s money is multiplied by rF , bigger than 1. This
represents fundraising by the candidate’s campaign organization.

Rule 3. Adopting a popular program adds 2 to a candidate’s credibility and
subtracts 1 from his credentials. If he has at least half as much money as his
opponent, it adds 2 to his credibility and subtracts 1 from his credentials.
Otherwise, it adds 2 to his credibility and subtracts 1 from his credentials (he
swiped the idea).

Rule 4. Bribing either subtracts 5 from a candidate’s finances or cuts them
in half if his total finances are less than 5. Bribing adds 5 to his credentials,
2 to his scandal factor, and 1 to his name recognition.

Rule 5. Doing what a candidate’s opponent did last time is just what it
sounds like. On the first action, this action counts as laying low.

Rule 6. Fundraising adds 3 to a candidate’s finances and 1 to his name recog-
nition. It represents a special, personal effort at fundraising by the candidate.

Rule 7. Laying low has no effect on the state variables.

116 Evolutionary Computation for Modeling and Optimization

Rule 8. Negative campaigning subtracts 1 from a candidate’s credibility and
credentials and adds 1 to the other candidate’s credentials. If he has at least
half as much money as his opponent, then this goes his way. Otherwise, it
goes the other candidate’s way.

Rule 9. Pandering adds 5 to a candidate’s credentials, 1 to his name recog-
nition, and subtracts 1 from his credibility.

Rule 10. Scandal adds 4 to a candidate’s name recognition and subtracts 1
from his credentials and credibility.

Once we have used the rules to translate the VIP’s genes into the final
version of the state variables, we have an election. In the election, we have 25
special-interest voters aligned with each candidate and 50 unaligned voters.
Each voter may choose to vote for a candidate or refuse to vote at all. The
special-interest voters will vote for their candidate or not vote. For each voter,
check the following probabilities to tally the vote.

A special-interest voter will vote for his candidate with probability

Pspecial =
eC−S

2 + eC−S
. (4.1)

An unaligned voter will choose a candidate first in proportion to name
recognition. He will vote for the first candidate with probability

Punaligned =
eR−S

3 + eR−S
. (4.2)

If not voting for the first candidate, the voter will consider the second can-
didate using the same distribution. If he still has not voted, then he will repeat
this procedure two more times. If, at the end of 3 cycles of consideration, he
has still not picked a candidate, the voter will decline to vote. The election
(and the gladiatorial tournament selection) are decided by the majority of
voters picking a candidate. If no one votes, then the election is a draw.

Experiment 4.11 Using the procedure outlined in this section, create an
evolutionary algorithm for VIPs using gladiatorial tournament selection on
a population of 200 VIPs. Use two-point crossover on a string of 20 actions
with two-point mutation. Set the constants as follows: rN = 0.95, rR = 0.9,
rC = 0.8, rS = 0.6, and rF = 1.2. Use uniform initial conditions for the VIPs
with the state variables all set to 0, except finances, which is set to 4. Perform
100 runs lasting for 20,000 mating events each. Document the strategies that
arise. Track average voter turnout and total finances for each run.

There is an enormous number of variations possible on the VIP evolu-
tionary algorithm. If you find one that works especially well, please send the
author a note.

Sunburn: Coevolving Strings 117

Problems

Problem 159. Essay. Compare and contrast the Sunburn and VIP simula-
tors as evolving systems.

Problem 160. The choices of constants in this section were pretty arbitrary.
Explain the thinking that you imagine would lead to the choices for the four
decay constants in Experiment 4.11.

Problem 161. Explain and critique the rules for the VIP simulator.

Problem 162. In terms of the model, and referring to the experiment if you
have performed it, explain how scandals might help a candidate. At what
point during the campaign might they be advantageous?

Problem 163. Essay. The VIPs described in this section have a prepro-
grammed set of actions. Would we obtain more interesting results if they
could make decisions based on the state variables? Outline how to create a
data structure that could map the state variables onto actions.

Problem 164. Cast your mind back to the most recent election in your home
state or country. Write out and justify a VIP gene for the two leading candi-
dates.

Problem 165. The VIP simulator described in this section is clearly designed
for a two-sided contest. Outline how to modify the simulator to run a simu-
lation of a primary election.

Problem 166. We have the electorate divided 25/50/25 in Experiment 4.11.
Outline the changes required to simulate a 10/50/40 population in which one
special-interest group outnumbers another, but both are politically active.
Refer to real-world political situations to justify your design.

Problem 167. Analyze Equations 4.1 and 4.2. What are the advantages and
disadvantages of those functions? Are they reasonable choices given their place
in the overall simulation? Hint: graph f(x) = ex

c+ex for c = 1, 2, 3.

Problem 168. Should the outcome of some actions depend on what the other
candidate did during the same campaign period? Which ones, why, and how
would you implement the dependence?

5

Small Neural Nets : Symbots

In this chapter, you will learn to program a very simple type of neural net with
evolutionary algorithms. These neural nets will be control systems for virtual
autonomous robots called symbots, an artificial life system developed by Kurt
vonRoeschlaub, John Walker, and Dan Ashlock. These neural nets will have
no internal neurons at first, just inputs and outputs. The symbots are a
radical simplification of a type of virtual robot investigated by Randall Beer
and John Gallagher [12]. Beer and Gallagher’s neural robot has six neurons.
It performs well on the task of finding a single signal-emitting source. In an
attempt to discover the “correct” number of neurons, a series of experiments
was performed in which neurons were removed. Training time declined with
each neuron removal, leading to the zero-neuron symbot model. Chapter 11
explores the evolution of more complex neural nets.

Symbots have two wheels and two sensors, as shown in Figure 5.2. The
sensors report the strength of a signal field at their position. The sensors
can be thought of as eyes, nostrils, Geiger counters, etc.; the field could be
light intensity, chemical concentration, the smell of prey, whatever you wish
to model. The symbot’s neural net takes the sensor output and transforms
it into wheel drive strengths. The wheels then cause the symbot to advance
(based on the sum of drive strengths) and turn (based on the difference of
drive strengths). Computing a symbot’s motion requires simple numerical
integration. A model, called a kinematic model, of the forces acting on the
symbot is what the numerical integration operates on to produce the symbot’s
motion.

In the course of the chapter, we will introduce a new theoretical concept,
the lexical product of fitness functions, which is used to combine two fitness
functions in a fashion that allows one to act as a helper for the other. The
lexical product is of particular utility when the fitness function being maxi-
mized gives an initial value of zero for almost all creatures. Figure 5.1 gives
the dependencies of the experiments in this chapter.

We will start with the problem of finding a single signal source as in
Beer and Gallagher’s initial work. We will then train symbots to find and eat

120 Evolutionary Computation for Modeling and Optimization

Exp 5.1

Exp 5.2

Exp 5.3 Exp 5.6

Exp 5.4 Exp 5.8 Exp 5.10Exp 5.5

Exp 5.9

Exp 5.15

Exp 5.16

Exp 5.17

Exp 5.12

Exp 5.13

Exp 5.14

Exp 5.11Ch 13

Exp 5.7

1 Basic symbot motion loop.
2 Evolving symbots.
3 Alternative fitness function.
4 Exploring symmetry.
5 Introduction of lexical product fitness.
6 Multiple signal sources.
7 Using roulette selection.
8 Exploring different types of walls.
9 Evolving sensor locations.
10 Evolving body size.
11 Symbots with three sensors.
12 Moving sensors with a control neuron.
13 Two neuron symbots.
14 Alternative neural transition function.
15 Clear-the-board fitness.
16 Polysymbots: multiple symbots per gene.
17 Coevolving populations of symbots.

Fig. 5.1. The topics and dependencies of the experiments in this chapter.

multiple sources. It is in this context that we explore lexical fitness. We then
examine allowing the symbots to evolve their bodies and their control nets.
We conclude by attempting to involve groups of symbots that work together
(or at least avoid obstructing one another).

In the more complex virtual worlds explored here, like the worlds with
multiple signal sources, symbots display what appears to be complex behav-
ior. Since this behavior is the result of simply numerically integrating a linear
control model, it follows that the complexity is being drawn from the symbot’s

Small Neural Nets : Symbots 121

environment. The extreme simplicity of the symbots permits them to evolve
quickly to have a desired behavior. Likewise, symbot movement is computa-
tionally trivial to manage, and so swarms of symbots can be used in a given
application.

5.1 Basic Symbot Description

θ θ
ll rr

rllr
R

s

Fig. 5.2. Basic symbot layout.

Symbots live on the unit square: the square with corners (0, 0), (0, 1), (1, 0),
and (1, 1). A basic symbot, shown in Figure 5.2, is defined by a radius R, an
angular displacement of sensors from the symbot’s centerline θ, and 5 real
parameters that form the symbot’s control net. The symbot is controlled by a
neural net. A neural net is a structure which is programmed by changing the
connection weights between its neurons. In this case, the neurons are the the
left and right sensors and the left and right wheels. The input of each neuron
is the sum of the output of each neuron connected to it times its connection

122 Evolutionary Computation for Modeling and Optimization

weight to that neuron. The symbots parameters are the connection weights
from the right and left sensors to the right and left wheels, and the idle speed.
The idle speed is the symbot’s speed when it is receiving no stimulation from
its sensors. We will denote these five real parameters by ll, lr, rl, rr, and s.
(The two-letter names have as their first character the sensor ((l)eft or (r)ight)
with which they are associated and as the second the wheel with which they
are associated.)

The symbot’s neural net uses the sensors as the input neurons and the
wheels as the output neurons. Each sensor reports the strength of some field;
these strengths are multiplied by the appropriate connection weights and then
summed to find out how hard and in which direction the wheels push the
symbot. The symbot’s motion is simulated by iterating the algorithm given
in Figure 5.3, called the basic symbot motion loop. The code given in this loop
is an Euler’s method integration of a kinematic motion model. The step size
of the integration is controlled by the constant Cs.

Begin
x1 := x + R · cos(τ + θ); //left sensor position
y1 := y + R · sin(τ + θ);
x2 := x + R · cos(τ − θ); //right sensor position
y2 := y + R · sin(τ − θ);
dl := f(x1, y1) · ll + f(x2, y2) · rl; //find wheel
dr := f(x2, y2) · rr + f(x1, y1) · lr; //drive strengths
ds := Cs · (dl + dr + s · R/2); //change in position
If |ds| > R/2 then ds := sgn(ds) · R/2; //truncate at R/2
dτ := 1.6 · Cs/R · (dr − dl); //change in heading
If |dτ | > π/3 then dτ := sgn(dτ) · π/3; //truncate at π/3
x := x + ds · cos(τ); //update position
y := y + ds · sin(τ);
τ := τ + dτ ; //update heading

end;

Fig. 5.3. Basic symbot motion loop for symbot of radius R and idle speed s at
position (x, y) with heading τ . (The function f(x, y) reports the field strength; sgn(x)
is −1, 0, or 1 for x negative, zero, or positive; Cs controls the step size of integration.)

The basic symbot motion loop computes, for one time slice, the symbot’s
response to the inputs felt at its left and right sensors. This response consists
in updating the symbot’s position (x, y) and heading τ . The loop in Figure
5.3 is completely inertialess and contains a constant Cs that is used to scale
the symbot’s turning and motion.

The basic intuition is as follows: Compute the current position of both
sensors and get the strength of the field at their position with the function
f(x, y). Multiply by the connection weights of sensors to wheels, obtaining

Small Neural Nets : Symbots 123

the drive of each wheel. The forward motion of the symbot is the sum of the
wheel drives plus the idle speed. The change in heading is the difference of the
drives of the left and right wheels. Both the motion and change in heading
are truncated if they are too large. (Notice that the symbot’s position (x, y)
is the center of its circular body.)

The function f(x, y) reports the field strength at position (x, y). This func-
tion is the primary part of the description of the symbot’s world and the def-
inition of its task. If, for example, the symbot is a scavenger, the function f
would be a diffusion process, possibly modeled with a cellular automaton, that
spreads the smell of randomly placed bits of food. If the symbot is attracted
to light sources, the field strength would be computed from the standard in-
verse square law. If the symbot’s task is to follow a line on the floor, the field
strength would simply be a binary function returning the color of the floor: 0
for off the line and 1 for on it.

We said that the symbot lives on the unit square. What does this mean?
What if it tries to wander off? There are many ways to deal with this problem;
here are four suggestions: In a wall-less world, the symbot lives in the Cartesian
plane, and we simply restrict interesting objects to the unit square, e.g., lines
to be followed, inverse square law sources, and food. In a lethal-wall world,
we simply end the symbot’s fitness evaluation when it wanders off the unit
square. (In a lethal-wall world, the fitness function should be a nondecreasing
function of the time spent in the world. If this is not the case, evolution may
select for hitting the wall.) In a reflective world, the walls are perfect reflectors,
and we simply modify the symbot’s heading as appropriate to make the angle
of incidence equal to the angle of reflection. In a stopping world, we set the
symbot’s forward motion ds to 0 for any move that would take it beyond the
boundaries of the unit square. This does not permanently stop the symbot,
since it still updates its heading and can turn away from the wall.

Because the symbot’s world is highly idealized, we have to be careful.
Suppose we are generating the field strength from inverse square law sources.
For a single source at (a, b), the pure inverse square law says that its field is

f(x, y) =
Cf

(x − a)2 + (y − b)2
, (5.1)

where Cf is a constant that gives the intensity of the source. The problem
with this is that a symbot that has a sensor near (a, b) experiences an awesome
signal and as a result may suddenly shoot off at a great speed or spin through
an angle so large, relative to the numerical precision of the computer you are
using, that it is essentially a random angle. To avoid this, we assume that
the inverse square law source is not a point source, but rather has a radius rc

with a constant field strength inside the source equal to the value the inverse
square law would give at the boundary of the source. Call such inverse square
law sources truncated inverse square law sources. The equation for a truncated
inverse square law source with radius rc at position (a, b) is given by

124 Evolutionary Computation for Modeling and Optimization

f(x, y) =

{
Cf

(x−a)2+(y−b)2 if (x − a)2 + (y − b)2 ≥ r2
c

Cf

r2
c

if (x − a)2 + (y − b)2 < r2
c .

(5.2)

The following experiment implements basic symbot code without imposing
the additional complexity of evolution. Later, it will serve as an analysis tool
for examining the behavior of evolved symbots. Keeping this in mind, you
may wish to pay above-average attention to the user interface, since you will
use this code with symbots that you evolve later in the chapter.

Experiment 5.1 Write or obtain software to implement the basic symbot
motion loop. You should have a data structure for symbots that allows the
specification of radius R, angular displacement θ of sensors from the axis of
symmetry, the four connection weights ll, lr, rl, rr, and the idle speed s. Use
the basic symbot motion loop to study the behavior of a single symbot placed
in several locations and orientations on the unit square. Define field strength
using a truncated inverse square law source with radius r2

c = 0.001 at position
(0.5, 0.5) with Cf = 0.1 and Cs = 0.001. Test each of the following symbot
parameters and report on their behavior:

Symbot R θ ll lr rl rr idle
1 0.05 π/4 −0.5 0.7 0.7 −0.5 0.3
2 0.05 π/4 −0.2 1 1 −0.2 0.6
3 0.05 π/4 −0.5 0.5 0.7 −0.7 0.4
4 0.1 π/4 1 0 0 1 0.3
5 0.05 π/2 −0.5 0.7 0.7 −0.5 0.3

Characterize how each of these symbots behaves for at least four initial posi-
tion/orientation pairs. Use a wall-less world. It is a good idea to write your
software so that you can read and write symbot descriptions from files, since
you will need this capability later.

With Experiment 5.1 in hand, we can go ahead and evolve symbots. For the
rest of this section, we will set the symbots the task of finding truncated inverse
square law sources. We say that a symbot has found a source if the distance
from the source to the symbot’s center is less than the symbot’s radius. There
is the usual laundry list of issues (model of evolution, variation operators,
etc.), but the most vexing problem for symbots is the fitness function. We
need the fitness function to drive the symbot toward the desired behavior.
Also, it is desirable for the fitness function to be a nondecreasing function of
time, since this leaves open the possibility of using lethal walls (see Problem
169). In the next few experiments, we will use evolution to train symbots to
find a single truncated inverse square law source at (0.5, 0.5). (If you have
limited computational capacity, you can reduce population size or number of
runs in the following experiments.)

Experiment 5.2 Use the same world as in Experiment 5.1. Fix symbot ra-
dius at R = 0.05 and sensor angular displacement at θ = π/4. Build an

Small Neural Nets : Symbots 125

evolutionary algorithm with the gene of the symbot being the five numbers ll,
lr, rl, rr, and s, treated as indivisible reals. Use tournament selection with
tournament size 4, one-point crossover, and single-point real mutation with
mutation size 0.1. Evaluate fitness as follows. Generate three random initial
positions and headings that will be used for all the symbots. For each starting
position and heading, run the symbots forward for 1000 iterations of the basic
symbot motion loop. The fitness is the sum of f(x, y) across all iterations,
where (x, y) is the symbot’s position. Evolve 30 populations of 60 symbots for
30 generations.

Report the average and maximum fitness and the standard deviation of the
average fitness. Save the best design for a symbot from the final generation
for each of the 30 runs. Characterize the behavior of the most fit symbot in
the last generation of each run. (This is not as hard as it sounds, because the
behaviors will fall into groups.)

Define finding the source to be the condition that exists when the distance
from the symbot’s nominal position (x, y) to the source is at most the symbot’s
radius R. Did the symbots do a good job of finding the source? Did more than
one technique of finding the source arise? Do some of the evolved behaviors
get a high fitness without finding the source?

Are some of the behaviors physically implausible, e.g., extremely high speed
spin? Explain why the best and average fitnesses go up and down over gener-
ations in spite of our using an elitist model of evolution.

Some of the behaviors that can arise in Experiment 5.2 do not actually find
the source. In Figures 5.4 and 5.5 you can see the motion traces of symbots
from our version of Experiment 5.2. If we wish to find the source, as opposed
to spending lots of time fairly near it, it might be good to tweak the fitness
function by giving a bonus fitness for finding the source. There are a number
of ways to do this.

Experiment 5.3 Write a short subroutine that computes when the symbot
has found the source at (0.5, 0.5), and then modify Experiment 5.2 by replacing
the fitness function with a function that counts the number of iterations it took
the symbot to find the target for the first time. Minimize this fitness function.
Report the same results as in Experiment 5.2.

The results may be a bit surprising. Run as many populations as you can
and examine the symbot behaviors that appear.

The fitness function in Experiment 5.3 is the one we really want if the
symbot’s mission is to find the source. However, if this function acts in your
experiments as it did in ours, there is a serious problem. The mode fitness of
a random creature is zero, and unless the population size is extremely large,
it is easy to have all the fitnesses in the initial population equal to zero for
most test cases. How can we fix this? There are a couple of things we can try.

Experiment 5.4 Redo Experiment 5.3, but in your initial population gener-
ate 3 rather than 5 random numbers per symbot, taking ll = rr and lr = rl.

126 Evolutionary Computation for Modeling and Optimization

Fig. 5.4. Plots for the most fit symbot at the end of a run of Experiment 5.2, runs
1–15.

Small Neural Nets : Symbots 127

Fig. 5.5. Plots for the most fit symbot at the end of a run of Experiment 5.2, runs
16–30.

128 Evolutionary Computation for Modeling and Optimization

The effect of this is to make the initial symbots symmetric. Do two sets of
runs:

(i) Runs where the condition ll = rr and lr = rl is maintained under muta-
tion: if one connection weight changes, change the other.

(ii) Runs in which the evolutionary operations are allowed to change all five
parameters independently.

Do 100 runs. Does evolution tend to preserve symmetry? Does imposed sym-
metry help? How often do we actually get a symbot that reliably finds the
source?

The key to Experiment 5.4 is restriction of the space the evolutionary algo-
rithm must search. From other work with symbots, it is known that there are
very good solutions to the current symbot task that have symmetric connec-
tion weights. More importantly, the probability of a symmetric symbot being
a good solution is higher than that probability for an asymmetric symbot.
The symmetry restriction makes the problem easier to solve. Keep in mind
that Experiment 5.4 doesn’t just demonstrate the value of symmetry but also
checks the difference between a 3-parameter model (i) and a 5-parameter
model with a few restrictions on the initial conditions (ii).

The question remains: can we solve the original 5-parameter problem more
efficiently without cooking the initial values? One technique for doing so re-
quires that we introduce a new type of fitness function. The fitness functions
we have used until now have been maps from the set of genes to an ordered
set like the real numbers.

Definition 5.1 The lexical product of fitness functions f and g, denoted
by f lex g, is a fitness function that calls a gene x more fit than a gene y if
f(x) > f(y) or f(x) = f(y) and g(x) > g(y). In essence, g is used only to
break ties in f . We say that f is the dominant function. (This terminology
helps us remember which function in a lexical product is the tie-breaker.)

With the notion of lexical product in hand, we can do Experiment 5.2 a
different way.

Experiment 5.5 Modifying the fitness evaluation techniques used in Exper-
iments 5.2 and 5.3, evolve symbots with a fitness function that is the lexical
product of (i) the number of iterations in which a symbot has found the source
with (ii) the sum of the field strength at (x, y) in all iterations. Let the number
of iterations in which the symbot has found the source be the dominant func-
tion. Do 30 runs on a population of size 60 for 30 generations and compare
to see whether using the lexical product gives an improvement on the problem
of minimizing the number of iterations it took the symbot to find the target.

The motivation for the lexical product of fitness functions is as follows:
Imagine a case in which the the fitness function you want to satisfy has a
fitness landscape for which almost all random creatures have the same rotten

Small Neural Nets : Symbots 129

fitness (so much so that random initial populations tend to be uniformly unfit).
When this happens, evolution needs a secondary heuristic or fitness function
to be used when the first gives no information.

Maximizing function (ii) from Experiment 5.5, the sum of field strengths
over iterations, biases the symbot toward approaching the source. Once the
symbots tend to approach the source, the probability that some will actually
run over it is much higher, and evolution can proceed to optimize the ability
to find the source (function (i)). Notice that the sum-of-field-strength function
almost always distinguishes between two symbots. With similar symbots, it
may do so capriciously, depending on the initial positions and directions se-
lected in a given generation. The quality of being virtually unable to declare
two symbots equal makes it an excellent tie breaker. Its capriciousness makes
it bad as a sole fitness function, as we saw in Experiment 5.1.

Next, we will change the symbot world. Instead of a single source at a
fixed location, we will have multiple, randomly placed sources. An example of
a symbot trial in such a world is shown in Figure 5.6.

Experiment 5.6 Write or obtain software for an evolutionary algorithm with
a model of evolution and variation operators as in Experiment 5.2. Use a
world without walls. Implement routines and data structures so that there are
k randomly placed sources in the symbot world. When a symbot finds a source,
the source should disappear and a new one be placed. In addition, the same
random locations for new sources should be used for all the symbots in a given
generation to minimize the impact of luck. This will require some nontrivial
information-management technology. In this experiment let k = 5 and test
two fitness functions, to be maximized:

(i) Number of sources found.
(ii) Lexical product of the number of sources found with 1

d+1 , where d is the
closest approach the symbot made to a source it did not find.

Use populations of 32 symbots for 60 generations, but only do one set
of 1500 iterations of the basic symbot motion loop to evaluate fitness (the
multiple-source environment is less susceptible to effects of capricious initial
placement). Run 30 populations with each fitness function. Plot the average
and maximum score of each population and the average of these quantities
over all the populations for both fitness functions. Did the secondary fitness
function help? If you have lots of time, rerun this experiment for other values
of k, especially 1. Be sure to write the software so that it can save the final
population of symbots from each run to a file for later use or examination.

If possible, it is worth doing graphical displays of the “best” symbots in
Experiment 5.6. There is a wide variety of possible behaviors, many of which
are amusing and visually appealing: symbots that move forward, symbots
that move backward, whirling dervishes, turn-and-advance, random-looking
motion, a menagerie of behaviors, etc.

130 Evolutionary Computation for Modeling and Optimization

Fig. 5.6. A symbot, its path, and sources captured in a k = 5 run with stopping
walls. Note that the symbot has evolved to avoid the walls, saving the time required
to turn.

Experiment 5.7 Redo Experiment 5.6 with whichever fitness function ex-
hibited superior performance, but replace tournament selection with roulette
selection. What effect does this have? Be sure to compare graphs of average
and best fitness in each generation.

Problems

Problem 169. When we defined lethal walls, the statement was made that
“in a lethal wall world the fitness function should be a nondecreasing function
of the time spent in the world.” Explain why in a few sentences. Give an
example of a fitness function that decreases with time and has evil side effects.

Small Neural Nets : Symbots 131

Problem 170. Essay. Explain in colloquial English what is going on in the
basic symbot motion loop depicted in Figure 5.3. Be sure to say what each of
the local variables does and explain the role of Cs. What does the constant
1.6 say about the placement of the wheels?

Problem 171. In a world with reflecting walls, a symbot is supposed to
bounce off of the walls so that the angle of incidence equals the angle of
reflection. Give the formula for updating a symbot’s heading θ when it hits a
wall parallel to the x-axis and when it hits a wall parallel to the y-axis. Hint:
this is really easy. You may want to give your answer as a modification of the
basic symbot motion loop, given in Figure 5.3.

Problem 172. Carefully graph the field that results from

(i) an inverse square law source at (0.5, 0.5),
(ii) a truncated inverse square law source at (0.5, 0.5) with radius 0.1,
(iii) two truncated inverse square law sources with radius 0.1 at (0.25, 0.25)

and (0.75, 0.75).

Problem 173. Essay. Think about a light bulb. Why is there no singularity
in the field strength of the light emitted by the bulb? The inverse square law
is a good description of the bulb’s field at distances much greater than the
size of the bulb. Is it a good description close up?

Problem 174. Essay. Suppose we are running an evolutionary algorithm
with a lexical fitness function f lex g (f dominant). If f is a real-valued,
continuous, nonconstant function, how often will we use g? Why is it good,
from the perspective of g being useful, if f is a discretely valued function? An
example of a discretely valued function is the graph-crossing-number function
explored in Section 3.5.

Problem 175. Essay. In Chapter 3, we used niche specialization to keep
a population from piling up at any one optimum. Could we use a lexical
product of fitness functions to do the same thing? Why or why not? More to
the point, for which sorts of optimization problems might the technique help
and for which would it have little or no effect.

Problem 176. Think about what you know about motion from studying
physics. Rewrite the basic symbot motion loop so that the symbots have mass,
inertia, and rotational inertia. Advanced students should give the symbots’
wheels rotational inertia as well.

Problem 177. If you are familiar with differential equations, write out explic-
itly the differential equations that are numerically solved by the basic symbot
motion loop. Discuss them qualitatively.

Problem 178. Essay. In which of the experiments in Section 5.1 are we using
a fixed fitness function and in which are we using one that changes? Can the
varying fitness functions be viewed as samples from some very complex fixed
fitness function? Why or why not?

132 Evolutionary Computation for Modeling and Optimization

Problem 179. Short Essay. Are the fitness functions used to evolve sym-
bots polymodal or unimodal? Justify your answer with examples and logic.

Problem 180. Suppose we have two symbots with sensors π/4 off their sym-
metry axes, radius of 0.05, and connection strengths as follows:

LL 1 0
LR 0 1
RL 0 1
RR 1 0
Idle 0.5 0.5

There is a single inverse truncated square law source at (0.5, 0.5). For each
symbot, compute its direction of motion (forward/backward) and current turn
direction (left/right) at (0.25, 0.25), (0.25, 0.75), and (0.75, 0.75) assuming
that it is facing in the positive y direction and then, again, assuming that
it is facing in the positive x direction. Do we need Cs and Cf to do this
problem?

5.2 Symbot Bodies and Worlds

In this section, we will explore various symbot worlds, free up the parameters
that define the symbot’s body, and allow evolution to attempt to optimize de-
tails of the symbot body plan. At its most extreme, this will involve modifying
the basic symbot body plan to allow asymmetry and additional sensors.

In Section 5.1, we defined reflecting, lethal, and stopping walls but did not
use them. Our first experiment in this section explores these other possible
symbot worlds. The experiment asks you to report on what differences result
from changing the symbot world. Before doing this experiment, you should
discuss in class what you expect to happen when you change the world. Write
down your predictions both before and after the discussion and compare them
with the actual outcome of the experiment.

Experiment 5.8 Modify the software from Experiment 5.6 so that the walls
may be optionally lethal, reflecting, stopping, or nonexistent. Using whichever
fitness function from Experiment 5.6 gave the best performance, run 20 ecolo-
gies in each sort of world. Do different behaviors arise in the different worlds?
How do average scores differ? Do the symbots merely deal with or do they ac-
tually exploit the reflective and stopping walls?

In experiments with lethal walls, it is interesting to note that the symbots
can actually learn where the walls are, even though they have no sensors that
directly detect them. If you have the time and inclination, it is instructive
to recode Experiment 5.2 to work with lethal walls. In Experiment 5.2, the

Small Neural Nets : Symbots 133

placement of the source gives reliable information about the location of the
walls, and hence the symbot can learn more easily where the walls are.

In Section 5.1, we had symbots with sensors that were at an angular dis-
placement of π/4 from the symbot’s axis of symmetry. This choice was an
aesthetic one, it makes the symbots look nice. We also know that the symbots
were able to show a good level of performance with these fixed sensor loca-
tions. There is, however, no reason to think that fixing the sensors at π/4 off
the axis of symmetry is an optimal choice, and we will now do an experiment
to see whether, in fact, there are better choices.

Experiment 5.9 Modify the evolutionary algorithm used in Experiment 5.6
so that it operates on a gene that contains two additional loci, the displace-
ments off the axis of symmetry of the left and right sensors in radians. Run
30 populations of size 60 for 75 generations with the displacements

(i) equal but with opposite sign, and
(ii) independent.

That is to say, the sensors should be coerced to be symmetric in one set of runs
and allowed to float independently in the other. What values for sensor dis-
placements occur? How does the performance of evolution in this experiment
compare with that in Experiment 5.6? When the two sensor locations float in-
dependently, you will need to make a small, obvious modification to the basic
symbot motion loop. Include a discussion of this modification in your write-up.

In our version of Experiment 5.9, two common designs were Chameleon
(sensors at π/2 off the axis of symmetry) and Cyclops (both sensors on the
axis of symmetry, one in front and one in back). Note that Cyclops can occur
only in the second set of runs. When writing up Experiment 5.9, be sure to
note any designs that are substantially different from Cyclops and Chameleon.

So far, each symbot in our experiments has had a body size of 0.05, 1/20
the width of the unit square. Making a symbot larger would clearly benefit
the symbot; even blundering movement would cover a greater area. A symbot
with a radius of 1, for example, would cover all or most of the unit square
and hence would “find” things quite efficiently. In addition, if we assume fixed
sensor locations, then symbots that are larger have more resolution on their
sensors. It is not clear whether this is good or bad. The farther apart their
two sensors are, the more difference in the field strength they feel. If a symbot
is big enough, it is often the case that one sensor is near one source and the
other is near another. Such a symbot may have different design imperatives
than a symbot that is small.

In the following experiment, we will explore the radius parameter R for
symbots. We will use a new technique, called population seeding. In population
seeding, an evolved population generated in the past is used as the starting
population for a new evolution. Sometimes this is done just to continue the
evolution, possibly multiple different times, to test for contingency or look for
added progress toward some goal. However, it also gives you the opportunity

134 Evolutionary Computation for Modeling and Optimization

to change the fitness function so as to approach some goal stepwise. If we start
with a population of symbots that can already find sources efficiently, then
evolution can concentrate on optimizing some other quality, in this case the
symbot’s radius.

A bit of thought is required to design an experiment to explore the utility
of radius to a symbot. The area of a symbot is πR2, while the cross section
it presents in the direction of motion is 2R. The symbot’s area is the fraction
of the unit square it covers, but since it moves, its leading surface might
well be the “useful” or “active” part of the symbot. There is also the role
of sensor separation in maneuvering to consider. Symbots that are too small
feel almost no difference in their sensor strengths, while symbots that are too
large can have inputs from distinct sources dominating each of their sensors.
This means that symbot fitness might vary linearly as size, quadratically as
size, or vary according to the average distance between sources. The truth
is probably some sort of subtle combination of these and other factors. The
following experiment places some bounds and can serve as the starting point
for designing additional experiments.

Experiment 5.10 Modify the software from Experiment 5.6 with fitness
function (i) setting k = 5 to provide a source-rich environment. Modify the
symbot gene so that radius, set initially to 0.05, is part of the evolving gene.
Allow radii in the range 0.01 ≤ R ≤ 0.25 only. Run 3 sets of 30 populations
with population size 32 for 60 generations with the fitness function

(i) unmodified,
(ii) divided by the symbot’s diameter 2R, and
(iii) divided by the symbot’s area πR2.

Instead of generating random initial creatures, use a population of evolved
symbots from Experiment 5.6. Doing this will allow the use of the simpler fit-
ness function: an already evolved population should not need the lexical fitness
function boost to its early evolution.

For your write-up, plot the distribution of radii in the final population of
each run. Write a few paragraphs that explain what this experiment has to say
about the effect of radius on fitness. Did some sets of runs move immediately
to the upper or lower boundary of permitted radius?

So far, the symbots we have examined have had two sensors and, with
the exception of Experiment 5.9, bilateral symmetry. This is because they
are modeled on biological creatures. The sensors are thought of as two eyes.
Maybe three sensors would work better. Let’s try it and see.

Experiment 5.11 Rewrite the code from Experiment 5.6 so that the symbots
have 3 genetic loci that give the angular position of 3 sensors, where 0 is
the direction the symbot moves as the result of idle speed alone (the forward
direction along its axis of symmetry). You will need to rewrite the basic symbot
motion loop to involve 6 sensor/wheel connections, as in Problem 184. Run

Small Neural Nets : Symbots 135

20 populations of 60 symbots for 75 generations saving average and maximum
fitness and the sensor positions of the best symbot in the final generation of
each population. What arrangements of sensors occur in your best symbots?
How does fitness compare with the fitnesses in Experiments 5.6 and 5.9?

There are several hundred possible experiments to be done with symbots,
just by using the elements of the experiments presented so far in this section.
A modest application of imagination can easily drive the total into the thou-
sands. The author urges anyone who thinks up and performs such experiments
to contact him. Some additional suggestions: a symbot with a 2-segment body,
segments joined by a spring; moving the wheels of the symbot around; adding
noise to the symbot’s sensors; implementing more realistic underlying physics
for the symbots. In this book, our next step will be to give the symbots some
modest additional control mechanisms.

Problems

Problem 181. Write out the new version of the basic symbot motion loop,
given in Figure 5.3, needed by Experiment 5.9.

Problem 182. Often, a lexical product fitness function is used in evolving
symbots. Explain why if we seed a population with evolved symbots and then
continue evolution, such a lexical product is not needed.

Problem 183. Essay. Suppose we are running an evolutionary algorithm in
which we found a lexical product of two fitness functions f and g with f
dominant to be helpful. Discuss the pros and cons of using f lex g for only
the first few generations and then shifting to f alone as the fitness function.
Give examples.

Problem 184. Give pseudocode, as in Figure 5.3, for the basic symbot mo-
tion loop of a symbot with 3 sensors at angular positions τ1, τ2, and τ3 coun-
terclockwise from the direction of forward motion.

Problem 185. True or False? A symbot with a single sensor could find
sources and evolve to higher fitness levels using the setup of Experiment 5.9.

5.3 Symbots with Neurons

The symbots we have studied so far have a feed-forward neural net with 2 or
3 input neurons (the sensors), 2 output neurons (the wheels), and no hidden
layers or interneurons. The complexity of the symbot’s behavior has been the
result of environmental interactions: with the field, with the walls, and with
the sources. In this section, we will add some neurons to the symbot’s control
structures.

136 Evolutionary Computation for Modeling and Optimization

A neuron has inputs that are multiplied by weights, summed, and then
run through a transfer function. The name of a type of neuron is usually the
name of its transfer function (hyperbolic tangent, arctangent, or Heaviside,
for example). The underlying function for the neuron may be modified by
vertical and horizontal shifting and stretching. These are represented by 4
parameters, so that with f(x) being our transfer function, in

a · f(b · (x − c)) + d (5.3)

the parameter a controls the degree of vertical stretching; the parameter b
controls the degree of horizontal stretching; the parameter c controls the hor-
izontal shift; and the parameter d controls the vertical shift. To see examples
of these sorts of shifts look at Figure 5.7.

In Experiment 5.9, we allowed evolution to explore various fixed locations
for a pair of sensors. What if the symbot could change the spacing of its
sensors in response to environmental stimuli? Let’s try the experiment. We
should design it so that it is possible for evolution to leave the sensors roughly
fixed, in case that solution is superior to moving the sensors. In order to do
this, we will take the basic symbot and make the symmetric sensor spacing
parameter θ dynamic, controlled by a single neuron. Since −π/2 ≤ θ ≤ π/2 is
a natural set of possible sensor positions, we will choose an arctangent neuron.
The neuron should use the sensors as inputs, requiring 2 connection weights,
and will have 2 parameters that are allowed to vary, b and c from Equation
5.3 (a and d are set to 1).

Experiment 5.12 Modify the software from Experiment 5.6 with fitness
function (ii) and the basic symbot motion loop to allow the symmetric spacing
of the sensors to be dynamically controlled by an arctangent neuron of the
form

arctan(b · (x − c)).

The parameters b and c as well as the connection strengths ln and rn of the
left and right sensors to the neuron must be added as new loci in the symbot
gene. Before iterating the basic symbot motion loop during fitness evaluation,
initialize θ to π/4. Here is the modification of the basic symbot motion loop.

Begin
x1 := x + R · cos(τ + θ); //left sensor position
y1 := y + R · sin(τ + θ);
x2 := x + R · cos(τ − θ); //right sensor position
y2 := y + R · sin(τ − θ);
dl := f(x1, y1) · ll + f(x2, y2) · rl; //find wheel
dr := f(x2, y2) · rr + f(x1, y1) · lr; //drive strengths
θ = arctan(b · (ln · f(x1, y1) + rn · f(x2, y2) − c)) //new sensor spacing
ds := Cs · (dl + dr + s · R/2); //change in position
If |ds| > R/2 then //truncate at R/2

If ds > 0 then ds := R/2 else ds := −R/2;

Small Neural Nets : Symbots 137

dτ := 1.6 · Cs/R · (dr − dl); //change in heading
If dτ > π/3 then dτ := π/3; //truncate at π/3
x := x + ds · cos(τ); //update position
y := y + ds · sin(τ);
τ := τ + dτ ; //update heading

end;

The parameters b and c should be initialized to 1 when you are generating
the initial population; the connection strengths ln and rn should start in the
range −1 ≤ x ≤ 1. Do two sets of 20 runs on populations of 40 symbots for
75 generations. In the first set of runs, generate all the symbot genetic loci
randomly. In the second set of runs get the parameters rr, rl, lr, ll, and s from
an evolved population generated by Experiment 5.6. In addition to the usual
fitness data, save the mean and standard deviation of the 4 neuron parameters
and devise a test to see whether the symbots are using their neurons. (A neuron
is said to be used if θ varies a bit during the course of a fitness evaluation.)

Recall that

tanh(x) =
ex − e−x

ex + e−x
. (5.4)

Now we will move to a 2-neuron net, one per wheel, in which we just
put the neurons between the sensors and the wheels. We will use hyperbolic
tangent neurons. Recall the reasons for truncating the inverse square law
sources (Section 5.1): we did not want absurdly large signal inputs when the
symbots had a sensor too near an inverse square law source. These neurons
represent another solution to this problem. A neuron is saturated when no
increase in its input will produce a significant change in its output. High
signal strengths will tend to saturate the neurons in the modified symbots in
the following experiment.

Experiment 5.13 Take either Experiment 5.6 or Experiment 5.12 and mod-
ify the algorithm so that instead of

dl := f(x1, y1) · ll + f(x2, y2) · rl;
dr := f(x2, y2) · rr + f(x1, y1) · lr;

we have

dl := R/2 · tanh(bl · (f(x1, y1) · ll + f(x2, y2) · rl) + cl);
dr := R/2 · tanh(br · (f(x2, y2) · rr + f(x1, y1) · lr) + cr);

where bl, cl, br, cr are new real parameters added to the symbot’s gene. Initialize
bl and br to 1 and cl and cr to 0. This will have the effect of having the

138 Evolutionary Computation for Modeling and Optimization

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-4 -2 0 2 4

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-4 -2 0 2 4

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-4 -2 0 2 4

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-4 -2 0 2 4

Fig. 5.7. Variations of vertical stretching, horizontal stretching, horizontal shift and
vertical shift for the hyperbolic tangent.

Small Neural Nets : Symbots 139

neurons fairly closely mimic the behavior of the original network for small
signal strengths. Seed the values of ll, lr, rl, rr, and s with those of an evolved
population from Experiment 5.6.

Run at least 10 populations of 60 symbots for 75 generations. Document
changes in the efficiency of evolution and comment on any new behaviors
(things that did not happen in the other evolutions).

The hyperbolic tangent neuron is computationally expensive, so we should
see whether a cheaper neuron could work as well. The transfer function

f(x) =

⎧⎪⎨
⎪⎩

−1 if x ≤ −1,

x if − 1 < x < 1,

1 if 1 ≤ x,

(5.5)

is much cheaper to compute. Let us do an experiment to test its performance.

Experiment 5.14 Repeat Experiment 5.13 replacing the tanh(x) function
with Equation 5.5. Compare the performance of the final symbots and the
speed with which the populations converge to their final form.

Problems

Problem 186. Can the symbots in Experiment 5.12 set the parameters of
their sensor positioning neuron so as to mimic symbots with fixed sensor
positions? Give neuron parameters that yield fixed sensors or show why this
cannot be done. In the event that only some fixed positions are possible, show
which these are.

Problem 187. Assume that you are working in a computer language that
does not have hyperbolic tangents as primitive functions. Unless you are us-
ing quite advanced hardware, computing exponentials is more expensive than
multiplication and division, which are in turn more expensive than addition
and subtraction. Assume that you have the function ex available (it is often
called exp(x)). Find a way to compute tanh(x) (Equation 5.4) using only
one evaluation of ex and two divisions. You may use as many additions and
subtractions as you wish.

Problem 188. Describe a way to efficiently substitute a lookup table with
20 entries for the function tanh(x) in Experiment 5.13. Give pseudocode. A
lookup table is an array of real numbers together with a procedure for deciding
which one to use for a given x. In order to be efficient, it must not use too
many multiplications or divisions and only a moderate amount of addition
and subtraction. Graph tanh(x) and the function your lookup table procedure
produces on the same set of axes. Advanced students should also augment the
lookup table with linear interpolation.

140 Evolutionary Computation for Modeling and Optimization

Problem 189. Essay. Examine the graph of tanh(x3) as compared to tanh(x).
Discuss the qualitative advantages and disadvantages of the two functions as
neuron transfer functions. What about the shape of the first function is dif-
ferent from the second, and when might that difference be significant?

Problem 190. Essay. If we use hyperbolic tangent neurons as in Experi-
ment 5.13, then large signal strengths are ignored by saturated neurons. Us-
ing experimental data, compare the minimal symbots that rely on truncating
(Experiment 5.6) with the ones that have saturation available. Are the neuron-
using symbots superior in terms of performance, “realism,” or stability?

Problem 191. Essay. Explain the choices of a and d made in Experiment
5.12. Why might vertical shift and stretch be bad? How would you expect the
symbots to behave if these parameters were allowed to vary?

5.4 Pack Symbots

In this section, we will examine the potential for coevolving symbots to work
together. We will also try to pose somewhat more realistic tasks for the sym-
bots.

To this end, we define the Clear-the-Board fitness function. Start with a
large number of sources and place no new sources during the course of the
fitness evaluation. Fitness is the lexical product of the number of sources found
with 1

d+1 , where d is the closest approach the symbot made to a source it did
not find (compare with Experiment 5.6).

We will distribute the large number of sources using one of three algo-
rithms: uniform, bivariate normal, and univariate normal off of a line running
through the fitness space. Think of the sources as spilled objects. The uni-
form distribution simulates a small segment of a wide-area spill. The bivariate
normal distribution is the scatter of particles from a single accident at a par-
ticular point. The univariate normal off of a line represents something like
peanuts spilling off of a moving truck.

Experiment 5.15 Modify the software in Experiment 5.6, fitness function
(ii), to work with a Clear-the-Board fitness function. If two symbots both clear
the board, then the amount of time taken is used to break the tie (less is
better). Change the symbots’ radius to 0.01 and have k = 30 sources. Run
20 populations of 60 symbots for 50 generations on each of the 3 possible
distributions:

(i) Uniform,
(ii) Bivariate normal with mean (0.5, 0.5) and variance 0.2, and
(iii) Univariate normal with variance 0.1 off of a line.

Small Neural Nets : Symbots 141

See Problem 193 for details of distribution (iii). Seed the populations with
evolved symbots from Experiment 5.6. When the normal distribution produces
points not inside the unit square, simply ignore those points and generate new
ones until you get enough points. Report mean and best fitness and say which
distributions allowed the symbots to learn to clear the board most often. If it
appears that the symbots could clear the board given a little more time, you
might try increasing the number of iterations of the symbot motion loop. You
should certainly terminate fitness evaluation early if the board is cleared.

Experiment 5.15 is intended to give you practice with the new fitness
function and the new patterns of source distribution. With these in hand, we
will move on to pack symbots. Pack symbots are symbots that learn to “work
together” in groups. There are two ways to approach pack symbots: specify
a set of symbots with a single gene, or evolve several populations of symbots
whose fitness is evaluated in concert. For both approaches, there are many
symbots present in the unit square simultaneously. It may be that the various
symbots will learn to coevolve to do different tasks. One would hope, for
example, that in the experiments with a bivariate normal source distribution,
several symbots would intensively scour the center of the region while others
swept the outer fringes.

A new problem that appears in multiple-symbot environments is that of
symbot collision. Symbots realized in hardware might well not care too much
if they bumped into one another occasionally, but it is not desirable that we
evolve control strategies in which symbots pass through one another. On the
other hand, realistic collisions are difficult to simulate. Aside from mentioning
it, we will, for the present, ignore this problem of symbot collisions.

Experiment 5.16 Modify the software from Experiment 5.15 so that a gene
contains the description of m symbots. The resulting object is called a polysym-
bot. All m symbots are run at the same time with independent positions and
headings. The fitness of a polysymbot gene is the sum of the individual fitnesses
of the symbots specified by the gene. Run 20 populations of 60 polysymbots for
100 generations on one of the 3 possible distributions of sources for m = 2
and m = 5. Use k = 30 sources on the board.

In addition to documenting the degree to which the symbots clean up the
sources and avoid colliding with each other, try to document, by observing the
motion tracks of the best cohort in the final generation of each run, the degree
to which the symbots have specialized. Do a few members of the group carry
the load, or do all members contribute?

In the next experiment, we will try to coevolve distinct populations instead
of gene fragments.

Experiment 5.17 Modify the software from Experiment 5.16, with m = 5
symbots per pack, so that instead of a gene containing 5 symbots, the algorithm
contains 5 populations of genes that describe a single symbot. For each fitness

142 Evolutionary Computation for Modeling and Optimization

evaluation the populations should be shuffled and cohorts of five symbots, one
from each population, tested together. Each symbot is assigned to a new group
of five in each generation. The fitness of a symbot is the fitness that its cohort,
as a whole, gets. Do the same data-acquisition runs as in Experiment 5.16 and
compare the two techniques. Which was better at producing coevolved symbots
that specialize their tasks?

Problems

Problem 192. Is the fitness function specified in Experiment 5.15 a lexical
product? Check the definition of lexical products very carefully and justify
your answer.

Problem 193. In the experiments in this section, we use a new fitness func-
tion in which the symbots attempt to clear the board of sources. To generate
uniformly distributed sources, you generate the x and y coordinates as uniform
random numbers in the range 0 ≤ x, y ≤ 1. The bivariate normal distribu-
tion requires that you generate two Gaussian coordinates from the random
numbers (the transformation from uniform to Gaussian variables is given in
Equation 3.1). In this problem, you will work out the details of the Gaussian
distribution of sources about a line.

(i) Give a method for generating a line uniformly selected from those that
have at least a segment of length 1 inside the unit square.

(ii) Given a line of the type generated in (i), give a method for distributing
sources uniformly along its length but with a Gaussian scatter about the
line (with the line as the mean). Hint: use a vector orthogonal to the line.

Problem 194. Imagine an accident that would scatter toxic particles so that
the particles would have a density distribution that was a Gaussian scatter
away from a circle. Give a method for generating a field of sources with this
sort of density distribution.

Problem 195. Give a method for automatically detecting specialization of
symbots for different tasks, as one would hope would happen in Experiments
5.16 and 5.17. Logically justify your method. Advanced students should ex-
perimentally test the method by incorporating it into software.

Problem 196. Essay. Describe a baseline experiment that could be used to
tell whether a polysymbot from either Experiment 5.16 or 5.17 was more
effective at finding sources than a group of symbots snagged from Experiment
5.6.

6

Evolving Finite State Automata

In this chapter, we will evolve finite state automata. (For the benefit of those
trained in computer science, we note that the finite state automata used here
are, strictly speaking, finite state transducers: they produce an output for
each input.) The practice of evolving finite state automata is a very old one,
having started in the early 1960s with the foundational work of Larry Fogel
[23, 25]. Finite state automata (or FSAs) are a staple of computer science.
They are used to encode computations, recognize events, or as a data structure
for holding strategies for playing games. The dependencies of the experiments
in this chapter are given in Figure 6.1. Notice that there are two unconnected
sets of experiments.

The first section of the chapter examines different methods of representing
finite state automata in an array and introduces very simple fitness functions
similar to the one-max problem for strings. In finite state automata, this
simple function consists in predicting the next bit in a periodic input stream.
This is a simple version of more complex tasks such as modeling the stock
or commodity markets. There is also an excellent lexical fitness function that
substantially improves performance.

The latter two sections explore the use of finite state automata as game-
playing agents. One section deals entirely with Iterated Prisoner’s Dilemma,
on which numerous papers have been published. Some of these are referenced
at the beginning of Section 6.2. The third section expands the exploration into
other games, including the graduate student game and Divide the Dollar. This
is just a hint of the rich generalizations of these techniques that are possible.

In Section 6.1, we start off with a very simple task: learning to predict a
periodic stream of zeros and ones. In Section 6.2, we apply the techniques of
artificial life to perform some experiments on Iterated Prisoner’s Dilemma. In
Section 6.3, we use the same technology to explore other games. We need a
bit of notation from computer science.

Definition 6.1 If A is an alphabet, e.g., A = {0, 1} or A = {L, R, F}, then
we denote by An the set of strings of length n over the alphabet A.

144 Evolutionary Computation for Modeling and Optimization

Exp 6.5

Exp 6.2

Exp 3.1

Exp 6.12

Exp 6.13

Exp 6.3
Exp 6.4

Exp 6.8 Exp 6.10

Exp 6.6

Exp 6.9

Exp 6.11
Exp 6.7

Exp 6.1 Ch 14

Ch 13,14

1 First string-prediction experiment.
2 Changing the crossover representation.
3 Self-driving length fitness function.
4 Using self-driving length as a lexical partner.
5 Evolving FSAs to play Iterated Prisoner’s Dilemma.
6 Analysis of evolved strategies for IPD.
7 Experimenting with tournament size for selection.
8 Computing strategies’ mean evolutionary failure time.
9 Looking for error-correcting strategies.
10 Variation: the Graduate School game.
11 Optional Prisoner’s Dilemma.
12 Divide the Dollar.
13 Tournament size variation and comparison of DD with IPD.

Fig. 6.1. The topics and dependencies of the experiments in this chapter.

Definition 6.2 A sequence over an alphabet A is an infinite string of char-
acters from A.

Definition 6.3 By A∗ we mean the set of all finite-length strings over A.

Definition 6.4 The symbol λ denotes the empty string, a string with no char-
acters in it.

Example 3.

{0, 1}3 = {000, 001, 010, 011, 100, 101, 110, 111},

{a, b}∗ = {λ, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, . . .}.

Evolving Finite State Automata 145

Definition 6.5 For a string s we denote by |s| the length of s (i.e., the num-
ber of characters in s).

Example 4.

|λ| = 0,

|heyHeyHEY | = 9.

6.1 Finite State Predictors

A finite state automaton consists of an input alphabet, an response alpha-
bet, a collection of states, a transition function, a response function, an initial
state, and an initial response. The states are internal markers used as memory,
like the tumblers of a combination lock that “remember” whether the user is
currently dialing in the second or third number in the combination. The tran-
sition function encodes how the automaton moves from one state to another.
The response function encodes the responses produced by the automaton,
depending on the current state and input.

An example may help make some of this clear. Consider a thermostat. The
thermostat makes a decision every little while and must not change abruptly
from running the furnace to running the air-conditioner and vice versa. The
input alphabet for the thermostat is {hot, okay, cold}. The response alpha-
bet of a thermostat is {air-conditioner, do-nothing, furnace}. The states are
{ready, heating, cooling, just-heated, just-cooled}. The initial response is do-
nothing. The initial state, transition function and response function are shown
in Figure 6.2.

The thermostat uses the “just-cooled” and “just-heated” states to avoid
going from running the air-conditioner to the furnace (or the reverse) abruptly.
As an added benefit, the furnace and air-conditioner don’t pop on and off;
the “just” states slow the electronics down to where they don’t hurt the poor
machinery. If this delay were not needed, we wouldn’t need to distinguish
between states and responses. We could let the states be the set of responses
and “do” whatever state we were in. A finite state automaton that does this
is called a Moore machine. The more usual type of finite state automaton,
with an explicitly separate response function, is termed a Mealey machine. In
general, we will use the Mealey architecture.

Notice that the transition function t (shown in the second column of Figure
6.2) is a function from the set of ordered pairs of states and inputs to the set
of states; i.e., t(state,input) is a member of the set of states. The response
function r (in the third column) is a function from the set of ordered pairs of
states and inputs to the set of responses, i.e., r(state,input) is a member of
the response alphabet.

Colloquially speaking, the automaton sits in a state until an input comes.
When an input comes, the automaton generates a response (with its response

146 Evolutionary Computation for Modeling and Optimization

Initial State: ready
When current state make a transition and respond

and input are to state with
(hot, ready) cooling air-conditioner

(hot, heating) just-heated do-nothing
(hot, cooling) cooling air-conditioner

(hot, just-heated) ready do-nothing
(hot, just-cooled) ready do-nothing

(okay, ready) ready do-nothing
(okay, heating) just-heated do-nothing
(okay, cooling) just-cooled do-nothing

(okay, just-heated) ready do-nothing
(okay, just-cooled) ready do-nothing

(cold, ready) heating furnace
(cold, heating) heating furnace
(cold, cooling) just-cooled do-nothing

(cold, just-heated) ready do-nothing
(cold, just-cooled) ready do-nothing

Fig. 6.2. A thermostat as a finite state automaton.

function) and moves to a new state (which is found by consulting the transition
function). The initial state and initial response specify where to start.

For the remainder of this section, the input and response alphabets will
both be {0, 1}, and the task will be to learn to predict the next bit of an input
stream of bits.

0

0/1 0/1

1/0

1/0
A B

Fig. 6.3. A finite state automaton diagram.

A finite state automaton of this type is shown in Figure 6.3. It has two
states: state A and state B. The transition function is specified by the arrows
in the diagram, and the arrow labels are of the form input/response. The
initial response is on an arrow that does not start at a state and that points
to the initial state. This sort of diagram is handy for representing automata on
paper. Formally: the finite state automaton’s response function is r(A, 0) =
1, r(A, 1) = 0, r(B, 0) = 1, r(B, 1) = 0, and the initial response is 0. Its

Evolving Finite State Automata 147

transition function is t(A, 0) = A, t(A, 1) = B, t(B, 0) = B, t(B, 1) = A. The
initial state is A.

Initial response:0
Initial state:A

State If 0 If 1
A 1→A 0→B
B 1→B 0→A

Fig. 6.4. A finite state automaton table.

Figure 6.4 specifies the finite state automaton shown in Figure 6.3 in tab-
ular format. This is not identical to the tabular format used in Figure 6.2. It
is less explicit about the identity of the functions it is specifying and much
easier to read. The table starts by giving the initial response and initial state
of the finite state automaton. The rest of the table is a matrix with rows
indexed by states and columns indexed by inputs. The entries of this matrix
are of the form response → state. This means that when the automaton is in
the state indexing the row and sees the response indexing the column, it will
make the response given at the tail of the arrow, and then make a transition
to the state at the arrow’s head.

You may want to develop a computer data structure for representing finite
state automata (FSA). You should definitely build a routine that can print an
FSA in roughly the tabular form given in Figure 6.4; it will be an invaluable
aid in debugging experiments.

So that we can perform crossover with finite state automata, we will de-
scribe them as arrays of integers and then use the usual crossover operators
for arrays. We can either group the integers describing the transition and re-
sponse functions together, termed functional grouping, or we can group the
integers describing individual states together, termed structural grouping. In
Example 5, both these techniques are shown. Functional grouping places the
integers describing the transition function and those describing the response
function in contiguous blocks, making it easy for crossover to preserve large
parts of their individual structure. Structural groupings place descriptions of
individual states of an FSA into contiguous blocks, making their preservation
easy. Which sort of grouping is better depends entirely on the problem being
studied.

Example 5. We will change the finite state automaton from Figure 6.4 into an
array of integers in the structural and functional manners. First we strip the
finite state automaton down to the integers that describe it (setting A = 0
and B = 1) as follows:

148 Evolutionary Computation for Modeling and Optimization

Initial response:0
Initial state:A

State If 0 If 1
A 1→A 0→B
B 1→B 0→A

0
0

1 0 0 1
1 1 0 0

To get the structural grouping gene we simply read the stripped table from
left to right, assembling the integers into the array

0010011100. (6.1)

To get the functional gene we note that the pairs of integers in the stripped
version of the table above are of the form

response state .

We thus take the first integer (the response) in each pair from left to right,
and then the second integer (the transition state) in each pair from left to right
to obtain the gene

0010100110. (6.2)

Note that in both the functional and structural genes the initial response
and initial state are the first two integers in the gene.

We also want a definition of point mutation for a finite state automaton.
Pick at random any one of the initial response, the initial state, any transition
state, and any response; replace it with a randomly chosen valid value.

Now that we know how to do crossover and mutation, we can run an evolu-
tionary algorithm on a population of finite state automata. For our first such
evolutionary algorithm, we will use a task inspired by a Computer Recreations
column in Scientific American. Somewhat reminiscent of the string evolver,
this task starts with a reference string. We will evolve a population of finite
state automata that can predict the next bit of the reference string as that
string is fed to them one bit at a time.

We need to define the alphabets for this task and the fitness function. The
reference string is over the alphabet {0, 1}, which is also the input alphabet
and the response alphabet of the automaton. The fitness function is called the
String Prediction fitness function, computed as follows. Pick a reference string
in {0, 1}∗ and a number of bits to feed the automaton. Bits beyond the length
of the string are obtained by cycling back though the string again. Initialize
fitness to zero. If the first bit of the string matches the initial response of the
FSA, fitness is +1. After this, we use the input bits as inputs to the FSA,
checking the response of the FSA against the next bit from the string; each
time they match, fitness is +1. The finite state automaton is being scored on
its ability to correctly guess the next bit of the input.

Example 6. Compute the String Prediction fitness of the finite state automa-
ton in Figure 6.3 on the string 011 with 6 bits.

Evolving Finite State Automata 149

Step FSM String bit State after Fitness
guess guess

0 0 0 A +1
1 1 1 A +1
2 0 1 B -
3 0 0 A +1
4 1 1 A +1
5 0 1 B -

Total fitness: 4

The String Prediction fitness function gives us the last piece needed to run
our first evolutionary algorithm on finite state automata.

Experiment 6.1 Write or obtain software for randomly generating, print-
ing, and handling file input/output of finite state automata as well as the
variation operators described above. Create an evolutionary algorithm using
size-4 tournament selection, two-point crossover, single-point mutation, and
String Prediction fitness. Use the structural grouping for your crossover. Run
30 populations for up to 1000 generations, recording time-to-solution (or the
fact of failure) for populations of 100 finite state automata with

(i) Reference string 001, 6 bits, 4-state FSA,
(ii) Reference string 001111, 12 bits, 4-state FSA,
(iii) Reference string 001111, 12 bits, 8-state FSA.

Define “solution” to consist in having at least one creature whose fitness
equals the number of bits used. Graph the fraction of populations that have
succeeded as a function of the number of generations for all 3 sets of runs on
the same set of axes.

Experiment 6.2 Redo Experiment 6.1 with functional grouping used to rep-
resent the automaton for crossover. Does this make a difference?

Let’s try another fitness function. The Self-Driving Length function is com-
puted as follows. Start with the finite state automaton in its initial state with
its initial response. Thereafter, use the last response as the current input.
Eventually, the automaton must simultaneously repeat both a state and re-
sponse. The number of steps it takes to do this is its Self-Driving Length
fitness.

Example 7. For the following FSAs with input and response alphabet {0, 1},
find the Self-Driving Length fitness.

150 Evolutionary Computation for Modeling and Optimization

Initial response:1
Initial state:D

State If 0 If 1
A 1→B 0→B
B 1→A 0→B
C 1→C 0→D
D 0→A 0→C

Time-step by time-step:

Step Response State
1 1 D
2 0 C
3 1 C
4 0 D
5 0 A
6 1 B
7 0 B
8 1 A
9 0 B

So, in time step 9, the automaton repeats the response/state pair 0, B. We
therefore put its Self-Driving Length fitness at 8.

Notice that in our example we have all possible pairs of states and re-
sponses. We can do no better. This implies that success in the Self-Driving
Length fitness function is a score of twice the number of states (at least over
the alphabet {0, 1}).

Experiment 6.3 Rewrite the software for Experiment 6.1 to use the Self-
Driving Length fitness function. Run 30 populations of 100 finite state au-
tomata, recording time to success (achieving the maximum possible fitness
value) and cutting the automata off after 2000 generations. Graph the frac-
tion of populations that succeeded after k generations, showing the fraction
of failures on the left side of the graph as the distance below one. Do this
experiment for automata with 4, 6, and 8 states. Also report the successful
strings.

It is easy to describe a finite state automaton that does not use some of
its states. The Self-Driving Length fitness function encourages the finite state
automaton to use as many states as possible. In Experiment 6.1 the string
001111, while possible for a 4-state automaton to predict, was difficult. The
string 111110 would prove entirely impossible for a 4-state automaton (why?)
and very difficult for a 6-state automaton.

There is a very large local optimum in Experiment 6.1 for an automaton
that predicts the string 111110; automata that just churn out 1’s get relatively

Evolving Finite State Automata 151

high fitness. Of the automata that churn out only 1’s, many use few states.
The more states involved, the easier to have one that is associated with a
response of 0, either initially or by a mutation. A moment’s thought shows, in
fact, that 1-making automata that use a large number of states are more likely
to have children that don’t, and so there is substantial evolutionary pressure
to stay in the local optimum associated with a population of FSAs generating
1’s, and using a small number of states to do so. This leaves only extremely
low probability evolutionary paths to an automaton that predicts 111110.

Where possible, when handed lemons, make lemonade. In Chapter 5, we
introduced the lexical product of fitness functions. When attempting to op-
timize for the String Prediction fitness function in difficult cases like 111110,
the Self-Driving Length fitness function is a natural candidate for a lexical
product; it lends much greater weight to the paths out of the local optimum
described above. Let us test this intuition experimentally.

Experiment 6.4 Modify the software from Experiment 6.1 to optionally use
either the String Prediction fitness function or the lexical product of String
Prediction with Self-Driving Length, with String Prediction dominant. Report
the same data as in Experiment 6.1, but running 6- and 8-state automata with
both the plain and lexical fitness functions on the reference string 111110 using
12 bits. In your write-up, document the differences in performance and give
all reasons you can imagine for the differences, not just the one suggested in
the text.

Experiment 6.4 is an example of an evolutionary algorithm in which lexical
products yield a substantial gain in performance. Would having more states
cause more of a gain? To work out the exact interaction between additional
states and the solutions present in a randomly generated population, you
would need a couple of stiff courses in finite state automata or combinatorics.
In the next section, we will leave aside optimization of finite state automata
and proceed with coevolving finite state automata.

Problems

Problem 197. Suppose that A is an alphabet of size n. Compute the size of
the set {s ∈ A∗ : |s| ≤ k} for any nonnegative integer k.

Problem 198. How many strings are there in {0, 1}2m with exactly m ones?

Problem 199. Notice that in Experiment 6.1 the number of bits used is twice
the string length. What difference would it make if the number of bits were
equal to the string length?

Problem 200. If we adopt the definition of success given in Experiment 6.1
for a finite state automaton predicting a string, is there any limit to the length
of a string on which a finite state automaton with n states can succeed?

152 Evolutionary Computation for Modeling and Optimization

Problem 201. Give the structural and functional grouping genes for the fol-
lowing FSAs with input and response alphabet {0, 1}.

(i)
Initial response: 1

Initial state: B
State If 0 If 1

A 1→A 1→C
B 1→B 0→A
C 0→C 0→A

(ii)
Initial response: 1

Initial state: A
State If 0 If 1

A 1→A 0→B
B 1→C 1→A
C 1→B 0→C

(iii)
Initial response: 0
Initial state: D

State If 0 If 1
A 1→B 1→D
B 1→C 0→A
C 0→D 1→B
D 0→A 0→C

(iv)
Initial response: 0
Initial state: D

State If 0 If 1
A 0→B 0→D
B 0→C 1→A
C 1→D 0→B
D 1→A 1→C

Problem 202. For each of the finite state automata in Problem 201, give the
set of all strings the automaton in question would count as a success if the
string were used in Experiment 6.1 with a number of bits equaling twice its
length.

Problem 203. Prove that the maximum possible value for the Self-Driving
Length fitness function of an FSA with input and response alphabet {0, 1} is
twice the number of states in the automaton.

Problem 204. Give an example that shows that Problem 203 does not imply
that the longest string a finite state automaton can succeed on in the String
Prediction fitness function is of length 2n for an n-state finite state automaton.

Problem 205. In the text it was stated that a 4-state automaton cannot suc-
ceed, in the sense of Experiment 6.1, on the string 111110. Explain irrefutably
why this is so.

Problem 206. Problems 203, 204, and 205 all dance around an issue. How do
you tell whether a string is too “complex” for an n-state finite state automaton
to completely predict? Do your level best to answer this question, over the
input and response alphabet {0, 1}.

Problem 207. Work Problem 203 over, assuming that the finite state au-
tomaton uses the input and response alphabets {0, 1, . . . , n − 1}. You will
have to conjecture what to prove and then prove it.

Evolving Finite State Automata 153

6.2 Prisoner’s Dilemma I

The work in this section is based on a famous experiment of Robert Axelrod’s
concerning Prisoner’s Dilemma [7]. The are many published works that use
evolution to explore Iterated Prisoner’s Dilemma. Much of the work on evo-
lutionary computation and Prisoner’s Dilemma was done by David Fogel. An
early paper on using evolutionary programming to train Prisoner’s Dilemma
playing agents is [19]. An exploration of the impact of the parameters of the
Prisoner’s Dilemma game (changing the scoring system) on the course of evo-
lution appears in [20]. A critical feature of Iterated Prisoner’s Dilemma is the
number of rounds in the game. In [21] the duration of an encounter is allowed
to evolve.

Other representations besides finite state automata are used for evolution-
ary training of Iterated Prisoner’s Dilemma agents. [42] uses a lookup table
driven by past moves. One of the mutation operators is able to change the
time horizon (number of past moves referenced by the lookup table). This rep-
resentation is unique, and the variation of the time horizon is a clever idea,
borrowed in Chapter 10 to create more effective string controllers for virtual
robots. This line of research continues in [43], where the Prisoner’s Dilemma
players are placed on a spatial grid.

The representations used to code Prisoner’s Dilemma playing agents in-
clude artificial neural nets (discussed in Chapter 11), genetic programming
(discussed in Chapters 8, 9, and 10), ISAc lists (examined in Chapter 12),
and also with Markov chains and other even more exotic structures. The ex-
ploration of Prisoner’s Dilemma in this text is an entry, no more, to a rich
field of research.

6.2.1 Prisoner’s Dilemma Modeling the Real World

The original Prisoner’s Dilemma was a dilemma experienced by two accom-
plices, accused of a burglary. The local minions of the law are sure of the guilt
of the two suspects they have in custody, but have sufficient evidence to con-
vict them only of criminal trespass, a much less serious crime than burglary.
In an attempt to get better evidence, the minions of the law separate the
accomplices and make the same offer to both. The state will drop the crimi-
nal trespass charge and give immunity from any self-incriminating statements
made, if the suspect will implicate his accomplice. There are four possible
outcomes to this situation:

(1) Both suspects remain mum, serve their short sentence for criminal tres-
pass, and divide the loot.

(2) One suspect testifies against the other, going off scot-free and keeping all
the loot for himself. The other serves a long sentence as an unrepentant
burglar.

(3) Same as 2 except with the suspects reversed.

154 Evolutionary Computation for Modeling and Optimization

(4) Both suspects offer to testify against the other and receive moderate sen-
tences because they are repentant and cooperative burglars. Each also
keeps some chance at getting the loot.

In order to analyze Prisoner’s Dilemma, it is convenient to arithmetize
these outcomes as numerical payoffs. We characterize the response of main-
taining silence as cooperation and the response of testifying against one’s ac-
complice as defection. Abbreviating these responses as C and D, we obtain
the payoff matrix for Prisoner’s Dilemma shown in Figure 6.5. Mutual co-
operation yields a payoff of 3, mutual defection a payoff of 1, and unilateral
stabbing the other player in the back yields a payoff of 5 for the stabber and
0 for the stabbee. These represent only one possible set of values in a payoff
matrix for Prisoner’s Dilemma. Discussion of this and other related issues are
saved for Section 6.3.

Player 2
C D

C (3,3) (0,5)Player 1
D (5,0) (1,1)

Fig. 6.5. Payoff matrix for Prisoner’s Dilemma.

Prisoner’s Dilemma is an example of a game of the sort treated by the field
of game theory. Game theory was invented by John von Neumann and Oskar
Morgenstern. Their foundational text, The Theory of Games and Economic
Behavior, appeared in 1953. Game theory has been widely applied to eco-
nomics, politics, and even evolutionary biology. One of the earliest conclusions
drawn from the paradigm of Prisoner’s Dilemma was somewhat shocking. To
appreciate the conclusion von Neumann drew from Prisoner’s Dilemma, we
must first perform the standard analysis of the game.

Imagine you are a suspect in the story we used to introduce Prisoner’s
Dilemma. Sitting in the small, hot interrogation room you reflect on your
options. If the other suspect has already stabbed you in the back, you get the
lightest sentence for stabbing him in the back as well. If, on the other hand,
he is maintaining honor among thieves and refusing to testify against you,
then you get the lightest sentence (and all the loot) by stabbing him in the
back. It seems that your highest payoff comes, in all cases, from stabbing your
accomplice in the back. Unless you are altruistic, that is what you’ll do.

At the time he and Morgenstern were developing game theory, von Neu-
mann was advising the U.S. government on national security issues. A central
European refugee from the Second World War, von Neumann was a bit hawk-
ish and concluded that the game-theoretic analysis of Prisoner’s Dilemma

Evolving Finite State Automata 155

indicated that a nuclear first strike against the Soviet Union was the only
rational course of action. It is, perhaps, a good thing that politicians are not
especially respectful of reason. In any case, there is a flaw in von Neumann’s
reasoning. This flaw comes from viewing the “game” the U.S. and U.S.S.R.
were playing as being exactly like the one the two convicts were playing.
Consider a similar situation, again presented as a story, with an important
difference. It was inspired by observing a parking lot across from the apart-
ment the author lived in during graduate school.

Once upon a time in California, the police could not search a suspected
drug dealer standing in a parking lot where drugs were frequently sold. The
law required that they see the suspected drug dealer exchange something,
presumably money and drugs, with a suspected customer. The drug dealers
and their customers found a way to prevent the police from interfering in
their business. The dealer would drop a plastic bag of white powder in the
ornamental ivy beside the parking lot in a usual spot. The customer would, at
the same time, hide an envelope full of money in a drain pipe on the other side
of the lot. These actions were performed when the police were not looking.
Both then walked with their best “I’m not up to anything” stride, exchanged
positions, and picked up their respective goods. This is quite a clever system
as long as the drug dealer and the customer are both able to trust each other.

In order to cast this system into a Prisoner’s Dilemma format, we must
decide what constitutes a defection and a cooperation by each player. For the
drug dealer, cooperation consists in dropping a bag containing drugs into the
ivy, while defection consists in dropping a bag of cornstarch or baking soda.
The customer cooperates by leaving an envelope of federal reserve notes in the
drain pipe and defects by supplying phony money or, perhaps, insufficiently
many real bills. The arithmetization of the payoffs given in Figure 6.5 is still
sensible for this situation. In spite of that, this is a new and different situation
from the one faced by the two suspects accused of burglary.

Suppose the dealer and customer both think through the situation. Will
they conclude that ripping off the other party is the only rational choice? No,
in all probability, they will not. The reason for this is obvious. The dealer
wants the customer to come back and buy again, tomorrow, and the customer
would likewise like to have a dealer willing to supply him with drugs. The
two players play the game many times. A situation in which two players play
a game over and over is said to be iterated. One-shot Prisoner’s Dilemma is
entirely unlike Iterated Prisoner’s Dilemma, as we will see in the experiments
done in this section.

Iterated Prisoner’s Dilemma is the core of the excellent book The Evolution
of Cooperation by Robert Axelrod. The book goes through many real-life
examples that are explained by the iterated game and gives an accessible
mathematical treatment.

Before we dive into coding and experimentation, a word about altruism is
in order. The game theory of Prisoner’s Dilemma, iterated or not, assumes that
the players are not altruistic: that they are acting for their own self-interest.

156 Evolutionary Computation for Modeling and Optimization

This is done for a number of reasons, foremost of which is the mathematical
intractability of altruism. One of the major results of research on Iterated
Prisoner’s Dilemma is that cooperation can arise in the absence of altruism.
None of this is meant to denigrate altruism or imply that it is irrelevant to
the social or biological sciences. It is simply beyond the scope of this text.

In the following experiment we will explore the effect of iteration on play. A
population of finite state automata will play Prisoner’s Dilemma once, a small
number of times, and a large number of times. A round robin tournament is
a tournament in which each possible pair of contestants meet.

Experiment 6.5 This experiment is similar to one done by John Miller.
Write or obtain software for an evolutionary algorithm that operates on 4-
state finite state automata. Use {C, D} for the input and response alphabets.
The algorithm should use the same variation operators as in Experiment 6.1.
Generate your initial populations by filling the tables of the finite state au-
tomata with uniformly distributed valid values.

Fitness will be computed by playing a Prisoner’s Dilemma round robin
tournament. To play, a finite state automaton uses its current response as the
current play, and the last response of the opposing automaton as its input. Its
first play is thus its initial response. Each pair of distinct automata should
play n rounds of Prisoner’s Dilemma. The fitness of an automaton is its total
score in the tournament. Start each automata over in its initial state with its
initial response with each new partner. Do not save state information between
generations.

On a population of 36 automata, use roulette selection and absolute fitness
replacement, replacing 12 automata in each generation for 100 generations.
This is a strongly elitist algorithm with 2

3 of the automata surviving in each
generation. Save the average fitness of each population divided by 35n (the
number of games played) in each generation of each of 30 runs.

Plot the average of the averages in each generation versus the generations.
Optionally, plot the individual population averages. Do this for n = 1, n = 20,
and n = 150. For which of the runs does the average plot most closely approach
cooperativeness (a score of 3)? Also, save the finite state automata in the final
generations of the runs with n = 1 and n = 150 for later use.

There are a number of strategies for playing Prisoner’s Dilemma that are
important in analyzing the game and aid in discussion. Figure 6.6 lists several
such strategies, and Figure 6.7 describes five of these as finite state automata.
The strategies, Random, Always Cooperate, and Always Defect represent

extreme behaviors, useful in analysis. Pavlov is special for reasons we will see
later.

The strategy Tit-for-Tat has a special place in the folklore of Prisoner’s
Dilemma. In two computer tournaments, Robert Axelrod solicited computer
strategies for playing Prisoner’s Dilemma from game theorists in a number of
academic disciplines. In both tournaments, Tit-for-Tat, submitted by Profes-
sor Anatole Rapoport, won the tournament. The details of this tournament

Evolving Finite State Automata 157

are reported in the second chapter of Axelrod’s book, The Evolution of Co-
operation.

The success of Tit-for-Tat is, in Axelrod’s view, the result of four qualities.
Tit-for-Tat is nice; it never defects first. Tit-for-Tat is vengeful; it responds to
defection with defection. Tit-for-Tat is forgiving; given an attempt at coop-
eration by the other player, it reciprocates. Finally, Tit-for-Tat is simple; its
behavior is predicated only on the last move its opponent made, and hence
other strategies can adapt to it easily. Note that not all these qualities are ad-
vantageous in and of themselves, but rather they form a good group. Always
Cooperate has three of these four qualities, and yet it is a miserable strategy.
Tit-for-Two-Tats is like Tit-for-Tat, but nicer.

Random The Random strategy simply flips a coin to decide
how to play.

Always Cooperate The Always Cooperate strategy always cooperates.
Always Defect The Always Defect strategy always defects.

Tit-for-Tat The strategy Tit-for-Tat cooperates as its initial
response and then repeats its opponent’s last re-
sponse.

Tit-for-Two-Tats The strategy Tit-for-Two-Tats cooperates for its
initial response and then cooperates whenever its
opponent’s last two responses have not been coop-
eration.

Pavlov The strategy Pavlov cooperates as its initial re-
sponse and then cooperates if its response and its
opponent’s response matched last time.

Fig. 6.6. Some common strategies for Prisoner’s Dilemma.

Always Cooperate
Initial response:C

Initial state:1
State If D If C

1 C→1 C→1

Always Defect
Initial response:D

Initial state:1
State If D If C

1 D→1 D→1

Tit-for-Tat
Initial response:C

Initial state:1
State If D If C

1 D→1 C→1

Tit-for-Two-Tats
Initial response:C

Initial state:1
State If D If C

1 C→2 C→1
2 D→2 C→1

Pavlov
Initial response:C

Initial state:1
State If D If C

1 D→2 C→1
2 C→1 D→2

Fig. 6.7. Finite state automaton tables for common Prisoner’s Dilemma strategies.

158 Evolutionary Computation for Modeling and Optimization

Before we do the next experiment, we need a definition that will help cut
down the work involved. The self-play string of a finite state automaton is the
string of responses the automaton makes playing against itself. This string
is very much like the string of responses used for computing the Self-Driving
Length fitness, but the string is not cut off at the first repetition of a state
and input. The self-play string is infinite.

Thinking about how finite state automata work, we see that a automaton
might never repeat its first few responses and states, but that it will eventually
loop. For any finite state automaton, the self-play string will be a (possibly
empty) string of responses associated with state/input pairs that never happen
again followed by a string of responses associated with a repeating sequence
of state/input pairs. For notational simplicity, we write the self-play string
in the form string1:string2 where string1 contains the responses associated
with unrepeated state/input pairs and string2 contains the responses associ-
ated with repeated state/input pairs. Examine Example 8 to increase your
understanding.

Example 8. Examine the following automaton:

Initial response:C
Initial state:4

State If D If C
1 D→2 C→2
2 C→1 D→2
3 D→3 D→4
4 C→1 C→3

The sequence of plays of this automaton against itself is as follows:

Step Response State
1 C 4
2 C 3
3 D 4
4 C 1
5 C 2
6 D 2
7 C 1

· · · · · · · · ·

The self-play string of this finite state automaton is

CCD:CCD.

Notice that the state/response pairs (4,C), (3,C), and (4,D) happen exactly
once while the state/response pairs (1,C), (2,C), and (2,D) repeat over and

Evolving Finite State Automata 159

over as we drive the automaton’s input with its output. It is possible for two
automata with different self-play strings to produce the same output stream
when self-driven.

In Experiment 6.6, the self-play string can be used as a way to distinguish
strategies. Before doing Experiment 6.6, do Problems 215 and 216.

Experiment 6.6 Take the final populations you saved in Experiment 6.5 and
look through them for strategies like those described in Figures 6.6 and 6.7.
Keep in mind that states that are not used or that cannot be used are unim-
portant in this experiment. Do the following:

(i) For each of the strategies in Figure 6.6, classify the strategy (or one very
like it) as occurring often, occasionally, or never.

(ii) Call a self-play string dominant if at least 2
3 of the population in a single

run has that self-play string. Find which fraction of the populations have
a dominant strategy.

(iii) Plot the histogram giving the number of self-play strings of each length,
across all 30 populations evolved with n = 150.

(iv) Plot the histogram as in part (iii) for 1080 randomly generated automata.

In your write-up, explain what happened. Document exactly which software
tools you used to do the analyses above (don’t, for goodness’ sake, do them by
hand).

Experiment 6.6 is very different from the other experiments so far in Chap-
ter 6. Instead of creating or modifying an evolutionary algorithm, we are sort-
ing through the debris left after an evolutionary algorithm has been run. It
is usually much harder to analyze an evolutionary algorithm’s output than
it is to write the thing in the first place. You should carefully document and
save any tools you write for sorting through the output of an evolutionary
algorithm so you can use them again.

We now want to look at the effect of models of evolution on the emergence
of cooperation in Iterated Prisoner’s Dilemma.

Experiment 6.7 Modify the software from Experiment 6.5 so that the model
of evolution is tournament selection with tournament size 4. Rerun the ex-
periment for n = 150 and give the average of averages plot. Now do this all
over again for tournament size 6. Explain any differences and also compare
the two data sets with the data set from Experiment 6.5. Which of the two
tournament selection runs is most like the run from Experiment 6.5?

A strategy for playing a game is said to be evolutionarily stable if a large
population playing that strategy cannot be invaded by a single new strategy
mixed into the population. The notion of invasion is relative to the exact me-
chanics of play. If the population is playing round robin, for example, the new
strategy would invade by getting a higher score in the round robin tournament.

160 Evolutionary Computation for Modeling and Optimization

The notion of evolutionarily stable strategies is very important in game
theory research. The location of such strategies for various games is a topic of
many research papers. The intuition is that the stable strategies represent at-
tracting states of the evolutionary process. This means that you would expect
an evolving system to become evolutionarily stable with high probability once
it had been going for a sufficient amount of time. In the next experiment, we
will investigate this notion.

Both Tit-for-Tat and Always Defect are evolutionarily stable strategies
for Iterated Prisoner’s Dilemma in many different situations. Certainly, it is
intuitive that a group playing one or the other of these strategies would be
very difficult for a single invader to beat. It turns out that neither of these
strategies is in fact stable under the type of evolution that takes place in an
evolutionary algorithm.

Define the mean failure time of a strategy to be the average amount of
time (in generations) it takes a population composed entirely of that strat-
egy, undergoing evolution by an evolutionary algorithm, to be invaded. This
number exists relative to the type of evolution taking place and is not ordi-
narily something you can compute. In the next experiment, we will instead
approximate it.

Experiment 6.8 Modify the software from Experiment 6.7, for size-4 tour-
naments as follows. Have the evolutionary algorithm initialize the entire pop-
ulation with copies of a single automaton. Compute the average score per play
that automaton gets when playing itself, calling the result the baseline score.
Run the evolutionary algorithm until the average score in a generation differs
from the baseline by 0.3 or more (our test for successful invasion) or until 500
generations have passed. Report the time-to-invasion and fraction of popula-
tions that resisted invasion for at least 500 generations for 30 runs for each
of the following strategies:

(i) Tit-for-Two-Tats,
(ii) Tit-for-Tat,
(iii) Always Defect.

Are any of these strategies stable under evolution? Keeping in mind that
Tit-for-Two-Tats is not evolutionarily stable in the formal sense, also com-
ment on the comparative decay rates of those strategies that are not stable.

One quite implausible feature of Prisoner’s Dilemma as presented in this
chapter so far is the perfect understanding that the finite state automata
have of one another. In international relations or a drug deal there is plenty
of room to mistake cooperation for defection or the reverse. We will conclude
this section with an experiment that explores the effect of error on Iterated
Prisoner’s Dilemma. We will also finally discover why Pavlov, not a classic
strategy, is included in our list of interesting strategies. Pavlov is an example
of an error-correcting strategy. We say that a strategy is error-correcting if it

Evolving Finite State Automata 161

avoids taking too much revenge for defections caused by error. Do Problem
211 by way of preparation.

Experiment 6.9 Modify the software for Experiment 6.5, with n = 150, so
that responses are transformed into their opposites with probability α. Run 30
populations for α = 0.05 and α = 0.01. Compare the cooperation in these
populations with the n = 150 populations from Experiment 6.5. Save the finite
state automata from the final generations of the evolutionary algorithm and
answer the following questions. Are there error-correcting strategies in any of
the populations? Did Pavlov arise in any of the populations? Did Tit-for-Tat?
Detail carefully the method you used to identify these strategies.

We have barely scratched the surface of the ways we could explore Iterated
Prisoner’s Dilemma with artificial life. You are encouraged to think up your
own experiments. As we learn more techniques in later chapters, we will revisit
Prisoner’s Dilemma and do more experiments.

Problems

Problem 208. Explain why the average score over some set of pairs of au-
tomata that play Iterated Prisoner’s Dilemma with one another is in the range
1 ≤ µ ≤ 3.

Problem 209. Essay. Examine the following finite state automaton. We
have named the strategy encoded by this finite state automaton Ripoff. It
is functionally equivalent to an automaton that appeared in a population
containing immortal Tit-for-Two-Tats automata. Describe its behavior collo-
quially and explain how it interacts with Tit-for-Two-Tats. Does this strategy
say anything about Tit-for-Two-Tats as an evolutionarily stable strategy?

Initial response:D
Initial state:1

State If D If C
1 C→3 C→2
2 C→3 D→1
3 D→3 C→3

Problem 210. Give the expected (when the random player is involved) or
exact score for 1000 rounds of play for each pair of players drawn from the
following set:

{Always Cooperate, Always Defect, Tit-for-Tat, Tit-for-Two-Tats, Ran-
dom, Ripoff}.

Ripoff is described in Problem 209. Include the pair of a player with itself.

Problem 211. Assume that we have a population of strategies for playing
Prisoner’s Dilemma consisting of Tit-for-Tats and Pavlovs. For all possible

162 Evolutionary Computation for Modeling and Optimization

pairs of strategies in the population, give the sequence of the first 10 plays,
assuming that the first player’s response on round 3 is accidentally reversed.
This requires investigating 4 pairs, since it matters which type of player is
first.

Problem 212. Find an error-correcting strategy other than Pavlov.

Problem 213. Assume that there is a 0.01 chance of a response being the
opposite of what was intended. Give the expected score for 1000 rounds of
play for each pair of players drawn from the set {Always Cooperate, Always
Defect, Tit-for-Tat, Tit-for-Two-Tats, Pavlov, Ripoff}. Ripoff is described in
Problem 209. Include the pair of a player with itself.

Problem 214. Give a finite state automaton with each of the following self-
play strings:

(i) :C,
(ii) D:C,
(iii) C:C,
(iv) CDC:DDCCDC.

Problem 215. Show that if two finite state automata have the same self-play
string, then the self-play string contains the moves they will use when playing
one another.

Problem 216. Give an example of 3 automata such that the first 2 automata
have the same self-play string, but the sequences of play of each of the first 2
automata against the third differ.

Problem 217. In Problem 209, we describe a strategy called Ripoff. Suppose
we have a group of 6 players playing round robin with 100 plays per pair.
Players do not play themselves. Compute the scores of the players for each
possible mix of Ripoff, Tit-for-Tat, and Tit-for-Two-Tats containing at least
one of all 3 player types. There are 10 such groupings.

Problem 218. Essay. Outline an evolutionary algorithm that evolves Pris-
oner’s Dilemma strategies that does not involve finite state automata. You
may wish to use a string-based gene, a neural net, or some exotic structure.

Problem 219. For each of the finite state automata given in Figure 6.7 to-
gether with the automaton Ripoff given in Problem 209, state which of the
following properties the strategy encoded by the automaton has: niceness,
vengefulness, forgiveness, simplicity. These are the properties to which Axel-
rod attributes the success of the strategy Tit-for-Tat (see page 157).

Evolving Finite State Automata 163

6.3 Other Games

In this section, we will touch briefly on several other games that are eas-
ily programmable as artificial life systems. Two are standard modifications
of Prisoner’s Dilemma; the third is a very different game, called Divide the
Dollar.

The payoff matrix we used in Section 6.2 is the classic matrix appearing
on page 8 of The Evolution of Cooperation. It is not the only one that game
theorists allow. Any payoff matrix of the form given in Figure 6.8 for which
S < Y < X < R and S + R < 2X is said to be a payoff matrix for Prisoner’s
Dilemma. The ordering of the 4 payoffs is intuitive. The second condition is
required to make alternation of cooperation and defection worth less than
sustained cooperation. We will begin this section by exploring the violation
of that second constraint.

The Graduate School game is like Prisoner’s Dilemma, save that alter-
nating cooperation and defection scores higher, on average, than sustained
cooperation. The name is intended to refer to a situation in which both mem-
bers of a married couple wish to go to graduate school. The payoff for going to
school is higher than the payoff for not going, but attending at the same time
causes hardship. For the iterated version of this game, think of two preschool-
ers with a tricycle. It is more fun to take turns than it is to share the tricycle,
and both those options are better than fighting over who gets to ride. We will
use the payoff matrix given in Figure 6.9.

For the Graduate School game, we must redefine out terms. Complete co-
operation consists in two players alternating cooperation and defection. Par-

Player 2
C D

C (X,X) (S,R)Player 1
D (R,S) (Y,Y)

Fig. 6.8. General payoff matrix for Prisoner’s Dilemma. (Prisoner’s Dilemma re-
quires that S < Y < X < R and S + R < 2X.)

Player 2
C D

C (3,3) (0,7)Player 1
D (7,0) (1,1)

Fig. 6.9. Payoff matrix for the Graduate School game.

164 Evolutionary Computation for Modeling and Optimization

tial cooperation is exhibited when players both make the cooperative play
together. Defection describes two players defecting.

Experiment 6.10 Use the software from Experiment 6.7 with the payoff ma-
trix modified to play the Graduate School game. As in Experiment 6.5, save
the final ecologies. Also, count the number of generations in which an ecology
has a score above 3; these are generations in which it is clear there is complete
cooperation taking place. Answer the following questions.

(i) Is complete cooperation rare, occasional, or common?
(ii) Is the self-play string histogram materially different from that in Experi-

ment 6.6?
(iii) What is the fraction of the populations that have a dominant strategy?

A game is said to be optional if the players may decide whether they will or
will not play. Let us construct an optional game built upon Iterated Prisoner’s
Dilemma by adding a third move called “Pass.” If either player makes the play
“Pass,” both score 0, and we count that round of the game as not played. Call
this game Optional Prisoner’s Dilemma. The option of refusing to play has a
profound effect on Prisoner’s Dilemma, as we will see in the next experiment.

Experiment 6.11 Modify the software from Experiment 6.5 with n = 150 to
work on finite state automata with input and response alphabets {C, D, P}.
Scoring is as in Prisoner’s Dilemma, save that if either player makes the P
move, then both score zero. In addition to a player’s score, save the number of
times he actually played instead of passing or being passed by the other player.
First, run the evolutionary algorithm as before, with fitness equal to total
score. Next, change the fitness function to be score divided by number of plays.
Comment on the total level of cooperation as compared to the nonoptional
game and also comment on the differences between the two types of runs in
this experiment.

At this point, we will depart radically from Iterated Prisoner’s Dilemma to
a game with a continuous set of moves. The game Divide the Dollar is played
as follows. An infinitely wealthy referee asks two players to write down what
fraction of a dollar they would like to have for their very own. Each player
writes a bid down on a piece of paper and hands the paper to the referee. If
the bids total at most one dollar, the referee pays both players the amount
they bid. If the bids total more than a dollar, both players receive nothing.

For now, we will keep the data structure for playing Divide the Dollar
simple. A player will have a gene containing 6 real numbers (yes, we will
allow fractional cents). The first is the initial bid. The next 5 are the amount
to bid if the last payout p (in cents) from the referee was 0, 0 < p ≤ 25,
25 < p ≤ 50, 50 < p ≤ 75, or p > 75, respectively.

Experiment 6.12 Modify the software from Experiment 3.1 to work on the
6-number genome for Divide the Dollar given above. Set the maximum muta-
tion size to be 3.0. Use a population size of 36. Replace the fitness function

Evolving Finite State Automata 165

with the total cash a player gets in a round robin tournament with each pair
playing 50 times. Run 50 populations, saving the average fitness and the low
and high bids accepted in each generation of each population, for 60 genera-
tions. Graph the average, over the populations, of the per generation fitness
and the high and low bids.

Divide the Dollar is similar to Prisoner’s Dilemma in that it involves coop-
eration and defection: high bids in Divide the Dollar are a form of defection;
bids of 50 (or not far below) are a form of cooperation. Low bids, however, are
a form of capitulation, a possibility not available in Prisoner’s Dilemma. Also,
in Divide the Dollar the result of one player cooperating (say bidding 48) and
one defecting (say bidding 87) is zero payoff for both. From this discussion,
it seems that single moves of Divide the Dollar do not map well onto single
moves of Prisoner’s Dilemma. If we define cooperation to be making bids that
result in a referee payout, we can draw one parallel, however.

Experiment 6.13 Following Experiment 6.7, modify the software from Ex-
periment 6.12 so that it also saves the fraction of bids with payouts in each
generation. Run 30 populations as before and graph the average fraction of ac-
ceptance of bids per generation over all the populations. Modify the software
to use tournament selection with tournament size 6 and do the experiment
again. What were the effects of changing the tournament size? Did they par-
allel Experiment 6.7?

There is an infinite number of games we could explore, but we have done
enough for now. We will return to game theory in future chapters once we
have developed more artificial life machinery. If you have already studied game
theory, you will notice that the treatment of the subject in this chapter differs
radically from the presentation in a traditional game theory course. The ap-
proach is experimental (an avenue only recently opened to students by large,
cheap digital computers) and avoids lengthy and difficult mathematical analy-
ses. If you found this chapter interesting or entertaining, you should consider
taking a mathematical course in game theory. Such a course is sometimes
found in a math department, occasionally in a biology department, but most
often in an economics department.

Problems

Problem 220. In the Graduate School game, is it possible for a finite state
automaton to completely cooperate with a copy of itself? Prove your answer.
Write a paragraph about the effect this might have on population diversity as
compared to Prisoner’s Dilemma.

Problem 221. Suppose we have a pair of finite state automata of the sort
we used to play Prisoner’s Dilemma or the Graduate School game. If the
automata have n states, what is the longest they can continue to play before

166 Evolutionary Computation for Modeling and Optimization

they repeat a set of states and responses they were both in before. If we
were to view the pair of automata as a single finite state device engaged in
self play, how many states would it have and what would be its input and
response alphabets?

Problem 222. Take all of the one-state finite state automata with input and
response alphabets {C, D}, and discuss their quality as strategies for playing
the Graduate School game. Which pairs work well together? Hint: there are
8 such automata.

Problem 223. Essay. Explain why it is meaningless to speak of a single finite
state automaton as coding a good strategy for the Graduate School game.

Problem 224. Find an error-correcting strategy for the Graduate School
game.

Problem 225. Essay. Find a real-life situation to which Optional Prisoner’s
Dilemma would apply and write-up the situation in the fashion of the story
of the drug dealer and his customer in Section 6.2.

Problem 226. Are the data structures used in Experiments 6.12 and 6.13
finite state automata? If so, how many states do they have and what are their
input and response alphabets.

Problem 227. Is a pair of the data structures used in Experiments 6.12 and
6.13 a finite state automaton? Justify your answer carefully.

Problem 228. Essay. Describe a method of using finite state automata to
play Divide the Dollar. Do not change the set of moves in the game to a
discrete set, e.g., the integers 1–100, and then use that as the automaton’s
input and response alphabet. Such a finite state automaton would be quite
cumbersome, and more elegant methods are available. It is just fine to have the
real numbers in the range 0–100 as your response alphabet, you just cannot
use them directly as input.

Problem 229. To do this problem you must first do Problem 228. Assume
that misunderstanding a bid in Divide the Dollar consists in replacing the bid
b with (100 − b). Using the finite state system you developed in Problem 228,
explain what an error-correcting strategy is and give an example of one.

7

Ordered Structures

The representations we have used thus far have all been built around arrays
or vectors of similar elements, be they characters, real numbers, the ships’
systems from Sunburn, or states of a finite state automaton. The value at
one state in a gene has no effect on what values may be present at another
location, except for nonexplicit constraints implied by the fitness function.

In this chapter, we will work with ordered lists of items called permuta-
tions, in which the list contains a specified collection of items once each. Just
as we used the simple string evolver in Chapter 2 to learn how evolutionary
algorithms worked, we will start with easy problems to learn how systems for
evolving ordered genes work. The first section of this chapter is devoted to
implementing two different representations for permutations: a direct repre-
sentation storing permutations as lists of integers 0, 1, . . . , n varying only the
order in which the integers appear, and the random key representation, which
stores a permutation as an array of real numbers. To test these representa-
tions, we will use them to minimize the number of reversals in a permutation,
in effect to sort it, and to maximize the order of a permutation under compo-
sition.

The second section of the chapter will introduce the Traveling Salesman
problem. This problem involves finding a minimum-length cyclic tour of a set
of cities. The third section will combine permutations with a greedy algorithm
to permit us to evolve packings of various sizes of objects into containers with
fixed capacity; this is an interesting problem with a number of applications.

The last section will introduce a highly technical mathematical problem,
that of locating Costas arrays. Used in the processing and interpretation of
sonar data, some orders of Costas arrays are not known to exist. The author
would be overjoyed if anyone finding one of these unknown arrays would inform
him. The dependencies of the experiments in this chapter are given in Figure
7.1. Notice that there are several sets of experiments that do not share code.

The basic definition of a permutation is simple: an order in which to list
a collection of items, no two of which are the same. To work with structures
of this type, we will need a bit of algebra and a cloud of definitions.

168 Evolutionary Computation for Modeling and Optimization

Exp 7.1

Exp 7.2

Exp 7.7Exp 7.4 Exp 7.9 Exp 7.13Exp 7.10

Exp 7.12

Exp 7.11 Exp 7.14

Exp 7.16Exp 7.17

Exp 7.18

Exp 7.5 Exp 7.15

Exp 7.19

Exp 7.20

Exp 7.21

Exp 7.23

Exp 7.25

Exp 7.24

Exp 7.26

Exp 7.27

Exp 7.3 Exp 7.8Exp 7.6

Exp 7.22

Ch 13

1 Evolving permutations to maximize reversals.
2 Explore the impact of permutation and population size.
3 Evolve permutations to maximize the permutation’s order.
4 Change permutation lengths when maximizing order.
5 Stochastic hill-climber baseline for maximizing order.
6 Introducing random key encodings for reversals.
7 Maximizing order with random key encodings.
8 Introducing the Traveling Salesman problem.
9 Random-key-encoded TSP.
10 Adding more cities to the TSP.
11 Exploring the difficulty of different city arrangements.
12 Using random city coordinates.
13 Population seeding with the closest-city heuristic.
14 Population seeding with the random key encoding.
15 Closest-city and city-insertion heuristics.
16 Population seeding with the city-insertion heuristic.
17 Testing greedy packing fitness on random permutations.
18 Stochastic hill-climber for greedy packing fitness.
19 Evolving solutions to the Packing problem.
20 Exploring different cases of the Packing problem.
21 Problem case generator for the Packing problem.
22 Population seeding for the Packing problem.
23 Evolving Costas arrays.
24 Varying the mutation size.
25 Varying the crossover type.
26 Finding the largest size array you can.
27 Population seeding to evolve Costas arrays.

Fig. 7.1. The topics and dependencies of the experiments in this chapter.

Ordered Structures 169

Definition 7.1 A permutation of the set N = {0, 1, . . . , n−1} is a bijection
of N with itself.

Theorem 1. There are n! := n · (n − 1) · · · · · 2 · 1 different permutations of n
items.

Proof:
Order the n items. There are n choices of items onto which the first item

may be mapped. Since a permutation is a bijection, there are n − 1 items
onto which the second item may be mapped. Continuing in like fashion, we
see the number of choices of destination for the ith item is n − i + 1. Since
these choices are made independently of one another with past choice not
influencing present choice among the available items, the choices multiply,
yielding the stated number of permutations. �

Example 9. There are several ways to represent a permutation. Suppose the
permutation f is: f(0) = 0, f(1) = 2, f(2) = 4, f(3) = 1, and f(4) = 3. It can
be represented thus in two-line notation:(

0 1 2 3 4
0 2 4 1 3

)
.

Two line notation lists the set in “standard” order in its first line and in the
permuted order in the second line. One line notation,(

0 2 4 1 3
)
,

is two-line notation with the first line gone. Another notation commonly used
is called cycle notation. Cycle notation gives permutations as a list of disjoint
cycles, ordered by their leading items, with each cycle tracing how a group of
points are taken to one another. The cycle notation for our example is

(0)(1 2 4 3),

because 0 goes to 0, 1 goes to 2 goes to 4 goes to 3 returns to 1.
Be careful! If the items in a permutation make a single cycle, then it is

easy to confuse one-line and cycle notation.

Example 10. Here is a permutation of the set {0, 1, 2, 3, 4, 5, 6, 7} shown in
one-line, two-line, and cycle notation.

Two line: (
0 1 2 3 4 5 6 7
2 3 4 7 5 6 0 1

)
One line: (

2 3 4 7 5 6 0 1
)

Cycle:
(0 2 4 5 6)(1 3 7)

170 Evolutionary Computation for Modeling and Optimization

A permutation uses each item in the set once. The only real content of the
permutation is the order of the list of items. Since permutations are functions,
they can be composed.

Definition 7.2 Multiplication of permutations is done by composing them.

(f ∗ g)(x) := f(g(x)). (7.1)

Definition 7.3 The permutation that takes every point to itself is the iden-
tity permutation. We give it the name e.

Since permutations are bijections, it is possible to undo them, and so
permutations have inverses.

Definition 7.4 The inverse of a permutation f(x) is the permutation f−1(x)
such that

f(f−1(x)) = f−1(f(x)) = x.

In terms of the multiplication operation, the above would be written

f ∗ f−1 = f−1 ∗ f = e.

Example 11. Suppose we have the permutations in cycle notation f = (02413)
and g = (012)(34). Then

f ∗ g = f(g(x)) = (0314)(2),
g ∗ f = g(f(x)) = (0)(1423),
f ∗ f = f(f(x)) = (04321),
g ∗ g = g(g(x)) = (021)(3)(4),

f−1 = f−1(x) = (03142),

g−1 = g−1(x) = (021)(34).

Cycle notation may seem sort of weird at first, but it is quite useful. The
following definition and theorem will help you to see why.

Definition 7.5 The order of a permutation is the smallest number k such
that if the permutation is composed with itself k times, the result is the identity
permutation e. The order of the identity is 1, and all permutations of a finite
set have finite order.

Theorem 2. The order of a permutation is the least common multiple of the
lengths of its cycles in cycle notation.

Proof:
Consider a single cycle. If we repeat the action of the cycle a number of

times less than its length, then its first item is taken to some other member
of the cycle. If the number of repetitions is a multiple of the length of the

Ordered Structures 171

cycle, then each item returns to its original position. It follows that, for a
permutation, the order of the entire permutation is a common multiple of
its cycle lengths. Since the action of the cycles on their constituent points is
independent, it follows that the order is the least common multiple. �

Definition 7.6 The cycle type of a permutation is a list of the lengths of
the permutation’s cycles in cycle notation. The cycle type is an unordered
partition of n into positive pieces.

Example 12. If n = 5, then the cycle type of e (the identity) is 1 1 1 1 1. The
cycle type of (01234) is 5. The cycle type of (012)(34) is 3 2.

Max Max Max
n Order n Order n Order
1 1 13 60 25 1260
2 2 14 84 26 1260
3 3 15 105 27 1540
4 4 16 140 28 2310
5 6 17 210 29 2520
6 6 18 210 30 4620
7 12 19 420 31 4620
8 15 20 420 32 5460
9 20 21 420 33 5460
10 30 22 420 34 9240
11 30 23 840 35 9240
12 60 24 840 36 13,860

Table 7.1. The maximum order of a permutation of n items.

Table 7.1 gives the maximum order possible for a permutation of n items
(n ≤ 36). The behavior of this number is sort of weird, growing abruptly with
n sometimes and staying level other times. More values for the maximum
order of a permutation of n items may be found in the On Line Encyclopedia
of Integer Sequences [51].

Example 13. Here are some permutations in cycle notation and their orders.

172 Evolutionary Computation for Modeling and Optimization

Permutation Order
(012)(34) 6

(01)(2345)(67) 4
(01)(234)(56789) 30

(0123456) 7

Definition 7.7 A reversal in a permutation is any pair of items such that
in one-line notation, the larger item comes before the smaller item.

Example 14. Here are some permutations in one-line notation and their num-
bers of reversals.

Permutation Reversals
(012345678) 0
(210346587) 5
(160584372) 17
(865427310) 31
(876543210) 36

Theorem 3. The maximum number of reversals of a permutation of n items
is

n(n − 1)
2

.

The minimum number is zero.

Proof:
It is impossible to have more reversals than the number obtained when

larger numbers strictly precede smaller ones. In that case, the number of
reversals is the number of pairs (a, b) of numbers with a larger than b. There
are
(
n
2

)
such pairs, yielding the formula desired. The identity permutation has

no reversals, yielding the desired lower bound. �

Reversals and orders of permutations are easy to understand and simple
to compute. Maximizing the number of reversals and maximizing the order of
a permutation are simple problems that we will use to dip our toes into the
process of evolving permutations.

Definition 7.8 A transposition is a permutation that exchanges two items
and leaves all others fixed, e.g., (12)(3)(4) (cycle notation).

Theorem 4. Any permutation on n items can be transformed into any other
permutation on n items by applying at most n − 1 transpositions.

Proof:
Examine the first n − 1 places of the target permutation. Transpose these

items into place one at a time. By elimination, the remaining item is also
correct. �

Ordered Structures 173

7.1 Evolving Permutations

In order to evolve permutations, we will have to have some way to store them
in a computer. We will experiment with more than one way to represent them.
Our first will be very close to one-line notation.

Definition 7.9 An array containing a permutation in one-line notation is
called the standard representation.

While the standard representation for permutations might seem quite nat-
ural, it has a clear flaw. If we fill in the data structure with random numbers,
even ones in the correct range, it is easy to get a nonpermutation. This means
that we must be careful how we fill in the array and how we implement the
variation operators.

A typical evolutionary algorithm generates a random initial population.
Generating a random permutation is a bit trickier than filling in random
characters in a string, because we have to worry about having each list item
appear exactly once. The code given in Figure 7.2 can be used to generate
random permutations.

CreateRandomPerm(perm p,int n){//assume p is an array of n integers

int i,rp,sw; //loop index, random position, swap

for(i=0;i<n;i++)perm[i]=i; //fill in the identity permutation

for(i=0;i<n-1;i++){//for all entries
rp=random(n-i)+i; //get a random number in the range i..(n-1)

sw=p[i]; //swap the
p[i]=p[rp]; //current
p[rp]=sw; //and random entry

}

}

Fig. 7.2. Code for creating a random permutation of the list 0, 1, . . . , (n − 1) of
integers.

Now that we have a way of generating random permutations, we need
to choose the variation operators. The choice of variation operators has a
substantial impact on the performance of an evolutionary algorithm. Mutation
is easy; we will simply use transpositions.

174 Evolutionary Computation for Modeling and Optimization

Definition 7.10 A transposition mutation is the application of a trans-
position to a permutation. An n-transposition mutation is the application of
n transpositions to a permutation.

Crossover is a more challenging operation than mutation. If we try to apply
our standard crossover operator to permutations, there is a high probability
of destroying the property that each item appears only once in the list. The
following is a standard crossover operation for permutations.

Definition 7.11 A one-point partial preservation crossover of two per-
mutations in the standard representation is performed as follows. A single
crossover point is chosen. In each permutation, those items present at or be-
fore the crossover point are left untouched. Those items after the crossover
point also appear after the crossover point, but in the order that they appear
in the other permutation. This crossover operator produces two permutations
from two permutations but is fairly destructive.

Example 15. Let’s look at some examples of one-point partial preservation
crossover. All the permutations are given in one-line notation.

Crossover
Parents Point Children
(01234) 3 (01243)
(14320) (14302)
(03547612) 4 (03547126)
(73412065) (73410562)
(012345) 1 (012345)
(123450) (102345)

We now have sufficient machinery to perform a simple experiment with
evolving permutations. We will be looking for permutations with a large num-
ber of reversals.

Experiment 7.1 Either write or obtain code that can randomly generate per-
mutations and can apply transposition mutations and one-point partial preser-
vation crossover. Use the standard representation for permutations. Also ob-
tain or write code for computing the number of reversals in a permutation.
Using a population of 120 permutations write a steady-state evolutionary al-
gorithm using single tournament selection with tournament size 7 to evolve
permutations of 16 items to have a maximal number of reversals. The best
possible fitness in this case is 120.

Perform 100 runs each for probabilities of 0%, 50%, and 100% of using the
crossover operator and for using 0 or 1, 0 to 2, or 0 to 3 transposition muta-
tions on each new permutation, selecting the number of mutations uniformly
at random. Cut a given run off after 10,000 mating events. Report the mean
and standard deviation of time-to-solution, measured in mating events. Report
the number of runs that timed out (did not find an optimal solution in 10,000

Ordered Structures 175

mating events). State any differences in the behavior of time-to-solution for
the 9 different ways of using variation operators.

Maximizing reversals is a unimodal problem (see Problems 232 and 231).
In fact, it is a very nice sort of unimodal problem in which not only is there
only one hill, but there is a nonzero slope at every point. More precisely, any
transposition must change the fitness of a permutation. The next experiment
explores how much harder the problem of maximizing the number of reversals
gets as n grows.

Experiment 7.2 Run the software from Experiment 7.1 for all even permu-
tation lengths from n = 8 to n = 20 using the best of the 9 settings for variation
operators. Report the mean time-to-solution, the deviation of time-to-solution,
and the number of failures. Perform the experiment again for population size
14 instead of 120. Discuss your results.

Experiment 7.2 shows that the difficulty of maximizing reversals grows in a
convex fashion, but not an unmanageable one. This is related to the very nice
shape of the fitness landscape. Maximizing the order of a permutation has a
less elegant fitness landscape. Let’s repeat Experiment 7.1 for the problem of
maximizing the order of a permutation.

Experiment 7.3 Take the software from Experiment 7.1 and modify it to
evolve permutations of maximal order. Evolve permutations of 20 items (which
have a maximal order of 420 according to Table 7.1). Leave the other parame-
ters of the algorithm the same. Report the mean time-to-solution and standard
deviation of the time-to-solution for each of the 9 ways of using variation op-
erators. Compare with the results of Experiment 7.1. Also, check the permuta-
tions that achieve the maximum and report the number of distinct solutions.

Experiment 7.3 demonstrates that the problem of maximizing the order of
a permutation interacts with the variation operators in a very different fashion
from the problem of maximizing the number of reversals. Let’s check and see
whether the difficulty of the problem increases smoothly with the number of
items permuted.

Experiment 7.4 Run the software from Experiment 7.3 for all permutation
lengths from n = 20 to n = 30, using the best of the 9 settings for variation
operators. Report the mean time-to-solution, the standard deviation of time-to-
solution, and the number of failures. Get the correct maxima from Table 7.1.
Does the problem difficulty grow directly with the number of items permuted?

The preceding experiment should convince you that the fitness landscape
for the problem of maximizing a permutation’s order changes in an irregular
manner as the number of items permuted grows. In the next experiment, we
will try to learn more about the structure of the fitness landscape.

176 Evolutionary Computation for Modeling and Optimization

Experiment 7.5 Review Definition 2.17 of stochastic hill climbers. Build
a stochastic hill climber for locating permutations of high order with single
transposition mutations that accepts new configurations that are no worse. Run
the algorithm 100 times for 100,000 mutations per trial on permutations of
length 22, 24, and 27. Report the fraction of the time that the final configuration
was of maximal order and make a histogram of the frequency with which each
order located was found. Explain the results.

Experiment 7.5 uses software that can climb only up (or around) a hill. It
has no ability to go downhill or to jump to another nearby hill. This means
that it can be used to locate local optima of the search space and give you
some notion of how hard it is to fall into them. Unlike maximizing the number
of reversals, the order maximization has places in which you can get stuck. In
spite of this, Experiment 7.4 should have convinced you that it is not a very
hard problem. We will explore this juxtaposition of qualities in the Problems.

Random Key Encoding

It has already been noted that performing crossover on two permutations as
if they were strings often yields nonpermutations. One-point partial preserva-
tion crossover is a way of crossing over permutations that works but seems, at
least intuitively, to be a fairly disruptive operator. The issue of how to code
a permutation in order to evolve it is another example of the representation
issue. James Bean [11] came up with a pretty clever way of coding permuta-
tions as an array of real numbers like those used in Chapter 3. His technique
is called a random key encoding.

In this case the word key is used to mean sorting key. A sorting key is a
field in a database used to sort the records of the database. You might sort a
customer database by customer’s last name for billing and later by total sales
to figure out whom to have your salesmen visit. In the first instance, the name
is the sorting key; in the second, total sales is the sorting key.

If we generate a list of n random real numbers, then there is some per-
mutation of those n numbers that will sort the numbers into ascending order.
The random list of numbers, treated as a list of sorting keys, specifies a per-
mutation. So: why bother? If we specify our permutations as the sorting order
of lists of real numbers, then we can use the standard variation operators for
arrays of real numbers that we defined in Chapter 3. This, at least, yields a
new sort of crossover operator for permutations, and in some cases may yield
superior performance. Let’s do some examples to explain this new encoding
for permutations.

Example 16. For a selection of numbers placed somewhat randomly in an ar-
ray, let’s compute the permutation that sorts them into ascending order:

Random key: 0.7 1.2 0.6 4.5 −0.6 2.3 3.2 1.1
Permutation: 2 4 1 7 0 5 6 3

Ordered Structures 177

Notice that this permutation simply labels each item with its rank.

Definition 7.12 The random key encoding for permutations operates by
storing a permutation implicitly as the sorting order of an array of numbers.
The array of numbers is the structure on which crossover and mutation oper-
ate. The random key encoding is another representation for permutations.

This encoding for permutations has some subtleties. First of all, notice
that if two numbers in the random key are equal, then we have an ambiguous
result. We will break ties by letting the first of the two equal numbers have
the smaller rank. If we use a random number generator that generates random
numbers in the range (0, 1), then the probability of two numbers being equal
is very close to zero, and so this isn’t much of a problem.

A more important subtle feature of this encoding is its ability to have
multiple inequivalent encodings for the same permutation. Notice that we can
change the value of a key by a small amount and not change the permutation.
We simply avoid changing the relative order of the numbers. Such a small
change could change a number enough to change where it showed up in a new
permutation after crossover. In other words, when we use random key encoding
of permutations, there are mutations that do not change the permutation, but
which do change the results when the permutation undergoes crossover. This
is not good or bad, just different. For a given problem, random key encoding
may be better or worse than the standard representation of permutations
defined earlier in the chapter. Let’s perform some comparisons.

Experiment 7.6 Either write or obtain code that implements random key
encoding for permutations. Use it instead of the standard representation with
the software of Experiment 7.1. Initialize the random keys from the range
(0, 1). Use two-point crossover of the random keys and uniform single-point
mutation of size 0.1. Perform the experiment with the random key modifica-
tions and compare with the results obtained using the standard representation.
Discuss the pattern of differences in your write-up.

Since changing the representation to random key encoding should impact
different problems to different degrees, we should test it on multiple problems.

Experiment 7.7 Modify the software from Experiment 7.6 to evolve per-
mutations of maximal order. Evolve permutations of 20 items (which have a
maximal order of 420 according to Table 7.1), but leave the other parameters
of the algorithm the same. Report the mean time-to-solution and the stan-
dard deviation of the time-to-solution for each of the 9 settings for variation
operators. Compare with the results of Experiment 7.3. Also, check the permu-
tations that achieve the maximum and report the number of distinct solutions.
Did the shift in the encoding make a noticeable change?

We will look again at random key encodings in the later sections of this
chapter and compare their performance on applied problems. There is a large

178 Evolutionary Computation for Modeling and Optimization

number of possible encodings for permutations, and we will examine another
in the Problems.

Problems

Problem 230. What is the order of a permutation of n items that has a
maximal number of reversals? Prove that the permutation in question, the
one maximizing the number of reversals, is unique among permutations of
0, 1, . . . , n − 1.

Problem 231. Perform the following study to help you understand the fit-
ness landscape for the problem of maximizing the number of reversals in a
permutation. Generate 10,000 random permutations of 12 items and perform
the following steps for each permutation: compute the number of reversals,
perform a single transposition mutation, and compute the change in the num-
ber of reversals. Make a histogram of the number of reversals times the number
of changes.

Problem 232. Prove the following statements:

(i) A transposition must change the number of reversals by an odd number.
(ii) The maximum change in the number of reversals caused by a transposition

applied to a permutation of n items is 2n − 3.
(iii) The fitness landscape for Experiment 7.1 is unimodal. Hint: find an uphill

path of transpositions from any permutation to the unique answer located
in Problem 230.

Problem 233. Given the cycle type as an unordered partition k1, k2, . . . , km

of n into positive pieces, find a formula for the number of permutations of
that type. (This is a very hard problem.)

Problem 234. List all possible cycle types of permutations of 0, 1, . . . , 5 to-
gether with the number of permutations with each cycle type. Recall that the
total number of permutations is 5!=120.

Problem 235. Compute the number of cycle types for permutations of 10
items that yield permutations of order 6.

Problem 236. For n=3, 5, 7, 9, 11, 13, and 15, find a cycle type for a per-
mutation that hits the maximum order given in Table 7.1.

Problem 237. Find the smallest n for which the cycle type of a permutation
that hits the maximum order given in Table 7.1 is not unique, i.e., the smallest
n for which there are multiple cycle types that attain the maximum order.

Problem 238. Is there a permutation that has the following properties?

(i) The permutation does not have the largest possible order.

Ordered Structures 179

(ii) Every application of a transposition to the permutation yields a permu-
tation with a smaller order.

Discuss such a permutation in the context of Experiment 7.5 whether or not
it exists.

Problem 239. Essay. Experiment 7.5 can be used to document the existence
of local optima in the search space, when we are trying to find permutations
of maximum order. In spite of the existence of these local optima, the evolu-
tionary algorithm typically succeeds in finding a member of the global optima.
Describe, to the best of your ability, the global optima of the search space.
Hint: figure out why the maximum order is 420 for permutations of 19, 20, 21,
and 22 items, keeping firmly in mind that there is not a unique permutation
with maximum order.

Problem 240. Give an example of three random key encodings of permu-
tations of 5 items such that the first two encode the same permutation, but
when the first one is crossed over with the third , it yields a different per-
mutation than when the second one is crossed over with the third (using the
same two-point crossover).

Problem 241. Is it possible to cross over two random key encodings of the
same permutation and get new random key encodings of a different permu-
tation? If your answer is yes, give an example; if your answer is no, offer a
mathematical proof.

Problem 242. Consider the type of mutation used on random key encodings
in Experiment 7.6. It is possible for such a mutation to fail to change the
permutation that the random key encodes. True or false: if it does change
the permutation, that change will be a transposition. Offer a proof of your
answer.

Problem 243. Suppose that we have two mutation operators for random key
encodings that behave as follows. The first picks a location at random and
then finds the next-smallest number to the one in that location, if it exists.
If the number picked is the smallest, the mutation does nothing; otherwise,
it decreases the number in the chosen location by half the difference between
it and the next-smallest number. The second mutation is very like the first,
save that it finds the next-largest number and increases the number in the
chosen location by half the difference between it and the next-largest number.
Notice that these mutations are neutral in the sense that they do not change
the permutation encoded. What effect do they have?

Problem 244. Essay. As given in Experiment 7.6, the mutation operator
permits the values of random keys to grow or shrink outside their initialized
ranges. What effect does having a very large (or large negative) value have on
the permutation the random key encodes? Discuss this in the context of the
fitness functions of Experiments 7.6 and 7.7.

180 Evolutionary Computation for Modeling and Optimization

Problem 245. Essay. Suppose we do some large number of evolutionary
algorithm runs for a problem using a random key encoding of permutations.
Suppose that some positions within the permutation are uniformly large (or
have large negative values) across all populations, while others have small
mean values over all populations. Discuss what, if any, useful information can
be gleaned from these observations about solutions to the problem in general.

Problem 246. Prove that the initialization for permutations used in Exper-
iment 7.6 is fair in the sense that all permutations have an equal chance of
being selected.

Problem 247. Prove that any permutation of the set {0, 1, . . . , n − 1} is the
product of transpositions of the form (0 i) for 1 ≤ i ≤ n − 1. Let those
transpositions be represented by the symbols a1, a2, . . . , an−1. If we use strings
over this collection of symbols, can we then evolve permutations using a string
evolver?

Problem 248. For the representation of permutations given in Problem 247,
compute the length of string needed to permit any permutation to be repre-
sented.

Problem 249. Is the encoding defined in Problem 247 fair, in the sense the
word is used in Problem 246? Prove your answer.

Problem 250. The set of transpositions used to create an (n−1)-symbol rep-
resentation for permutations in Problem 247 is an instance of a more general
method. True or false: there is a binary string representation for permutations
that uses only two permutations. This would require that all permutations be
generated as a product of those two permutations repeated in some order.
Prove your answer.

7.2 The Traveling Salesman Problem

The Traveling Salesman problem is a classic optimization problem. It is typ-
ically phrased as follows: “Given a collection of cities for which the cost of
travel between each pair of cities is known, find an ordering of the cities that
lets a salesman visit the cities cyclically with minimum cost.” If the cost of
travel is dynamic, as with airline tickets, this problem can become difficult to
even think about. The Traveling Salesman problem is usually abstracted into
the following simpler form.

Definition 7.13 The Traveling Salesman Problem. Given a set of points
in the plane, find an order that minimizes the total distance involved in a cyclic
tour of the points.

Ordered Structures 181

Two examples of such tours, with integer-valued coordinates for the cities,
are shown in Figure 7.3. Notice in the second example that some very close
links between pairs of cities are not used. The Traveling Salesman problem is
an NP-hard problem and one of substantial economic importance. Such prob-
lems are typical applications of evolutionary computation. In this section, we
will work with small examples with 16 or fewer cities in which the evolution-
ary algorithm is only slightly better than a brute-force exhaustive search. In
real-world applications, the number of cities can range up into the thousands.

City Position City Position
A (1, 93) G (12, 39)
B (45, 75) H (47, 38)
C (29, 18) I (8, 27)
D (87, 18) J (88, 73)
E (50, 5) K (50, 75)
F (23, 98) L (98, 75)

City Position City Position
A (10, 90) H (32, 33)
B (48, 35) I (28, 60)
C (76, 50) J (98, 85)
D (56, 35) K (10, 10)
E (34, 20) L (34, 52)
F (68, 52) M (1, 92)
G (42, 28)

Fig. 7.3. Coordinates for two Traveling Salesman tours and pictures of their cor-
responding optimal tours. (The first has 12 cities that have an optimal Traveling
Salesman tour with length 355.557; the second comprises 13 cities with optimal tour
length 325.091.)

Different instances of the Traveling Salesman problem on the same number
of cities can have varying difficulty. Compare the 13-city example in Figure 7.3
with one having the 13 cities arranged in a circle. The spike-like feature in the
lower left of the picture of the tour contains cities that are close together and
yet are not neighbors in the optimal tour. This means that a simple algorithm
that starts at a random city and then jumps to the closest city not already
part of the tour could get stuck on this example, while it would solve 13 cities
in a circle correctly no matter where it started. Let’s check and see whether
these two cases look different to an evolutionary algorithm.

182 Evolutionary Computation for Modeling and Optimization

Before we build the evolutionary algorithm, there is one important point
to make. For evaluating permutations as Traveling Salesman tours, we will
use cycle notation, always with only one cycle. This looks very much like
one-line notation, but it isn’t. Using one-line notation would not be a good
idea, because it would be so easy to accidently mutate a tour into one with
multiple independent cycles. Keeping this in mind, let’s do out first Traveling
Salesman experiment.

Experiment 7.8 Take the software from Experiment 7.1 and modify the
fitness function to be the length of the Traveling Salesman tour a permutation
produces on the 13-city example given in Figure 7.3. For each of the 9 ways of
using variation operators, report a 95% confidence interval on the number of
mutating events to solution. Selecting the best of these 9, rerun the software
on a 13-city tour with the 13 cities placed equally around a circle of radius 45
centered at (50, 50). You must compute the length of this tour yourself. Using
95% confidence intervals, compare the time-to-solution for the two problem
cases.

When possible, it is good to make immediate checks to see whether rep-
resentation has an impact on a given problem. Random key encoding is the
“competing” encoding so far in this chapter. Let’s check it on the current
problem.

Experiment 7.9 Modify the software from Experiment 7.8 to optionally use
random key encoding. Using the combination of crossover probability and mu-
tation type you found to work best, redo the experiment. Compare the 95%
confidence intervals for the original and random key encodings. Is there a
significant performance difference?

In Experiments 7.2 and 7.4 we tried to estimate the degree to which a
problem gets more difficult when made longer. For the Traveling Salesman
problem, this is quite tricky, because the individual problems vary consider-
ably in difficulty. Let’s examine the degree to which the problem gets harder
as it gets longer for a specific set of relatively easy instances: cities in a circle.

Experiment 7.10 Use the software from Experiment 7.8 at its most efficient
settings. For n = 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, and 16, arrange n cities so that
they are equally spaced around a circle of radius 45 with center (50, 50). Note
that computing the length of the tour is part of the work of setting up the
experiment. Perform at least 100 runs per instance, more if you can. Compute
the mean time-to-solution with a 95% confidence interval. Plot the confidence
intervals on the same set of axes. Check your results against Figure 7.4.

The difficulty of solving a given instance of the Traveling Salesman problem
varies. Examine the solved examples shown in Table 7.2, which are visualized
in Figure 7.5. Discuss in class, if possible, what sorts of traps might be lurking
in the examples that would make them especially difficult.

Ordered Structures 183

0

200

400

600

800

1000

1200

6 8 10 12 14 16

Time to Solution

Fig. 7.4. Confidence intervals for time-to-solution for simple circular tours used in
Experiment 7.10.

Experiment 7.11 Before performing the computational portion of this ex-
periment, predict which of the examples given in Table 7.2 are more or less
difficult and your reason for thinking so. Using the software from Experiment
7.9 on its most efficient settings, perform 400 runs for each of the examples
on 16 cities given in Table 7.2. Plot 95% confidence intervals for the time-to-
solution. Discuss the result in light of your predictions.

The issue of the level of difficulty of particular instances of the Traveling
Salesman problem is a tricky one. What makes an instance difficult? The next
experiment will generate some clues for answering this question.

Experiment 7.12 In this experiment we will examine instance complexity
(the difficulty of particular instances) of the Traveling Salesman problem. Ide-
ally we would like to generate random instances and check their complexity;
this requires we know the actual minimal tour length. We don’t know it, so
we will have to approximate it. Generate 10 random TSP problems with 12
cities. Let the coordinates of the cities be random in the range [5, 95]. Use the
software from Experiment 7.11 to perform 100 runs each on these cities with
the software set to run a full 20,000 mating events. Take the best final result as
your estimate of the “true” minimum tour length. If a whole class is running
the experiment, compile and exchange results to find best tour lengths. Now,
run the software on the tours again, but this time use your estimates of the
best lengths so that the software can stop when it finds the “correct” solution.
Run the software 400 times in this second set of runs. Plot 95% confidence

184 Evolutionary Computation for Modeling and Optimization

(A) (B)

(C) (D)

(C) (D)
Fig. 7.5. Visualizations of tour solutions for the test problems given in Table 7.2.

Ordered Structures 185

Ex Length City coordinates
A) < 307 (57, 20) (93, 6) (33, 76) (86, 83)

(85, 70) (73, 31) (40, 94) (71, 16)
(66, 67) (14, 46) (65, 40) (78, 32)
(26, 42) (81, 32) (33, 75) (61, 38)

B) < 343 (85, 20) (54, 21) (5, 70) (40, 32)
(69, 74) (72, 89) (85, 12) (83, 37)
(86, 44) (78, 30) (42, 51) (80, 35)
(50, 49) (48, 92) (5, 16) (28, 41)

C) < 315 (66, 79) (89, 14) (88, 25) (51, 63)
(70, 55) (87, 56) (62, 23) (90, 22)
(31, 61) (49, 61) (71, 22) (11, 90)
(59, 32) (81, 13) (12, 47) (7, 30)

D) < 304 (91, 44) (91, 44) (15, 10) (58, 43)
(39, 70) (81, 83) (34, 66) (29, 76)
(84, 35) (40, 52) (73, 22) (92, 60)
(74, 32) (35, 48) (15, 65) (35, 46)

E) < 261 (95, 50) (83, 64) (64, 64) (56, 65)
(50, 80) (33, 91) (21, 79) (28, 59)
(35, 50) (28, 41) (21, 21) (33, 9)
(50, 20) (56, 35) (64, 36) (83, 36)

F) < 325 (95, 50) (72, 59) (64, 64) (67, 91)
(50, 80) (44, 65) (21, 79) (17, 64)
(35, 50) (17, 36) (21, 21) (44, 35)
(50, 20) (67, 9) (64, 36) (72, 41)

Table 7.2. A collection of 16-city examples of the Traveling Salesman problem.
(Solutions are visualized in Figure 7.5.)

intervals for the time to solution. Are there disjoint intervals? How did the
random problem compare to the circle of 12 cities from Experiment 7.11?

Population seeding is a standard practice in evolutionary computation to
generate smart initialization strategies. Population seeding consists in finding
superior genes and incorporating them into the initial population. The supe-
rior genes are supposed to supply good pieces that can be mixed and matched
by the algorithm. There is a real danger that population seeding will start
the algorithm at a local optimum and get it stuck there. The superior genes
may come from any source, and in this case, we will use greedy algorithms to
generate them.

Definition 7.14 A greedy algorithm is one that makes an immediate
choice that is the best possible without looking at the overall situation.

Algorithm 7.1 Closest-city heuristic

Input: A list of cities given as points in the plane and a starting city
Output: A Traveling Salesman tour on the cities

186 Evolutionary Computation for Modeling and Optimization

Details:
Let the current end of the tour be the starting city.
While cities remain:

Find the city outside the tour closest to its end.
Add that city to the tour as its new end.

End(While)
Complete the tour by connecting the first and last cities.

Experiment 7.13 Modify the software from Experiment 7.8 to use popula-
tion seeding. Generate the closest-city heuristic tour (Algorithm 7.1) for each
of the 13 possible starting points and add those 13 tours into the starting
population. Perform all 9 sets of runs for the different settings of variation
operators. Did the population seeding help? Did a different combination of
settings for variation operators work best?

Random key encoding translates an array of random real numbers into
a permutation. If we are going to use population seeding with random key
encoding, we must be able to generate random key encodings that yield spe-
cific permutations. It is important that while doing this, we do not bias the
random key. Recall that changes to the random key that do not change the
permutation encoded can still have an effect (see Problems 240, 241). Before
doing the next experiment, do Problem 258.

Experiment 7.14 Modify the software from Experiment 7.13 to use random
key encoding. Perform all 9 sets of runs for the different settings of variation
operators. Compare your results with those from Experiments 7.8 and 7.13.

A technique that is part of the standard toolkit for general problem-solving
is to break a problem into parts and solve it one piece at a time. Algorithm
7.1 is an example of this technique: you make a sequence of simple decisions.
With the Traveling Salesman problem, the attempt to break up the problem
into pieces makes some globally bad decisions, a topic we will explore in the
Problems. Let’s look at another method of breaking up the problem.

Algorithm 7.2 City-insertion heuristic

Input: A list of cities given as points in the plane
Output: A Traveling Salesman tour on the cities
Details:

Select 3 cities at random and make a triangular tour.
While cities remain outside the tour:

Pick a city at random.
For each adjacent pair in the tour,

compute the sum of distances from the pair to the selected city.
Insert the city between the adjacent pair with least joint distance.

End(While)

Ordered Structures 187

Before we do an evolutionary experiment with the second heuristic, let’s
compare the performance of the two heuristics.

Experiment 7.15 For the 6 tours on 16 cities given in Table 7.2, compare
the performance of Algorithms 7.1 and 7.2. Run Algorithm 7.1 once for each
possible starting city, and run Algorithm 7.2 1000 times on each example.
Report the mean and best results for each algorithm.

Now, with a sense of their relative merit as stand-alone heuristics, let us
compare the two heuristics as population seeders.

Experiment 7.16 Modify the software from Experiments 7.13 and 7.14 to do
their population seeding using Algorithm 7.2. Use the crossover and mutation
settings that worked best (which may be different for the two experiments), and
perform the experiments again. Seed 13, 30, and 60 tours produced with Algo-
rithm 7.2 into the initial population. The 13-seed runs permit direct compari-
son. Does use of the new seeding heuristic have an impact? Does the number
of seeded population members have an impact? Explain your results.

The Traveling Salesman problem is an applied problem and a hard prob-
lem. As Experiment 7.12 shows, the Traveling Salesman problem has a fit-
ness landscape that changes from problem instance to problem instance.
There is an enormous body of research on the Traveling Salesman prob-
lem, and many publications on evolutionary algorithms have the Travel-
ing Salesman problem as their main focus. Many other techniques besides
evolutionary algorithms are used to attack the problem. If the brief in-
troduction in this section interests you, there is endless reading ahead. A
good resource is the TSPBIB Home Page assembled by Pablo Moscato
(www.ing.unlp.edu.ar/cetad/mos/TSPBIB home.html). Making a real con-
tribution to the Traveling Salesman literature is difficult (because so many
clever people are there ahead of you), but worthwhile, because improvement
in the algorithm has practical applications that save people money.

Problems

Problem 251. Demonstrate that each optimal Traveling Salesman tour on n
cities has 2n different versions in one-line notation. Give a normalization (a
transformation of any of these tours into a unique representative) that picks
out a unique way of writing the tour.

Problem 252. Essay. As we say in the experiments in this section, the case
of cities arranged in a circle is a very easy one. Real cities often are located
in river valleys. Suppose we have a branching system of rivers with cities only
along the rivers. Would you expect this sort of problem to be about as easy as
the circle example, or much harder? Would you expect this sort of problem to
be easier than, on a par with, or much harder than random problems generated
in a manner similar to that used in Experiment 7.12.

188 Evolutionary Computation for Modeling and Optimization

Problem 253. Suppose that we start with 4 cities in the corners of a square
with side length 1 and coordinates (0, 0), (0, 1), (1, 0), (1, 1). Consider a fifth
city anywhere in the Cartesian plane with coordinates (x, y). Let f(x, y) be
the length of an optimal Traveling Salesman tour on the 5 cities. Answer the
following questions:

• Is f(x, y) continuous?
• Describe for which points f(x, y) is differentiable and for which it is not.
• Sketch the set of points where f(x, y) is not differentiable.

Problem 254. Build an exhaustive searcher that can locate the true minimal
tour length for a given collection of cities. Hint: use the results of Problem
251. Generate 1000 random examples with 8 cities that have their coordinates
chosen uniformly at random from the interval [5, 95], and compute their cor-
rect minimal tour length by exhaustion. Plot the results as a histogram. What
type of distribution is it?

Problem 255. Suppose we were to place cities uniformly at random within
a circle of radius R. Give and defend a bound on the maximum length of
the shortest tour involving both the radius and the number of cities. This is
a funny problem in that we want to know the maximum, over all possible
examples, of the minimum tour length. You may want to try some numerical
examples, but your final answer must be defended by logic in a mathematical
fashion. (This is a hard problem.)

A B

C
D

Problem 256. Suppose that 4 cities are configured as shown above as part
of a Traveling Salesman tour. Prove that the other two ways to connect the
4 cities (A-B C-D and A-C B-D) yield shorter total distance for the two trip
legs involving these 4 cities. Is it always possible to change to one of the other
two connections of A, B, C, and D without breaking the tour into two pieces?

Problem 257. Suppose you have a predicate that can detect the crossing of
two line segments. Describe a mutation operator based on Problem 256, and
perform a cost-benefit analysis in a few sentences.

Problem 258. Verify that the following procedure for converting a permuta-
tion into a random key is correct and unbiased. Assume that we are creating a
random key to encode a permutation f(i) on n items. Generate an array of n
uniformly distributed random numbers and sort it. The random key will use

Ordered Structures 189

the values in this array. Going through the permutation, place the ith item of
the sorted array into the f(i)th position in the random key. You must show
two things: that this procedure generates a random key that encodes f(i) (is
correct), and that the key is chosen uniformly at random from among those
that encode f(i) (is unbiased). If either of these properties does not hold,
document the flaw and repair the procedure.

Problem 259. Consider the following collection of points in the plane:

(0, 0), (2, 2), (4, 0), (6, 2), (8, 0), (10, 2), (12, 0), (14, 2).

Compute a tour resulting from applying Algorithm 7.1, and, also compute the
optimal tour.

Problem 260. Implement Algorithm 7.2 and run it several times on the col-
lection of points given in Problem 259. Compare with the optimal tour and
the result of using Algorithm 7.1.

Problem 261. What is the largest number of distinct answers that Algorithm
7.1 produces for a given n-city tour selected at random?

Problem 262. Essay. Contrast and compare Algorithms 7.1 and 7.2. Ad-
dress the following issues. Are there obvious mistakes that each of these algo-
rithms makes? Which of these algorithms are deterministic? Which of these al-
gorithms exhibits superior performance on its own? Does superior stand-alone
performance lead directly to improved performance in a seeded evolutionary
algorithm?

Problem 263. Essay. There is a saying that “you can’t make money without
spending money,” and in fact, most methods of making a lot of money require
investment capital of some sort. A counterexample to this principle is the
fortune of J. K. Rowling, author of the fantastically popular Harry Potter
series. At the time of this writing, the author’s fortune exceeds that of the
Queen of England, and yet the total investment in producing the first book was
quite modest. Keeping these two different notions of wealth creation in mind,
comment on the worth and impact of improving performance on the Traveling
Salesman problem. There is economic impact from such improvements: what
sort of capital investment do such improvements require? Is the process of
improving algorithmic performance on the Traveling Salesman problem more
like that of a venture capitalist or a successful author? Explain.

Problem 264. Create and test your own Traveling Salesman heuristic as a
stand-alone tool using the solved examples in this section. Compare it with
the two heuristics given.

190 Evolutionary Computation for Modeling and Optimization

7.3 Packing Things

This section will treat the problem of packing generic objects in generic con-
tainers. The packing will be performed by a greedy algorithm that is controlled
by an evolved permutation. This problem is easier, on average, than the Trav-
eling Salesman problem because an optimal solution often has many forms.

Let’s describe the basic greedy algorithm that we will subsequently modify
into a fitness function.

Algorithm 7.3 Greedy Packing Algorithm

Input: A set of n indivisible objects G of sizes g1, g2, . . . , gn and a
set C of k containers of sizes c1, c2, . . . , ck

Output: An assignment of objects to containers and a list of objects
that fit in no container
Details:

Taking the objects in the order presented, assign an item to
the first container with sufficient space remaining for it. When an
object is assigned to a container, subtract the object’s size from the
container’s capacity. Objects that cannot fit in a container, when
their turn comes up to be assigned, are put in the group that fit in
no container.

Definition 7.15 The excess is the sum of the sizes of the objects that fit in
no container.

In order to make the algorithm clear, we will trace it in an example.

Example 17. Suppose we have 6 objects of sizes 20, 40, 10, 50, 40, and 40,
and 2 containers of sizes 100 and 100. Then, as we assign the objects to
the containers, the remaining capacity in the containers will behave in the
following fashion:

Good number Capacity 1 Capacity 2 Excess Assigned to
-start- 100 100 0

1 80 100 0 1
2 40 100 0 1
3 30 100 0 1
4 30 50 0 2
5 30 10 0 2
6 30 10 40 excess

Notice that the greedy algorithm did not do a good job. Since 20+40+40 = 100
and 10 + 40 + 50 = 100, all the objects could have been packed (and would
have if they had been presented in a different order).

Ordered Structures 191

With this example in hand, it is possible to describe a fitness function
for permutations that permits us to search for good assignments of objects
to containers. In the example, we could have achieved a better packing by
presenting the objects in a different order. Since permutations specify orders,
we can improve the greedy algorithm by having a permutation reorder the
objects before they are presented to it.

Definition 7.16 The greedy packing fitness of a permutation σ for a
given set of objects g1, g2, . . . , gn and a given set of containers of sizes
c1, c2, . . . , cn is the excess that results when the algorithm is applied with the
objects presented in the order gσ(1), gσ(2), . . . , gσ(n). This fitness function is to
be minimized for efficient packing.

At this point, we need some example problems. A problem consists of
a number of containers, the sizes of those containers, a number of objects,
and the sizes of those objects. Table 7.3 gives 9 examples chosen for varying
size and difficulty. In general, size and difficulty increase together, but not
always. While there is no requirement that the objects available exactly fill
the containers, all the examples given in Table 7.3 have this property. Let’s
start by getting a handle on the relative difficulty of these experimental cases.

Experiment 7.17 For each of the 9 experimental cases given in Table 7.3,
build or obtain software to randomly generate permutations until one is found
with a greedy packing fitness of 0. One run of this software is called a trial.
Write the software to stop if it must examine more than 20,000 permutations.
If no permutation is found that has an excess of 0 after 20,000 permutations
are examined, record the trial as a failure; otherwise, record it as a success.
The number of permutations examined before a trial succeeds is its length.
The length of failures is undefined. For each of the 9 cases given, perform 400
trials. Report the number of failures and the mean and standard deviation of
the lengths of successful trials.

Experiment 7.18 Modify the code from Experiment 7.17 to perform trials
in a different manner: as a stochastic hill climber (see Definition 2.17). Start-
ing with a random permutation, the software should apply a mutation and
save the result if it is no worse (has no larger excess) than the current per-
mutation. For each of the cases given in Table 7.3, run 4 different stochastic
hill climbers, 400 times each. The 4 stochastic hill climbers should use (i) the
standard representation with single transposition mutation, (ii) the standard
representation with double transposition mutation, (iii) the random key encod-
ing with single-point mutation as in Experiment 7.6, and (iv) the random key
encoding with two-point mutation. Record the number of successes and failures
for each case and type of stochastic hill climber.

As we saw in Section 2.6, the stochastic hill climber can be used to esti-
mate the roughness of the “terrain” in a fitness landscape. Since the current

192 Evolutionary Computation for Modeling and Optimization

Case Containers Sizes Objects Sizes
1 3 100(3) 12 39, 37, 34, 33, 28, 25, 23, 22, 19, 17,

15, 8
2 4 100(4) 14 60, 40, 39, 37, 34, 33, 28, 25, 23, 22,

19, 17, 15, 8
3 5 100(5) 23 60, 55, 50, 45, 40, 30, 25(2), 20,

13(2), 12(2), 11(5), 9(5)
4 6 100(6) 20 56, 55, 54, 53, 52, 51, 49, 24(3),

23(3), 22(2), 9(5)
5 7 100(7) 22 60, 59, 58, 57, 56, 49, 48, 46, 36, 27,

26, 25, 24, 22, 21, 20, 19, 15, 14, 7,
6, 5

6 7 100(7) 22 60, 59, 58, 57, 56, 49, 48, 46, 36, 27,
26, 25, 24, 22, 21, 20, 19, 15, 14, 7,
6, 5

7 7 100(7) 22 65, 56(2), 55, 54, 53, 52, 47, 38, 25,
24(2), 23(3), 22, 13, 11, 9(4)

8 6 100(5), 200 22 65, 56(2), 55, 54, 53, 52, 47, 38, 25,
24(2), 23(3), 22, 13, 11, 9(4)

9 5 100(3), 200(2) 22 65, 56(2), 55, 54, 53, 52, 47, 38, 25,
24(2), 23(3), 22, 13, 11, 9(4)

Table 7.3. Examples of containers and objects for the Packing problem. (Numbers
in parentheses indicate the number of containers or objects of a given size.)

permutation is never allowed to increase its excess, the hill climber tends to
find the top of whatever hill it started on. The key observation is that the hills
do not exist in the space of permutations alone. Rather, the hills are created
by the connectivity induced by the mutation operators. This means that Ex-
periment 7.18 may well have predictive value for the best representation and
mutation operator to use in our evolutionary algorithms.

Experiment 7.19 Modify the code from earlier experiments that evolve per-
mutations using either the standard representation of permutations with one-
point partial preservation crossover and one-point transposition mutation, or
using the random key encoding with two-point crossover and single-point mu-
tation as in Experiment 7.6. Using all 4 types of evolutionary algorithms on
Cases 1 through 5 of the Packing problem given in Table 7.3, compute the
mean time-to-solution, standard deviation of time-to-solution, and the num-
ber of times the algorithms failed to find a solution. Use initial populations
of 200 permutations and evolve for at most 100,000 mating events using a
steady-state algorithm. Use single tournament selection with tournament size
7. Compare the two methods. If you performed Experiment 7.18, check and
see whether the stochastic hill climber was predictive of the behavior of the
evolutionary algorithms.

Ordered Structures 193

Cases 1 through 5 in Table 7.3 can all be solved in a reasonable amount
of time by the stochastic hill climber (if it hits the right hill), and so are
reasonable targets for any of the evolutionary algorithms in Experiment 7.19.
Cases 6 through 9 are all variations of one basic problem that explore variation
of the distribution of objects and sizes of containers.

Experiment 7.20 Pick the evolutionary algorithm from Experiment 7.19
that turned in the best performance. Use that code on cases 6 through 9 of
the Packing problem given in Table 7.3. Record the same data as in Experi-
ment 7.19. Discuss the issue, “Is there variable hardness in a random problem
case?”

Experiment 7.20 demonstrates that there is a difference in the difficulty of
different cases of the Packing problem. It would be interesting to see whether
we can locate difficult and simple instances of the problem automatically.
To do this, we need the ability to rapidly generate instances of the Packing
problem. This is related to a well-known combinatorial problem of placing
balls in bins. Suppose that we have n adjacent bins and want to place k
indistinguishable balls in those bins. The problem is to enumerate the space
of possible configurations. In a combinatorics course, we would simply count
the configurations; here we want a representation that permits us to search
(or even evolve) Packing problems.

Theorem 5. There are
(
n+k−1

k

)
ways of placing k indistinguishable balls into

n adjacent bins. Each configuration corresponds to a binary word with n − 1
ones and k zeros.

Proof: The zeros represent balls. Zeros before the first one represent balls in
the first bin. Each one represents the division between two bins. Zeros between
two ones are all in the bin “between” those ones. The zeros after the last one
in a given binary string are the balls placed in the last bin. The number of
such strings is equal to the sum of the number of ones and zeros choose (in
the sense of binomial coefficients) the number of zeros. �

Example 18. Suppose we have 9 balls and 3 bins. Then, the correspondence
given in Theorem 5 maps the string 00100000100 to the following ball-bin
configuration:

194 Evolutionary Computation for Modeling and Optimization

00 00000 001 1
The 1’s divide the containers from one another. Three containers yield two

boundaries between containers.

What does filling bins with indistinguishable balls have to do with creating
examples of the Packing problem? We will use the ball-bin problem to help us
generate a list of sizes for objects, given a list of sizes of containers. We can
limit ourselves to the problem of finding a list of object sizes that exactly fill
the containers. If we want examples that overfill the containers, we can add
a few objects; if we want excess capacity, we can remove a few objects. Cases
with exact solutions, thus, are the starting points from which we can generate
any possible case.

Assuming that we have a list c1, c2, . . . , ci, . . . , ck of container sizes, we
treat finding the objects to go in each container as a single balls-in-bins prob-
lem. The number of balls is equal to the capacity of the container ci, while
the number of objects n is equal to the number of bins. Generating a random
binary string with ci zeros (representing balls) and n − 1 ones (separating
the bins) thus specifies n objects to fill container i. Repeating this procedure
for each container gives a set of object sizes that fills the container exactly.
Generating a random binary string with a specified number of ones and zeros
is similar to generating the standard representation of a permutation. Put
the correct number of ones and zeros in an array, and then repeatedly swap
randomly chosen pairs of items in the array.

Experiment 7.21 Create or obtain code that implements the problem case
generator described above. The generator should save not only the sizes of the
objects, but the binary strings used in creating the case. Use 5 containers of
size 100 with 4 objects per container.

For a given case, count the number of permutations out of 100,000 se-
lected at random that correctly solve it. This is its hardness (low numbers are
hard). Generate 2000 problem cases and give the distribution of hardnesses as
a histogram with 20 bars, each with a width of 5000 hardness units. If you per-

Ordered Structures 195

formed Experiment 7.19 or 7.20, run that software on the hardest and easiest
problem case you generated in this experiment.

For the Traveling Salesman problem, we examined the effect of seeding the
population with superior solutions generated by heuristics. It would be inter-
esting to see whether that procedure helps solve harder cases of the Packing
problem. We will use a very simple heuristic.

Experiment 7.22 Pick the evolutionary algorithm from Experiment 7.19
that turned in the best performance. Modify the part of the code that creates
the initial population, so that, rather than using 200 permutations generated
randomly, you use the best 200 out of 400, 800, and 1200. Record the mean
time-to-solution, the standard deviation of time-to-solution, and the number
of times the algorithms failed to find a solution for cases 6 through 9 of the
Packing problem given in Table 7.3, as well as the hardest case you located
in Experiment 7.21 (if you performed that experiment). Does the population
seeding help? If so, does it help enough to justify its cost? Is the effect uniform
over the problem cases? Do the experiments suggest that the filtration of even
larger initial groups would be a good idea for any of the problem cases?

A class activity that is interesting is to compete to construct difficult cases
of the Packing problem. Each student should turn in a case together with a
solution (certificate of solvability). These cases should then be compiled by the
instructor and given to all students (with the names removed). Each student
then attempts to solve each of the problem cases with evolution code (any
version). Students are scored on the number of other students that fail to
solve their case.

Problems

Problem 265. How many different ways can you completely fill a container
of size 100 with n objects? Clearly, there is only one way to do it with 1
object (the size of the object must be 100). If we assume that the objects
have integer sizes, then there is only one way to fill the container with 100
objects: use objects of size 1. How many ways are there, if we do not care
about the order in which the objects are put into the container, to fill it with
n = 2, 3, or 4 integer-sized objects? Hint: don’t do this by hand. (This is a
type of mathematical problem called partitioning).

Problem 266. Enumerate all the orderings of the objects in Example 17 that
permit all the objects to be packed by the greedy algorithm. An explicit listing
may be rather long; be clever in how you enumerate.

Problem 267. In many of the examples in this section we have only one size
of container. For examples that have multiple container sizes, would it help to
permute the order in which the containers are filled? Prove that your answer
is correct.

196 Evolutionary Computation for Modeling and Optimization

Problem 268. A case of the Packing problem is tight if the sum of the sizes
of the objects exactly equals the sum of the sizes of the containers. Give an
example of a tight problem, with 3 containers of size 100, that is impossible:
there is no way to fit all the objects in the bins.

Problem 269. Reread Problem 268. Construct a tight problem with 3 con-
tainers of size 100 that has an excess of 0 for every permutation of the pre-
sentation order of its objects.

Problem 270. Assume that objects and containers have integer sizes. Prove
that every Packing problem in which the sizes of the containers and objects
have a common divisor larger than one is equivalent to a problem in which
they do not.

Problem 271. Draw the balls-in-bins diagrams for the following binary
strings in the same style as Example 18:

(i) 010
(ii) 0010001000010
(iii) 10001000100
(iv) 001100
(v) 0110100100110

Problem 272. On page 194, there is an informal description, but not pseu-
docode, for an algorithm for generating random problem cases for the Packing
problem. Carefully write out this pseudocode.

Problem 273. Generalize the random case generator to also generate, using
a trinary string, the container capacities. Just as 1’s were boundaries between
bins, 2’s become boundaries between containers. Be sure to give an interpre-
tation for all possibilities, such as adjacent 1’s or 2’s.

Problem 274. It would be interesting to know, for a given case of the Packing
problem, how many different solutions there are. A problem with zero solutions
is, in some sense, maximally hard. A solvable problem is probably easier if
there are many solutions. Give and defend a definition of different solutions.
Answer the following questions as part of your defense. Is it enough for the
permutations controlling the greedy packing algorithm to be different? Is it
enough for a given object to be in a different container? Does being different
require that the numbers added to fill a container not appear in the solution
being judged to be different?

Problem 275. Essay. Suppose that we use a string evolver to attack the
Packing problem. The alphabet will contain one character for each container
and an additional character for the placement of an object in no container.
A given string will have a length equal to the number of objects. The ith
character gives the container assignment of the ith object. Both the excess

Ordered Structures 197

(total size of objects assigned to no container) and the number of containers
overfilled (containers in which no more objects will fit) are computed. When
strings are compared, having fewer containers overfilled is more important
than having less excess. These two numbers are used in a lexical product fitness
function. Your task: write an essay that estimates the relative performance
of this evolutionary algorithm and one of the algorithms used in this section.
(Implementing the algorithm would provide the best form of evidence for your
essay, but is not required.)

Problem 276. The containers used in this section have a pretty boring sort
of geometry. They simply have a one-dimensional capacity that is used up as
objects are placed in them. Suppose that we have containers that are N × M
rectangles and objects that are H ×K rectangles. Rewrite the greedy packing
fitness for placing rectangular objects into rectangular containers so that they
fill the containers efficiently. Modify the permutation data structure if you
deem it necessary. Since the objects have two orientations in which they may
be placed, you may need to augment your permutations with some sort of
orientation switch. Write pseudocode for the new fitness function.

Problem 277. The hardness criterion given in Experiment 7.21 is rather slow
to use as a fitness function for evolving hard (or easy) problem cases. Give
and defend a better fitness function for evolving hard problem cases.

7.4 Costas Arrays

This section develops the theory needed to attack an unsolved mathematical
problem, the existence of a Costas array of order 32.

Definition 7.17 A Costas array is an n × n array with one dot in each
row and column and the property that vectors connecting any two dots in the
array do not occur more than once (i.e., all such vectors have different lengths
or different slopes). The number n is the order of the array.

Costas arrays were originally devised as signal processing masks by John
P. Costas. Given that these arrays are useful for signal processing, the next
mathematical question is “do they exist?” For infinitely many n, the answer
is known to be yes, but for some n, the answer is not yet known. The n < 100
for which no Costas array is known to exist at the time of this writing are
32, 33, 43, 48, 49, 54, 63, 73, 74, 83, 84, 85, 89, 90, 91, 92, 93, and
97. The total number of Costas arrays of order n is a very odd function of
n. Examine Table 7.4 to gain some sense of this oddity. Examples of Costas
arrays of order 10 and 12 are given in Figure 7.6. Before continuing on with
Costas arrays, we need to review some useful linear algebra.

If we have an n × n matrix M , then the process of multiplying a vector v
by M creates a map from R

n to itself. If M is a matrix with a single one in

198 Evolutionary Computation for Modeling and Optimization

Fig. 7.6. Matrix presentations of Costas arrays of orders 10 and 12.

Ordered Structures 199

Dimension Number Dimension Number
1 1 2 2
3 4 4 12
5 40 6 116
7 200 8 444
9 760 10 2160
11 4368 12 7852
13 12828 14 17258
15 19612 16 21104
17 18276 18 15096
19 10240 20 6464
21 3536 22 2052
23 872 24 ? (> 1)

Table 7.4. Costas arrays of those sizes for which the total number of Costas arrays
is known.

each row and column and all other entries zero, it acts on R
n by permuting

the dimensions.

Definition 7.18 A permutation matrix is a matrix with a single 1 in each
row and column and all other entries 0.

Assume that v is a row vector and M is a permutation matrix. To multiply
M by v, we could compute either M ·vt or v ·M . The resulting permutations
are inverses of each other. Let’s do an example.

Example 19. Suppose that

M =

⎡
⎣0 1 0

0 0 1
1 0 0

⎤
⎦

and that v = (a, b, c). Then

M · vt = (b, c, a),

while
v · M = (c, a, b).

The permutations (bca) and (cab), in one-line notation, are inverses of one
another.

The reason for introducing permutation matrices at this point is that the
“one-per-row-and-column” condition is common between Costas arrays and
permutation matrices. To evolve Costas arrays, we will take the machinery
already developed for evolving permutations, add a map from permutations
to permutation matrices, and then search the space of permutation matrices
for those that obey the additional condition needed to be Costas arrays. (To
get Costas arrays, we then just substitute dots for 1’s and blanks for 0’s.)

200 Evolutionary Computation for Modeling and Optimization

Definition 7.19 For a permutation σ of {1, 2, . . . , n} let the permutation
matrix associated with σ, Mσ, be the permutation matrix with ones in
position (i, σ(i)), i = 1, 2, . . . , n, and zeros elsewhere.

Example 20. If σ = (24153) in one-line notation, then

Mσ =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 1
0 0 1 0 0

⎤
⎥⎥⎥⎥⎦ .

The map from permutations to potential Costas arrays is useful for display-
ing the final array in the form of a Costas array. The fundamental structure
undergoing evolution, however, is the permutation, and the fitness function
we will use is based on the permutation in one-line notation. Let’s examine
two permutations, one of which is a Costas array, in order to understand the
additional property of vectors being unique.

Example 21. Shown below is a pair of 5 × 5 arrays with one dot in each row
and column. The first is a Costas array: the 10 vectors joining the pairs of
dots AB, AC, AD, AE, BC, BD, BE, CD, CE, and DE are all different in
their x or y length or both. In the second array, the vectors joining BC and
DE are identical. Notice that we do not distinguish between BC and CB.

A

B

C

D

E

A

B

C

D

E

The permutation for the first array, in one-line notation, is (42513), while
the second array is associated with the permutation (32514).

We need a fitness function that will favor Costas arrays over mere permu-
tation matrices. Given that Costas arrays require vectors connecting dots in
the matrix to be unique, there is a natural choice: count the number of reused
vectors (and minimize).

Definition 7.20 The number of violations of the Costas condition
in a permutation matrix is the number of times that a vector is reused. A

Ordered Structures 201

vector used 3 times is reused twice and so contributes 2 to the total. The
VCC fitness function of a permutation σ is the number of violations of the
Costas condition that appear in Mσ, the corresponding permutation matrix.

The definition of the VCC fitness function does not immediately suggest
a simple algorithm for computing it. If we list the permutations in one-line
notation, then dots in adjacent columns of Mσ are adjacent in σ, dots two
apart horizontally in Mσ are two apart in σ, and so on. So we can count
violations of the Costas condition by looking for repetitions in the distance-i
differences of the permutation.

Example 22. Compute the number of violations of the Costas condition in the
permutation σ = (456123).

σ(i) 4 5 6 1 2 3 Repeats
σ(i + 1) − σ(i) 1 1 −5 1 1 3
σ(i + 2) − σ(i) 2 −4 −4 2 2
σ(i + 3) − σ(i) −3 −3 −3 2
σ(i + 4) − σ(i) −2 −2 1
σ(i + 5) − σ(i) −1 0

Totaling the repetitions for each horizontal component length, we have
3 + 2 + 2 + 1 + 0 = 8 violations. Notice that since the permutation does
not wrap around, there are fewer vectors with long horizontal components
than short ones. In a permutation of 6 numbers, there is only one vector with
horizontal component 5 (in this case, its vertical component is −1), and so
there is no chance of repetition there.

Experiment 7.23 Using a random key encoding for permutations in one-line
notation, build or obtain software for an evolutionary algorithm for locating
Costas arrays. Initialize the random key to have its numbers in the range
[0, n], where n is the order of the Costas arrays being searched. Let your point
mutation be uniform real mutation with size 0.5. Test the software with one-,
two-, and three-point mutation and two-point crossover for Costas arrays of
order 12. Use a population of 1000 permutations. Compute the mean time
until an array is located and the standard deviation of this time over 400
trials. Have the algorithm stop after 200,000 fitness evaluations and declare
an algorithm that times out a failure. Record the number of failures. Compare
the 3 different mutation operators. Do the data indicate that trying four-point
mutation might be advisable?

202 Evolutionary Computation for Modeling and Optimization

The number of mutations is one possible parameter that governs the
mutation-based part of the evolutionary search. Another is the size of the
mutations.

Experiment 7.24 Perform Experiment 7.23 again, only this time fix the
number of mutations at whatever worked best. Rather than varying the number
of mutations, vary their size. Use mutation sizes 0.25, 0.5, 1.0, and 2.0, pulling
in the data for 0.5 from the previous experiment.

The crossover operator also has some impact on the behavior of a system
that evolves permutations, and so may be worth examining. Since Costas
arrays are connected with unsolved problems, we will cast a fairly wide net,
going beyond the obvious possibility of playing with the number of crossover
points to the extremity of introducing a new type of crossover operator.

Definition 7.21 Nonaligned crossover for a pair of genes organized as a
string or an array is performed in the following manner. A length smaller
than or equal to the length of the shorter of the two participating strings or
arrays is chosen. Starting positions in both strings are chosen. Going down the
strings, we then exchange characters in substrings or subarrays of the selected
length, wrapping if we go off the end of the string.

The standard crossover operator contains a tacit agreement that each po-
sition within the objects being crossed over has a particular meaning. When
these meanings are distinct, using nonaligned crossover would mean compar-
ing apples and oranges. With random key encoding, the relative rank of the
numbers in the array is what matters, not their positions. This means that all
meaning is between numbers, and so nonaligned crossover is, perhaps, more
meaningful.

Experiment 7.25 Perform Experiment 7.24 again, only this time fix the
number and size of mutations at whatever worked best (two-point and 1.0,
for example). Instead of testing different mutation operators, test one-point
crossover and two-point crossover. Use both the standard and nonaligned
forms of the crossover with the probability of nonaligned crossover being
0%, 10%, and 25% in different runs. This requires 6 different sets of runs.
Does nonaligned crossover help? Might upping the percentage be a good thing?
Warning: be sure your random key encoding software deals consistently with
ties.

Experiments 7.23–7.25 all tuned up our search system on order-12 Costas
arrays. It is now time to see how far the system can be pushed.

Experiment 7.26 Perform Experiment 7.25 again, using the collection of
settings that you found to work best. Allocating runtime on available machines
so as to avoid actually getting into trouble or breaking rules, find the largest
order Costas array you can with your software. Run experiments on several

Ordered Structures 203

orders to obtain a baseline behavior before doing the big run. Keep in mind
that the absolute number of Costas arrays declines at order 17, even though
the search space (or number of permutations) is growing at a faster than ex-
ponential rate (in fact, factorially). This means that time estimates for orders
below 17 will have no meaning for those over 17. If you find a Costas array
of one of the unknown orders, publish the result and send the author of this
book a copy of the manuscript, please.

On page 197, the claim was made that an infinite number of n are known
for which there are Costas arrays. Such arrays may be useful in seeding initial
populations (or they may not).

Definition 7.22 For a prime number p, a number k (mod p) is said to be
primitive (mod p), if every nonzero value (mod p) is a power of k.

Example 23. Let’s look at all powers of all nonzero numbers (mod 7). Recall
that the powers cycle after the sixth power (and sooner in elements that are
not primitive).

Power
k 1 2 3 4 5 6
1 1 1 1 1 1 1
2 2 4 1 2 4 1
3 3 2 6 4 5 1
4 4 2 1 4 2 1
5 5 4 6 2 3 1
6 6 1 6 1 6 1

As the table shows, the only two primitive numbers (mod 7) are 3 and 5.
There are many, many patterns in the above table, and most books on group
theory or number theory both generalize and explain these patterns.

It turns out that primitive numbers can be used to generate Costas arrays.

Theorem 6. Let k be a primitive number (mod p) for some prime p. Then
the permutation σ on {1, 2, . . . , (p − 1)} for which σ(i) = ki (mod p) has the
property that Mσ is a Costas array.

Proof: left as an exercise, Problem 283.

Example 24. Notice that the construction given in Theorem 6 yields permu-
tations of p − 1 items that don’t include zero. Let’s look at the Costas array
generated by 3 (mod 7). Using Example 23, we see that σ makes the following
assignments: 1 → 3, 2 → 2, 3 → 6, 4 → 4, 5 → 5, and 6 → 1. This corresponds
to the following permutation matrix:

204 Evolutionary Computation for Modeling and Optimization

Let’s conclude with an experiment in population seeding.

Experiment 7.27 Perform Experiment 7.26 again at the maximum order
for which you were able to find a Costas array or the next-smallest order,
whichever is not one less than a prime. The initial population should be gen-
erated in the normal fashion and also by taking permutations of the sort de-
scribed in Theorem 6 and randomly extending them to the desired order. Invent
and describe the means you use to extend these permutations. Be very sure
your extended items are still permutations. Does seeding the population in this
fashion help?

Problems

Problem 278. Prove that if we apply any of the 8 symmetries of the square
to a Costas array, it remains a Costas array.

Problem 279. Can you devise a better fitness function for searching for
Costas arrays? Find a function that is different from the one used in the
chapter and document its strengths and weaknesses.

Problem 280. A tie in a random key encoding happens when two numbers
in the array are equal. Does the use of nonaligned crossover increase the
probability of ties within members of a population of random key encodings?
If the answer is yes, give a technique for eliminating such ties.

Problem 281. For each of the following permutations in one-line notation,
compute the number of violations of the Costas condition. Hint: using a com-
puter may be faster and is almost surely more accurate.

Ordered Structures 205

(i) (5 1 7 4 3 9 6 8 2 0)
(ii) (0 3 6 2 1 9 7 8 4 5)
(iii) (8 7 4 2 9 1 3 5 0 6)
(iv) (2 7 1 8 6 5 9 0 3 4)
(v) (9 4 7 8 1 2 6 3 5 0)
(vi) (7 9 3 5 0 4 8 6 1 2)

(vii) (5 0 7 1 3 2 8 6 4 9)
(viii) (8 5 0 4 7 6 1 3 9 2)
(ix) (3 7 2 1 8 9 6 4 0 5)
(x) (6 8 4 3 1 2 0 7 5 9)
(xi) (6 7 0 5 1 4 2 8 9 3)
(xii) (2 7 4 3 0 6 5 1 9 8)

Problem 282. For each of the following 4 arrays, compute the number of
violations of the Costas condition and, on a copy of the matrix presentation,
show the vectors that repeat more than once.

(i) (ii)

(iii) (iv)

Problem 283. Prove Theorem 6.

Problem 284. A fixed point in a permutation σ is a number for which σ(i) =
i. Prove the strongest upper bound you can on the number of fixed points, if
VCC(σ) = 0 (i.e., if Mσ is a Costas array).

Problem 285. Write a program that exhaustively enumerates all Costas ar-
rays of a given order, and, either using your code or working with pencil and
paper, compute the largest number of fixed points in Costas arrays of order
n, for n = 1, 2, . . . , 10.

206 Evolutionary Computation for Modeling and Optimization

Problem 286. Invent and code a deterministic greedy algorithm for placing
the successive dots of a permutation matrix so as to minimize the number of
violations of the Costas condition. Make your algorithm such that it can find
Costas arrays of all orders up to 5.

Problem 287. Compute the number of permutation matrices of order n that
are symmetric about their main diagonal. Hint: such permutation matrices
correspond to permutations of order 2. Compute also the fraction of all per-
mutation matrices that are symmetric in this fashion.

Problem 288. Essay. Address the following question: would it be a good
idea to search for Costas arrays that are symmetric about their main diagonal?

8

Plus-One-Recall-Store

In this chapter, we will do our first computer experiments with genetic pro-
gramming. Genetic programming in its modern form was invented by John
Koza and John Rice [38, 39, 40]. An excellent book on the subject is Ge-
netic Programming: An Introduction by Wolfgang Banzhaf, Peter Nordin and
Robert E. Keller[9]. Genetic programming is the use of evolutionary compu-
tation to produce small pieces of computer code. The first attempts at this
were done by R. M. Friedberg and his collaborators at IBM in the late 1950s
[26, 27]. A fascinating method of evolving self-reproducing computer programs
appears in Tom Ray’s “An approach to the synthesis of life” [48], which is
reprinted in [22].

The first section of the chapter is intended as a general introduction to
genetic programming and is less narrowly focused than the rest of the chap-
ter. It also contains no experiments, just preparatory reading and problems
intended to build needed mental muscles. The second section introduces the
Plus-One-Recall-Store (PORS) problems, previewed in Problems 16 and 17.
The technical background of this genetic programming problem appears in [6].
The third section studies in detail the technique of population seeding, using
nonrandom initial populations to enhance performance of an evolutionary al-
gorithm. The fourth section applies various generic techniques for improving
evolutionary computation from earlier chapters to the PORS problems. The
structure of the experiments in this chapter is given in Figure 8.1.

The PORS problems are entirely abstract. One of the two main problems
is solvable by theorem and proof techniques, so that the true optimal solu-
tions are already known. (Technical details have been kept to an absolute
minimum.) We study PORS not for itself but to learn genetic programming,
much as we studied the string evolver in Chapter 2 to learn about evolutionary
algorithms. The PORS problems make up a very good test suite for exploring
evolutionary computation techniques. The advantages of the PORS problems
as a test suite include the following:

208 Evolutionary Computation for Modeling and Optimization

Exp 8.1

Exp 8.2

Exp 8.4

Exp 8.13Exp 8.11

Exp 8.12

Exp 8.3 Exp 8.7Exp 8.5
Exp 8.9

Exp 8.10

Exp 8.14

Exp 8.8Exp 8.6

Ch 10

Ch 13

1 Basic routines for PORS trees.
2 The Efficient Node Use problem.
3 The Minimal Description problem.
4 Population seeding for Efficient Node Use problem.
5 Analysis of solutions.
6 Statistical modeling to generate initial populations.
7 Initial trees from Ts.
8 Initial trees from T ∗, T ∗

s .
9 Tree-depth lexical product fitness.
10 Range-niche specialization for Efficient Node Use problem.
11 Range-niche specialization for Minimal Description problem.
12 Exploring models of evolution.
13 Initializing the memory to 1.
14 Population seeding for Minimal Description problem.

Fig. 8.1. The topics and dependencies of the experiments in this chapter.

• The PORS problems are exceedingly simple, with only four total opera-
tions and terminals. In spite of this simplicity, they have a rich mathemat-
ical structure that challenges the power of evolutionary computation by
asking the system to learn to use a calculator-style memory.

• The Efficient Node Use problem, introduced in Section 8.2, contains very
clear and easily detected building blocks, the “multiply by 2” and “mul-
tiply by 3” subtrees or subroutines explored in Section 8.4. The Efficient
Node Use problem thus provides a test bed for systems that are supposed
to conserve or even recognize building blocks.

• The Efficient Node Use problem is actually three very different problems.
The number of nodes in the tree, modulo 3, determines the problem class.
These problems have respectively a unique optimal solution, a number
that is linear in the number of nodes in the tree, and a number that is a
quadratic function of the number of nodes in the tree. The problem thus
contains a diverse test suite.

Plus-One-Recall-Store 209

• The Minimal Description problem is one for which there is a large num-
ber of possible fitness functions, all of which function less than well. It
thus provides a challenging problem in which students may exercise their
imagination.

Leaving aside the practical applicability of the PORS problems, these prob-
lems have a deep and rich mathematical structure, reflected in the problems
given in the chapter. Instructors of a mathematical bent may wish to extend
these problems, particularly in a combinatorial way. Engineering classes using
this text should assign problems from this chapter with great caution; some
require a good deal of familiarity with the various forms of abstract nonsense
that so delight mathematicians.

8.1 Overview of Genetic Programming

Genetic programming (abbreviated GP) is defined to be the use of an evo-
lutionary algorithm to evolve computer programs, typically stored as parse
trees. A parse tree is shown in Figure 8.2 in tree form as well as in a func-
tional notation used in the computer language LISP. We term the compressed
notation LISP-like.

A parse tree has interior nodes, called operations, and leaves or termi-
nal nodes, called terminals. Operations have the usual definition. In the tree
shown in Figure 8.2, the operations are sqrt, /, +,−, ∗, and ∗∗. Terminals can
contain external values passed to the program, input/output devices, or con-
stants. The terminals in Figure 8.2 are the external inputs a, b, and c and the
constants 2 and 4. The root of the tree is the first operation when the tree
is written in LISP-like form. In Figure 8.2, the root is the divide operation.
The subtrees that are linked to an operation are called the arguments of the
operation. The size of a parse tree is the number of nodes in it. The depth of a
parse tree is the largest distance, in tree links, from the root to any terminal.
The depth of the parse tree in Figure 8.2 is 6.

Genetic Operations on Parse Trees

In genetic programming, crossover is performed by exchanging subtrees as
shown in Figure 8.3, with parents above and children below. This crossover
operation is called subtree crossover. Mutation consists in taking a randomly
chosen subtree, deleting it, and replacing it with a new randomly generated
subtree. In later chapters, we will add other mutation operators. This mu-
tation operator is called subtree mutation. Notice that all notion of a “point
mutation” as developed in preceding chapters has gone completely by the
board. Mutation at some loci of a parse tree has an excellent chance of chang-
ing large numbers of other loci (see Problem 299).

210 Evolutionary Computation for Modeling and Optimization

b

-

b 2

**

4

a c

*

*

-

Sqrt

+ 2

/

(/ (+ (- b) (Sqrt (- (** b 2) (* 4 (* a c))))) 2)

Fig. 8.2. An example of a parse tree in standard and LISP-like notation.

We will also use a third type of variation operator called chopping, which
reduces the size of a parse tree. The genomes we have used in previous chapters
have had uniform size. A gene did not have a risk of become unmanageably
large after several generations. The crossover operation used in genetic pro-
gramming conserves the total number of nodes in the parents, but one child
may get more and another fewer. As a result, the number of nodes in one crea-
ture can, theoretically, grow until it swamps the machine being used. The chop
operator is used to reduce the size of a parse tree if mutation and crossover
have made it “too large.” In order to apply the chop operator, you select one
argument of the root operation of a program and allow it to become the entire
program, deleting the rest of the parse tree.

Genetic programming requires mature use of dynamic memory allocation.
A parse tree is not declared as a single data structure but is rather built up
recursively. The data structure used to store a node of a parse tree contains
the node’s type (constant, external input, unary operation, binary operation,
etc.), the node’s value (e.g., the numerical value of a constant or the identity
of an external input), and pointers to the subtrees that form its arguments if
it is an operation. Since the node data structure must be able to hold several

Plus-One-Recall-Store 211

x x

+

x x

+

+

y y

*

y y

*

*

⇓

x x

+

y y

* x

+

+

x

y y

*

*

Fig. 8.3. Crossover of two trees by exchanging subtrees.

different types of nodes, parts of its structure are often unused. If the node is a
nonconstant terminal, the value field may be empty. If the node is a terminal,
it will have all of its pointers empty. An example of a data structure for one
node of a parse tree is shown in Figure 8.4.

struct node {float val; //holds value for contant terminals
type int; //holds type, e.g., operation code
node* args[2]; //pointers to argument trees

};

C or C++

Fig. 8.4. Example of a data structure for holding nodes used to build pointer-based
parse trees.

Generating Random Parse Trees

The first computational step in an evolutionary algorithm is to generate a ran-
dom population, so we must learn to generate random parse trees. A random
parse tree on n nodes with unary or binary operations is generated recursively
as follows. If n = 1, then we generate a terminal node. If n = 2, we gener-
ate a unary operation, from those available, whose argument is a tree of size
one. If n ≥ 3, then we pick an operation from among those available. If that
operation is unary, we generate its argument as a tree of size n − 1. If that

212 Evolutionary Computation for Modeling and Optimization

operation is binary, we split n − 1 randomly into two nonzero pieces a and b
and generate random trees of size a and of size b to be the arguments of the
binary operation.

The random tree generation algorithm knows only about 3 sizes of trees:
size one (terminal), size two (operation terminal), and size three or more
(operation arguments).

Type Checking

Can you do genetic programming with real source code? Many of you may
feel a chill running down your spine at the thought of what crossover and
mutation might do to real source code. There are many structural reasons
why genetic programming evolves limited, small parse trees instead of full
computer programs. Most of these reasons are tied to the complexity and
fragility of “real” computer code. For the most part we avoid this sort of
problem by simply evolving small pieces of code that do very specific tasks.
There is one source of fragility that we will avoid by main force: data typing.
Our genetic programs will have a single data type.

One of the most common errors a beginning programming student will
make is a type check error. The student may read in a number as a character
string and then be hurt and surprised when adding one to it causes an error
(in any reasonable language) or when adding one mysteriously causes the first
digit to vanish (in C or C++). To avoid having our evolving programs make
(or spend all sorts of computer power avoiding) type errors, we will have only
one type. This means that all terminals must return values of that type, and
all operations must take as arguments values of that type and return values
of that type.

Requiring that the parse tree have a single type in all its nodes does not
completely deprive us of the advantages of having multiple types. Both C
and BASIC have numerical Booleans. Zero is considered false and nonzero is
considered true. This means that operations like ≤, =, and ≥ can be defined as
numerical operations that, in some situations, function as Boolean operations,
all within a single data type. In this chapter, our data type will be integers.

Problems

Problem 289. Transform each of the following expressions from functional
form into LISP-like notation. Do not simplify or modify the expressions alge-
braically before transforming them.

(i) f(x) = x3

x3−1

(ii) g(x) = (x − 1)(x − 2)(x − 3)(x − 4)

Plus-One-Recall-Store 213

(iii) h(x, y) =
√

(x − a)2 + (y − b)2

(iv) d(a, b, c) =
√

b2 − 4ac

(v) r(θ) = 2 · cos2(θ)

(vi) r(ρ, θ) = 3
√

ρ2θ2 + 1

Problem 290. Transform each of the following expressions from LISP-like
notation into functional form. Do not simplify or modify the expressions al-
gebraically before transforming them. Assume that logical connectives like
“<” and “≥” return 1 for true and 0 for false. You will need to name the
functions. Assume that x, y, and z are variables and that any other letters
or names represent constants. Notationally simplify the functions as much as
you can.

(i) (+ (Sqr (Tan x)) 1)

(ii) (+ (+ (Sqr x) (Sqr y)) 1)

(iii) (+ (* (b ≥ 0) (/ x 2)) (* (b < 0) (/ (- 0 x) 2)))

(iv) (/ (+ (+ x y) z) (+ (* x (* y z)) 1))

(v) (** (+ x (+ y z)) 3)

(vi) (/ 1 (+ 1 (* x x)))

Problem 291. On page 209, the claim is made that the crossover operation
for parse trees, if repeated, can cause the size of the tree to grow without
bound. Assuming that we start with a population made of trees of the form
(+ a b) in generation zero, compute the worst-case size of the biggest tree
in generation n. Give examples of worst-case trees for n = 1, 2, 3, and 4.

Problem 292. On page 211, there is a description of the algorithm for gen-
erating parse trees with operations that are unary and binary. Describe the
algorithm for generating parse trees with unary, binary, and ternary oper-
ations. Also, show the data structure needed, as in Figure 8.4. (Use your
favorite computer language.)

Problem 293. In order to generate parse trees, you must break a remaining
number n−1 of nodes (n ≥ 3) into 2 nonzero pieces a and b. Give pseudocode
for doing this.

Problem 294. In order to generate parse trees with ternary operations (see
Problem 292), you must break a remaining number n − 1 of nodes into 3
nonzero pieces a, b, and c. Give pseudocode for doing this.

214 Evolutionary Computation for Modeling and Optimization

Problem 295. Suppose we have a language for parse trees in which there
are only terminals and binary operations. Prove that all parse trees in this
language have odd size.

Problem 296. The Catalan numbers Cn count the number of ways to group
terms when you have a nonassociative operation on n variables. The first few
values are C1 = 1, C2 = 1, C3 = 2, C4 = 5. The corresponding ways of
grouping terms are

n = 1 : (a),
n = 2 : (a � b),
n = 3 : (a � (b � c)), ((a � b) � c),
n = 4 : (a � (b � (c � d))), (a � ((b � c) � d)), ((a � b) � (c � d)),

((a � (b � c)) � d), (((a � b) � c) � d).

First, find a general formula for the Catalan numbers. Second, explain why
Cn is also the number of parse trees with 2n + 1 nodes, if the language for
those parse trees has one binary operation and one terminal.

Problem 297. Suppose we have a GP-language with x terminals and y binary
operations. Give a formula for the number of possible trees in terms of the
number of nodes n in the tree. Modification of the answer to Problem 296
may serve.

Problem 298. Suppose we have a GP-language with x terminals, y binary
operations, and z unary operations. Give a formula for the number of possible
trees in terms of the number of nodes n in the tree. If you find this hard, you
should first do Problem 297 or other cases in which one of x, y, or z is 0. Your
answer should involve a summation over something and may use the Catalan
numbers.

Problem 299. The rate of a mutation operator for parse trees is the fraction
of the nodes it will replace on average. Mathematically or experimentally, esti-
mate the rate of a mutation operator that selects, with uniform probability, a
node in a parse tree and replaces the subtree rooted there with a new subtree
exactly the same size. If the GP-language in question has only unary opera-
tions, then this isn’t too hard to compute. A language with binary operations
is harder. A language with both unary and binary operations may well be too
hard to do other than experimentally. Detail exactly your mathematical or
experimental techniques.

Problem 300. Suppose we have a GP-language whose data type is integers.
Give a definition of a binary operation that can be used as an If-then and of
a ternary operation that can be used as an If-then-else. Discuss briefly the
alternatives you considered and why you made the choices you did.

Plus-One-Recall-Store 215

Problem 301. Suppose you were evolving real-valued parse trees that were
encoding functions of one variable (stored in a terminal “x”) to minimize
the sum of squared error at 80 sample points with the fake bell curve (see
Equation 2.1). Assume that your parse tree has available the operations of an
inexpensive scientific calculator. Show mathematically why

(Sqr (Cos (Atan x))) or f(x) = cos2(tan−1(x))
is not an unreasonable result.

Problem 302. Essay. Reread Problem 301. Clearly, the parse tree
(/ 1 (+ 1 (* x x)))

would give perfect (zero) sum of squared error with points sampled from the
fake bell curve. Why then did this parse tree never come up in 80 runs (done
by the author), while the parse tree given in Problem 301 appeared in 5 of the
runs? Consider the action of mutation and crossover of the parse trees when
answering this question.

8.2 The PORS Language

The Plus-One-Recall-Store (PORS) language has two terminals, one unary
operation, and one binary operation. They are summarized in Figure 8.5. The
environment in which PORS programs exist contains an external memory
to which the program has access. Much like the memory in a cheap pocket
calculator, the user may store and recall values to and from the memory. The
binary operation of the PORS language is normal integer addition. The unary
operation Sto does nothing to its argument; it just returns whatever value it is
given. It is used for its side effect of storing the number that passes through it
into the external memory. The terminal Rcl returns the value in the external
memory. The terminal 1 is a simple integer constant.

Type Name Description
Terminal 1 integer constant, one

Rcl recalls an external memory
Unary operation Sto stores a value in an external memory and

returns the number stored as its value
Binary operation + integer addition

Fig. 8.5. Nodes in the Plus-One-Recall-Store language.

Semantics of PORS

Now that we have specified the elements of a PORS parse tree, we can learn
how to “run” it as a program. This is called evaluating the parse tree. The

216 Evolutionary Computation for Modeling and Optimization

tree is evaluated from the bottom up. Since we are working with randomly
generated parse trees, we will encounter trees that execute a recall instruction
before their first store instruction. To prevent this from being undefined and
hence a problem, declare the external memory location to be initialized to
0 at the beginning of the evaluation of any parse tree. The execution of the
store and recall instructions and the constant 1 are obvious and unambiguous.
When executing a plus, execute all the instructions in the left argument before
those in the right argument. An example of a PORS parse tree, adorned with
the values each node returns when executed, is shown in Example 25.

Example 25. The parse tree shown above performs the following steps when
evaluated: it adds 1 and 1, stores the resulting 2 in memory (also returning
the 2 as the value of the Sto operation), and then adds that 2 to the contents
of memory to obtain the result of the entire program, 4.

For a PORS parse tree T , we denote by ε(T) the result of evaluating the
parse tree (equivalently, running the program described by the tree). The
result ε(T) is said to be the value of T . To start evolving parse trees, we lack
only a problem to solve. We will work on the two tasks implicit in Problems 16
and 17. The Efficient Node Use problem asks, “what is the largest number that
can be generated by a parse tree with n nodes?” The Minimal Description
problem asks, “given k, what is the smallest tree T for which ε(T) = k?” The
first problem is easy, while the second is quite hard, as we shall see. Before
attacking either of these problems, we need to get the basic routines for genetic
programming built and working.

Experiment 8.1 Write or obtain a set of routines for manipulating parse
trees in the PORS language including all the following, as well as any others
you find convenient:

Plus-One-Recall-Store 217

Name Argument Returns Description
RandTree integer pointer generates a random tree with int nodes
SizeTree pointer integer finds the number of nodes in a tree
DeepTree pointer integer finds the depth of a tree
CopyTree pointer pointer makes a copy of a tree, doing all needed dy-

namic allocation
KillTree pointer nothing disposes of a parse tree
PrinTree pointer nothing prints out a parse tree
SaveTree pointer nothing saves a tree in a file
ReadTree nothing pointer reads a tree from a file
RSubTree pointer pointer returns a pointer to a random subtree of a tree
CrossTree pointers nothing performs the “exchange subtrees” crossover

operation used in genetic programming
MuteTree pointer nothing picks a random subtree, deletes it, and re-

places it with a random one the same size
ChopTree pointer, integer pointer replaces a tree with one of its subtrees coming

off the root, repeatedly, until the tree has int
or fewer nodes

EvalTree pointer integer computes the value of a tree

When the above routines are ready, test them by computing the following
for a population of 1000 trees of size 5, 10, and 20 respectively.

(i) mean and standard deviation of tree depth;
(ii) a histogram of how often each depth occurred;
(iii) a histogram of the values of the trees

Also, print out examples of copying, mutation, crossover, and chopping.

Experiment 8.1 is a baseline for later experiments in this chapter. For the
most part, it is included so that you can test and debug the underlying rou-
tines. The software in this chapter uses dynamic allocation. Hence, it is more
likely to contain subtle bugs than the software you coded in the preceding
chapters. In our next experiment, we will put these routines to work attempt-
ing to solve the Efficient Node Use problem for small n. The Efficient Node
Use problem has a natural fitness function: the evaluation function ε. As long
as we keep the number of nodes in trees in our population bounded by the
number of nodes n for which we are currently trying to solve the Efficient
Node Use problem, we can set the tree’s fitness to its value.

Experiment 8.2 Write or obtain software for an evolutionary algorithm to
solve the Efficient Node Use problem. Use a population of 100 parse trees with
n nodes. Use tournament selection with tournament size 4 as your model of
evolution. If a child has more than n nodes after crossover, apply the chop
operator until it has n or fewer nodes. Mutate each child with probability 0.4.
Fitness of a tree T is simply ε(T).

218 Evolutionary Computation for Modeling and Optimization

n max ε(T) n max ε(T) n max ε(T)
1 1 10 9 19 72
2 1 11 12 20 96
3 2 12 16 21 128
4 2 13 18 22 144
5 3 14 24 23 192
6 4 15 32 24 256
7 4 16 36 25 288
8 6 17 48 26 384
9 8 18 64 27 512

Fig. 8.6. Evaluation values for solutions to the Efficient Node Use problem for small
values of n.

A tree T on n nodes is optimal if ε(T) is as large as possible given n. The
table given in Figure 8.6 contains the numbers that optimal trees evaluate to
for 1 ≤ n ≤ 27. For n = 12, 13, 14, 15, and 16, run the evolutionary algorithm
on a population until it finds an optimal tree or for 500 generations. Run
100 populations. Plot the fraction of successful populations as a function of
generations of evolution. Also, note the fraction of initial populations that
contained an optimal tree and the fraction that failed to find an optimal tree.
In your write-up, explain what happened and why. Is the probability of finding
an optimal tree within 500 generations a decreasing function of the number of
nodes in the tree?

For use with experiments in Section 8.3, write the code for this experiment
so that you can optionally save your population of parse trees in a file.

If your version of Experiment 8.2 worked properly, there should be a
strange relationship between the number of nodes and the time-to-solution.
In this case “strange” means “not monotone.” Looking at the table given in
Figure 8.6 can give you a clue to what is happening.

Our next experiment will break new ground. The point of this experi-
ment is to give you practice at coming up with fitness functions for a difficult
problem. Consider the Minimal Description problem: given an integer k, find
the PORS parse tree with the smallest number of nodes that evaluates to k.
Problem 309 tells us that we can restrict our population to trees with at most
2k + 1 nodes. The difficulty comes in figuring out which trees with 2k + 1 or
fewer nodes are “close” to computing k. Examine Figure 8.7. It gives solutions
to the Minimal Description problem for k = 7, 8. The two trees do not share

Plus-One-Recall-Store 219

1 1

+ 1

+

Sto Rcl

+ 1

+

1 1

+

Sto Rcl

+

Sto Rcl

+

Fig. 8.7. Minimal trees for computing 7 and 8.

much in the way of structure. The Minimal Description trees for k = 11, 12
are even less alike.

If minimal-sized trees that compute numbers differing by one are not struc-
turally similar, then minimizing |k− ε(T)| is probably not a good fitness func-
tion for the Minimal Description problem. What other choices are there? Are
there any other senses in which two numbers a and b can be close? One obvious
source of closeness is the divisibility relation. This yields several candidates:
the greatest common divisor of a and b; the integer division of a by b or b by
a; and the remainder of a divided by b or of b divided by a. These could all
profitably appear in a definition of “close.” It is possible that lexical products
or numerical averages of these divisibility relations might serve as parts of
fitness functions for the Minimal Description problem.

In addition, to solve the Minimal Description problem we want to mini-
mize the number of nodes in the tree. This makes the Minimal Description
problem an example of multicriteria optimization with the multiple criteria
being computation of numbers close to k and minimization of the number of
nodes used to do so. We will call a PORS parse tree that evaluates to k with
the fewest number of nodes a Minimal Description tree for k.

For those of you who have not taken a course in discrete mathematics, we
will review the method for computing the greatest common divisor (GDC) of
two numbers. Suppose we are given integers a and b. Perform the following
computations:

220 Evolutionary Computation for Modeling and Optimization

k |T |min k |T |min k |T |min

1 1 10 11 19 15
2 3 11 13 20 14
3 5 12 11 21 15
4 6 13 13 22 16
5 8 14 13 23 18
6 8 15 13 24 14
7 1 16 12 25 16
8 9 17 14 26 16
9 10 18 13 27 15

Fig. 8.8. The minimal number of nodes in a tree describing k, for small values of
k.

x0 ← a,

x1 ← b,

x2 ← x0 mod x1,

x3 ← x1 mod x2,

x4 ← x2 mod x3,

. . .

until xn = 0 for the first time. At that point, xn−1 = gcd(a, b).

Experiment 8.3 Before writing any code, write a short essay on what you
think will make a good fitness function for the Minimal Description prob-
lem. Using your fitness function, rewrite the code from Experiment 8.2 to
evolve parse trees with no more than 2k + 1 nodes (apply the chop operation
to maintain this). Test your code on finding Minimal Description trees for
k = 8, 10, 13, and 18 with the same number of runs and reporting techniques
as in Experiment 8.2. A table of sizes of answers for the Minimal Description
problem appears in Figure 8.8. Once you have done this testing, revise your
fitness function and try again. If you find a killer fitness function, try it out
on other numbers.

Things to think about while doing this experiment include the following:
What, if any, is the connection between the Efficient Node Use problem and the
Minimal Description problem? Is the factorization of a number an important

Plus-One-Recall-Store 221

thing to know when you are trying to improve performance of your algorithm
on that number?

If this experiment is being done by a whole class, you should work in teams:
share data and ideas, and comment on one another’s results in your write-ups.

In this section, we have developed the basic framework of PORS and pre-
sented the two main problems. In the next section, we will explore seeding
the population and test its effect on performance of evolutionary algorithms
for both problems.

Problems

Problem 303. For each of the following parse trees in LISP-like notation,
compute ε(T).

(a) (Sto (+ 1 (+ 1 (Sto 1))))

(b) (Sto (+ Rcl (Sto (Sto (+ Rcl (Sto 1))))))

(c) (+ (+ (Sto (Sto 1)) 1) (+ Rcl (Sto (+ Rcl Rcl))))

(d) (+ (+ (Sto (Sto (Sto Rcl))) (Sto 1)) (+ 1 (+ 1 1)))

(e) (Sto (Sto (+ (+ 1 Rcl) 1)))

(f) (+ (Sto Rcl) (+ Rcl (Sto Rcl)))

(g) (Sto (Sto (+ (Sto (+ (Sto 1) (+ 1 Rcl))) (+ Rcl Rcl))))

(h) (+ (+ (Sto 1) (Sto (+ Rcl 1))) (Sto (+ Rcl Rcl)))

(i) (+ (Sto (Sto (+ (+ (Sto 1) 1) (Sto 1)))) (Sto Rcl))

(j) (+ (+ (Sto (+ (Sto 1) 1)) (Sto (+ 1 Rcl))) (Sto Rcl))

(k) (+ (Sto 1) (+ (Sto (+ 1 (+ 1 Rcl))) (+ Rcl Rcl)))

(l) (+ (+ (Sto (+ 1 1)) (+ (Sto (+ 1 Rcl)) Rcl)) Rcl)

Problem 304. Prove that the Minimal Description of 2n requires no more
than 3n nodes.

Problem 305. Prove that the Minimal Description of 3n requires no more
than 5n nodes.

222 Evolutionary Computation for Modeling and Optimization

Problem 306. Let f(n) = max{ε(T) : T is a PORS parse tree with n nodes}.
Prove that f(n) is strictly increasing save that f(6) = f(7), and f(1) = f(2).

Problem 307. Prove that for n ≥ 6, all solutions to the Efficient Node Use
problem on n nodes contain Sto instructions, but for odd n less than 6,
solutions to the Efficient Node Use problem do not contain Sto instructions.
Explain why n = 2, 4 are pathological cases.

Problem 308. Essay. Consider the following sets of integers: prime numbers,
factorials, powers of two, and all integers. Rank them from most to least
difficult, on average, for the Minimal Description problem, and explain your
ranking. Assume that the comparison is made between the sets by comparing
members of similar magnitude.

Problem 309. We say that a PORS parse tree describes a number if it eval-
uates to that number. Prove that the description of a number k by a PORS
parse tree requires at most 2k + 1 nodes.

In the next several problems we will let g(k) be the number of nodes in a
Minimal Description tree for the number k.

Problem 310. Show that g(k + 1) ≤ g(k) + 2 and give one example of a k
where the bound is tight.

Problem 311. Show that g(2k) ≤ g(k) + 3 and give one example where this
bound is tight.

Problem 312. Show that g(k) admits a logarithmic upper bound. This can
be done constructively.

Problem 313. Essay. Explain the connections between the Efficient Node
Use problem and the Minimal Description problem. What information does
one give you about the other?

Problem 314. A subroutine in the PORS language is a connected subset of a
tree with one link coming in and one going out. Give subroutines that multiply
their input by 2, 3, and 5. Advanced students should give such subroutines
with a minimal number of nodes.

Problem 315. The chart of answers given in Figure 8.6 strongly suggests a
closed form for the maximum number that can be generated by an n-node
parse tree. Find that closed form.

Problem 316. Short Essay. Is the evolutionary algorithm in Experiment
8.2 doing an optimization?

Plus-One-Recall-Store 223

8.3 Seeding Populations

In this section, we want to explore the effects of a number of types of popu-
lation seeding. Population seeding consists in placing creatures in the initial
population that you think will help the population to do what you want. The
ultimate in population seeding is to place the answer to your problem in the
original population. Often this is done in an algorithm using niche specializa-
tion in order to find variations on the solution or new types of solutions. We
will explore two less-extreme types of seeding. In the first, we will use evolved
creatures from one instance of the Efficient Node Use problem as the starting
population for another. In the second, we will try to apply common sense to
the generation of the initial population.

Experiment 8.4 Using the software from Experiment 8.2, evolve 10 popula-
tions of parse trees that contain solutions for the Efficient Node Use problem
for n =8, 9, and 10 respectively. For each of these 10 populations, use that
population 10 times (with different random number seeds) as the initial pop-
ulation, as in Experiment 8.2, but with n =25, 26, and 27. First of all, did
seeding help? Did the populations find solutions faster than you would have
expected based on your experience so far? Second, in addition to the fraction
of successes per time graph, make a 3 × 3 matrix showing which populations
were helped the most by which seed populations, as measured by fraction of
successes after 500 generations.

At this point, we will try a different population seeding technique. This
technique rests on the assumption that a very simple statistical model of
PORS parse trees in a successful population of trees with n nodes contains
useful information about the trees that generalizes to other values of n.

Let us review how PORS parse trees are generated. A tree with one node
is a 1 or an Rcl with equal probability. A tree with two nodes is a Sto with
a one-node tree as its argument. A tree on three or more nodes is, with equal
probability, a + with the remaining nodes divided into nonzero parts between
its arguments or a Sto with a tree on the remaining nodes as its argument.

The probability of finding any given parse tree is quite likely different in
an evolved population containing optimal trees as compared to in an initial
random population. The basic plan is to use a statistical model to generate an
initial population with statistics close to those in a successful population and
hope this speeds up evolution. In order to gain any advantage, we must apply
statistical models derived from populations of trees with a smaller number of
nodes to generating initial populations of trees with a larger number of nodes.
Our statistical model will look at the probability, for each operation (+ or
Sto), of each type of argument (+, 1, Rcl, or Sto) and bias tree generation
with those probabilities. We will divide the experiment into two parts.

Experiment 8.5 Create or obtain software for a new routine to add to your
library of PORS parse tree routines: given a parse tree, compute the number

224 Evolutionary Computation for Modeling and Optimization

of times the left and right arguments of a + and the argument of a Sto are,
respectively, a +, Sto, Rcl, or 1. Using the software from Experiment 8.2,
evolve 10 populations of parse trees that contain solutions to the Efficient Node
Use problem on n = 12 nodes. Apply your new routine to compute, for the
entire population, the fractions of left arguments of +, right arguments of +,
and arguments of Sto that are, respectively, +, Sto, Rcl, or 1. Generate 1000
random trees in the usual manner and compute these same fractions. Are they
different? Try to explain why.

Think about what the results of Experiment 8.5 suggest about useful re-
strictions on the generation of initial populations of PORS parse trees. Hold
that thought until after we have done the second half of the statistical mod-
eling experiment.

Experiment 8.6 Modify the random parse tree generation routine used to
generate initial populations (but not the one used during mutation) so that
nodes appear as arguments with probability equal to the corresponding fractions
generated in Experiment 8.5.

This will require a little work. For example, you will need 4 probabilities
for the left argument of a +: P+, PSto, P1, and PRcl. But a one-node tree that
is to be the left argument of a + is either a 1 or an Rcl; P+ and PSto are 0
for technical reasons when you are generating a one-node tree. That means,
in this situation, that you use the dependent probabilities P ∗

1 = P1
P1+PRcl

and
P ∗

Rcl = PRcl
P1+PRcl

instead of P1 and PRcl. These are the probabilities of 1 and
Rcl given that we know that we are choosing only a 1 or an Rcl.

The general principle for generating parse trees with a statistical model is
as follows. When all the probabilities we have are for events that are technically
allowed, we use them in unmodified form. Otherwise, we use the probabilities
of things that are currently allowed divided by the sum of things currently
allowed. This is exactly the notion of dependent probability that appears in
statistics books.

Using your new initial tree generator, rerun Experiment 8.2 for n = 15, 16,
and 17. For each of these n, what effect does the new generation method have
on speed of solution, fraction of runs with a solution in the initial population,
and fraction of runs that fail to converge? Explain your results.

Look again at your results for Experiment 8.5. One clear piece of good
sense implicit in the statistics is that a Sto should not have another Sto as
its argument. This is a cumbersome way to get this piece of wisdom, but
there it is. (Perhaps you can find other bits of wisdom somehow encoded in
the probabilities.) In the next experiment, we will begin using common sense
to generate better initial populations by simply requiring that Sto operations
have as their arguments things other than Sto.

Definition 8.1 Let Ts be the set of PORS parse trees in which no Sto oper-
ation has a Sto as an argument.

Plus-One-Recall-Store 225

Experiment 8.7 Add to your library of PORS parse tree routines a routine
that can generate random trees in Ts. Using this routine for generating the
initial population (but not for mutation), redo Experiment 8.2 and compare
the results with the results obtained in Experiment 8.2.

If we comb through the populations evolved for the Efficient Node Use
problem, another property of optimal trees emerges. When a parse tree is
evaluated, the instructions are executed in some order. In particular, if a tree
has Sto instructions, then it has a first Sto instruction. This execution order
also orders the terminals of a tree, and so we may separate the terminals into
those that execute before the first Sto and those that execute after the first
Sto. It is a property of optimal trees that all terminals executed before the
first store are 1’s and all those executed afterwards are Rcl’s (see Problem
324).

Definition 8.2 Let T ∗ be the set of PORS parse trees with only 1’s before
the first Sto and only Rcl’s after. The terms “before” and “after” are relative
to the order in which nodes are executed.

The two conditions that are satisfied by trees in Ts and T ∗ don’t interfere
with one another, so we will also give a name to their intersection.

Definition 8.3 Let T ∗
s = Ts

⋂ T ∗.

This gives us four classes of PORS parse trees: the class of all PORS parse
trees and the three classes using common sense to restrict structure. We have
already done a version of Experiment 8.2 for all trees and those in Ts. The
next experiment will complete the sweep.

Experiment 8.8 Write or obtain new random tree generation routines to
generate initial populations in T ∗ and T ∗

s . Run Experiment 8.7 again, do-
ing the full experiment for both methods of generating the initial population.
Compare the results with the results of Experiments 8.2 and 8.7.

There is another possible improvement in the initial population. Notice
that the argument of a Sto in an optimal tree is never an Rcl or a 1. If
we wanted to explore this class of trees, we could have another commonsense
class of trees called Tr and also T ∗

r , Trs, and T ∗
rs. Exploration of the various

r-types of trees would require quite a bit of fiddling and wouldn’t add much to
the development of GP techniques. We will leave exploration of the r classes
of trees to those intrigued by the mathematical theory of PORS, and instead
dredge out several old friends from earlier chapters and test them in the PORS
environment.

Problems

Problem 317. Take the parse trees shown in Figure 8.7, copy them, and
number the nodes in the order they are executed.

226 Evolutionary Computation for Modeling and Optimization

Problem 318. Essay. Does the answer to Problem 315 suggest an explana-
tion for the 3 × 3 matrix in Experiment 8.4? Explain your answer.

Problem 319. How many PORS parse trees are there with n nodes?

Problem 320. How many PORS parse trees with n nodes are there in Ts?

Problem 321. How many PORS parse trees are there with n nodes in T ∗?

Problem 322. How many PORS parse trees are there with n nodes in T ∗
s ?

Problem 323. Of the three special classes of parse trees, Ts, T ∗, and T ∗
s ,

which can be generated by simply carefully choosing the probabilities of a
statistical model like the one used in Experiment 8.6?

Problem 324. Prove that any optimal tree (a solution to the Efficient Node
Use problem) is in T ∗

s .

Problem 325. Prove that if an optimal tree with n nodes contains a Sto
instruction, then there exists an optimal tree with n nodes for which the left
argument of the root node is a tree whose root is a Sto.

Problem 326. Essay. In Experiments 8.5 and 8.6, we split apart the problem
of finding a statistical model for use in generating an initial population and
running an algorithm that used that statistical model to generate its initial
population. Describe in detail an evolutionary algorithm that would build a
statistical model for one n and then start over with a larger n, all in one
environment. Conceivably this process could be done in a loop to solve both
problems for successive n and refine the statistical model as n grew. In terms
of the mathematics of PORS for the Efficient Node Use problem, explain
which small n might give good statistics for larger n.

Problem 327. Classify and count solutions to the Efficient Node Use problem
for n ≤ 27. Figure 8.6 will help you to identify such solutions.

Problem 328. Essay. For the Efficient Node Use problem, n = 15 yields a
fitness function with an odious local optimum. What is it and why?

8.4 Applying Advanced Techniques to PORS

In this section, we will apply various techniques from earlier chapters to the
PORS environment and produce a few new ones. It is important to keep
in mind that except to certain very odd people like theoretical computer
scientists and mathematicians, the various PORS problems are not themselves
intrinsically interesting. PORS is intended as a very simple test environment

Plus-One-Recall-Store 227

for genetic programming, akin to the string evolver as it was used in Chapter
2.

The form of solutions to the Efficient Node Use problem suggests that
optimal trees must have relatively high depth. This gives us a natural place
to test an idea from Chapter 5: lexical products of fitness functions.

Experiment 8.9 Modify the software from Experiment 8.2 so that the fitness
function is ε(t) lex depth(T) with ε dominant. Do the same data runs and
reports. Does using the lexical product fitness function improve performance?

A technique for improving optimization that we treated in Chapter 3 is
niche specialization. For PORS parse trees, range-niche specialization is a
more natural choice than domain-niche specialization (see Problem 333). The
fitness function of the Efficient Node Use problem produces natural numbers.
These natural numbers are spaced out rather strangely, as we saw in Exper-
iment 8.3. This indicates that we should say that two PORS parse trees are
similar enough to decrease one another’s fitness if they produce exactly the
same value. In the terms used in Chapter 3, the similarity radius is zero. To
do range-niche specialization, we also need a penalty function. In the next
experiment, we will compare a couple of penalty functions as well as assess
whether range-niche specialization helps at all.

Experiment 8.10 If you need to, review Section 3.3 until you remember how
range-niche specialization works. Now modify the software from Experiment
8.2 to operate with range-niche specialization for the following penalty func-
tions:

(i) q(m) = (m + 3)/4,

(ii) q(m) =

{
1 if m ≤ 4,

m/4 otherwise.

Do the same runs and make the same report as in Experiment 8.2. Com-
pare the results. Which, if either, penalty function helps more? Do they help
at all? Is it worth doing range-niche specialization for the Efficient Node Use
problem?

It may be that niche specialization is more helpful for the Minimal Descrip-
tion problem than for the Efficient Node Use problem. The next experiment
tests this conjecture.

Experiment 8.11 Modify the software from Experiment 8.3 to operate with
range-niche specialization for the following penalty functions:

(i) q(m) = (m + 3)/4,

(ii) q(m) =

{
1 if m ≤ 4,

m/4 otherwise,

228 Evolutionary Computation for Modeling and Optimization

(iii) q(m) =
√

m.

Do the same runs and make the same report as in Experiment 8.3. Com-
pare the results. Which penalty function, if any, helps more? Do they help at
all? Is it worth doing range-niche specialization for the Minimal Description
problem?

So far each evolutionary algorithm we have run on a PORS problem has
used tournament selection with tournament size 4. It might be interesting
to explore some other models of evolution. Of the two PORS problems, the
Efficient Node Use problem and the Minimal Description problem, we have
a much better handle on the Efficient Node Use problem. It should be clear
from earlier experiments that there is a large local optimum in the Efficient
Node Use fitness function when n is a multiple of 3. Keeping this in mind, do
the following experiment.

Experiment 8.12 Modify the software from Experiment 8.2 so that it can
use other models of evolution. For all 8 possible combinations of

Roulette selection
Rank selection

with

Random replacement
Random elite replacement
Absolute fitness replacement
Local elite replacement

do the same set of runs and report the same data as in Experiment 8.2. Com-
pare the outcome of this experiment with that of Experiment 8.2. Which model
of evolution works best for which values of n?

Fig. 8.9. Subroutines for multiplying by 2 and 3.

Plus-One-Recall-Store 229

In Problem 314, the notion of subroutines is casually brought up. Recall
that a subroutine in the PORS language is a connected subset of a tree with
one link coming in and one going out. Figure 8.9 shows you subroutines for
multiplying the output of any tree T by 2 or 3. (Alert readers will note that
this answers the two easier parts of Problem 314; think of this as a reward for
students who read, or at least flip through, the text.)

So far our treatment of the Minimal Description problem has been vague
and left all the work to you. The subroutines in Figure 8.9 suggest a way of
getting very small trees for numbers of the form 2x3y. In general, minimal
subroutines for multiplying by m may be very good things to have in a popu-
lation of parse trees being evolved to find a Minimal Description of a multiple
of m. The next two experiments will put the Minimal Description problem
on a firmer footing. The first, somewhat bizarrely, should be called a PRS
experiment.

Experiment 8.13 This experiment will require a revision of the standard
PORS routines. In normal PORS, the memory is initialized with a 0, and
the set of terminals is {1,Rcl}. Create a new set of parse tree manipulation
routines from the PORS routines in which the external memory is initialized
to 1, not 0, and all terminals are Rcl. Rebuild the software from Experiment
8.3 to use the new routines. Use the software to find Minimal Description trees
in the PRS language for k = 2, 3, 5, 7, and 11. If you have not already done
so, do Problem 330. Report different variations of the Minimal Description
tree for each k.

Once we have these PRS parse trees that form minimal descriptions of
various numbers (and have completed Problem 330), we have a source of sub-
routines that may help with the Minimal Description problem (or cause us
to dive into a local optimum, see Problem 332). In any case, the subrou-
tines evolved in Experiment 8.13 may give us an effective way of seeding the
population for the standard PORS Minimal Description problem.

Experiment 8.14 Add to your suite of PORS parse tree routines a routine
that takes as arguments a maximum number of nodes and a tree of the type
located in Experiment 8.13 for computing k. It should convert the tree into a
subroutine for multiplying by k and then concatenate copies of the subroutine
together with a one-node tree consisting of the terminal 1 so as to obtain a
tree that computes km in the PORS environment, with m as large as possible.
The bound on m is implied by having only n nodes available.

Rebuild your software from Experiment 8.3 to operate with a seeded pop-
ulation. For each prime factor p of k, incorporate trees of the form pm (m
chosen to yield the largest power of p dividing k) as described above into the
population (in close to equal numbers for all prime factors of k).

With the new software do the same type of runs and report the same things
as in Experiment 8.3, but for k = 8, 10, 18, 21, 27, 35, and 63. Does the popu-
lation seeding help at all? You may want to try revising your fitness function.

230 Evolutionary Computation for Modeling and Optimization

Problems

Problem 329. Essay. Explain, to the best of your ability, why solutions to
the Efficient Node Use problem have tree depth much higher than random
trees. Would you expect solutions to the Minimal Description problem to
share this property?

Problem 330. Read the description of Experiment 8.13. Prove that a Mini-
mal Description tree for k evolved in the PRS environment has the same size
as a minimal subroutine in PORS for multiplying by k by constructing one
from the other.

Problem 331. Compare and contrast the fitness function used in Experiment
8.2 with that used in Experiment 3.18. In what ways are they similar? Would
Alife techniques that enhanced one tend to enhance the other? When or when
not?

Problem 332. Prove or disprove: a minimal description tree for k and a
minimum-size subroutine for multiplying by k always have the same number
of nodes.

Problem 333. Essay. In this section we explored the use of range-niche spe-
cialization in the PORS environment. This is not difficult because the range
of PORS parse trees is the natural numbers where there is a very natural mea-
sure of similarity to use. In order to do domain niche specialization we would
need a way of telling whether two PORS parse trees are close together. One
possibility is simply to test and see whether they are identical. Give another,
with details, and compute the similarities of several example trees.

Problem 334. Essay. Clearly, if we find a tree on n nodes that evaluates
to k, then a Minimal Description tree for k has at most n nodes. Defend
or attack the following proposition logically: While evolving a population to
solve the Minimal Description problem for a number k, we should apply the
chop operation to any tree with more nodes than the smallest tree we have
found so far that evaluates to k.

9

Fitting to Data

In this chapter we will look at techniques for fitting curves and models to
data. We will study three techniques: classical least squares of the sort that
appears in Appendix C, least squares with an evolutionary algorithm, and
least squares using genetic programming. These three methods, in the order
given, go from fast, reliable, and highly restricted to slow, semireliable, and
completely unrestricted. Classical least squares restricts the form of the func-
tion, e.g., line, parabola, exponential function, etc. Genetic programming has
the advantage that you need not select the type of curve you are fitting before
you start; it locates the curve and fits its parameters simultaneously. Genetic
programming relaxes this restriction at the cost of making the search pro-
cess for the model enormously harder. Hybrid systems, beyond the scope of
this text, stop the genetic programming system occasionally to use standard
statistical methods to fit the numerical parameters in the parse trees. These
systems can exhibit performance competitive with the best data modeling
techniques. The material in this chapter on genetic programming will build
on the material in Chapter 8, so a quick review is suggested before beginning
this chapter. The dependencies of the experiments in this chapter are given
in Figure 9.1.

9.1 Classical Least Squares Fit

In Appendix C, the equations for least squares fit to a line are given in Equa-
tions C.1 and C.2. The idea behind least squares fit is simple. Take a model of
the data, e.g., “I think that these data come from a linear curve of the form
y = ax + b,” and then use a minimization technique to pick a and b to make
the error between the model and data as small as possible. The unknown
values a and b are the parameters of the model.

From our experience in Chapters 2 and 3 we know that quadratic curves
give unimodal (e.g., easy) optimization problems. Looking at the derivation
of the least squares fit to a line in Section C.4, we see that the problem of

232 Evolutionary Computation for Modeling and Optimization

Exp 9.1 Exp 9.5

Exp 9.2

Exp 9.4

Exp 9.3 Exp 9.8 Exp 9.6

Exp 9.9 Exp 9.10

Exp 9.15

Exp 9.16

Exp 9.12 Exp 9.11

Exp 3.1

Exp 9.7Ch 13

Exp 9.13

Exp 9.14

1 Fitting a line to data.
2 Exploring mutation operators.
3 Evolving the model along with the fit.
4 Fitting to a hyperbolic tangent curve.
5 Evolving parse trees to fit data.
6 Exploring mutation operators.
7 Varying sample points.
8 Introducing the if-then-else operation.
9 Introducing automatically defined functions.
10 Generalizing to two data dimensions.
11 Varying the sample points in two dimensions.
12 ADFs in two dimensions.
13 Inducing the formula for the area of an ellipse.
14 Generalizing across dimensions.
15 Exploring parse tree size.
16 Using a designated intron.

Fig. 9.1. The topics and dependencies of the experiments in this chapter.

minimizing the squared error between a data set and a line y = ax+b is exactly
a quadratic minimization problem. Because it gives a method of estimating
the parameters of our model that is a simple, quadratic minimization, we will
use minimizing the square of the differences between our model and the data
as our method of finding model parameters (and of finding the whole model
when we use genetic programming). Here is an example of a least squares fit
of a model to three-dimensional data.

Example 26. Suppose we have 6 data points that we believe, except possibly
for modest measurement error, lie in a plane in R

3. The points are given in
the table below. Our model will be the general plane

z = ax + by + c

with parameters a, b, and c. To compute the sum of squared errors (SSE) we
take the sum of the z-values minus the model’s predicted z-values, squared.

Fitting to Data 233

i xi yi zi

1 0 0 1
2 0 1 4
3 1 0 3
4 1 1 6
5 1 2 9
6 2 1 8

So, to compute a, b, and c we want to find the values that minimize

SSE(a, b, c) =
6∑

i=1

(zi − a · xi − b · yi − c)2. (9.1)

Evaluating the sum, we get

SSE(a, b, c) = 7a2 + 7b2 + 6c2 + 10ab + 10ac + 10bc − 68a − 72b − 62c + 207.

Setting the partial derivative with respect to a, b, and c equal to zero, we
obtain

14a + 10b + 10c = 68,

10a + 14b + 10c = 72,

10a + 10b + 12c = 62,

which has a unique solution:

a = 2,

b = 3,

c = 1.

And we see that all the data points exactly fit:

z = 2x + 3y + 1.

In classical least squares fit, the first step is to choose the type of curve to
fit to the data. The general term for this curve type is the model. The unknown
coefficients in the model are called the parameters of the model. In Example
26, the model is a plane in 3-space, f(x, y) = ax+by+c, with parameters a, b,
and c. (The data given in Example 26 were clearly taken from this plane. You
can tell by plugging the data into Equation 9.1 and computing the squared
error for a = 2, b = 3, c = 1; it is exactly zero.)

The problem we will be ultimately concerned with is finding the model to
fit to the data.

234 Evolutionary Computation for Modeling and Optimization

Definition 9.1 The sum of squared error, or SSE, of a model with a
data set is the sum over the points in the data set of the square of the value
of the dependent variable subtracted from the value obtained by plugging the
independent variables into the model.

Examine the data given in Table 9.1. What function best models this data?

x 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25
y 0.516 0.125 -0.0781 0 0.453 1.38 2.86 5 7.89 11.6 16.3 22 28.8

Table 9.1. A data set from an unknown model.

-5

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5 3 3.5

Fig. 9.2. Plot of the data from Table 9.1.

To help you answer the question, you could plot the data. The result of
doing this is shown in Figure 9.2. The plot shows that the data are quite
unlikely to lie on a line, but gives little other information. The data might lie
on a parabola with a minimum near x = 0.75, but it is hard to tell by direct
observation of a few data points. The Stone–Weierstrass theorem says that any
continuous function can be approximated arbitrarily well with polynomials.

Fitting to Data 235

The data plotted do look like they come from a continuous function. This
means that we need only select the degree of the polynomial to fit. One way
to do this is to fit higher- and higher-degree polynomials until the squared
error stops decreasing. If we try this for the data given in Table 9.1, then we
obtain the results given in Table 9.2.

Model Least Square Fit SSE
y = ax + b y = 8.75x − 7.86 200.6

y = ax2 + bx + c y = 5.25x2 − 9.62x + 3.62 5.03
y = ac3 + bx2 + cx + d y = x3 − 2x + 1 3 × 10−6

y = ax4 + bx3 + cx2 + dx + e y = 0.001x4 + 0.993x3+ 6 × 10−6

0.014x2 − 2.01x + 1

Table 9.2. Results of fitting successively higher-degree polynomials to the data
given in Table 9.1.

Notice that the SSE drops radically from a degree-1 model to a degree-2
model, and again from degree 2 to degree 3. The sum of squared error actually
goes up a bit (probably not significantly) when we move to a degree-4 model
of the data. The least-squares-curve-fitting software used also found whole
number values for the coefficients of the cubic fit as well; this is suggestive.
Examining the quartic fit, we see that the coefficients that were zero in the
cubic fit remain quite small. (In fact, the data set was generated by plugging
into f(x) = x3 − 2x + 1, as can be seen in Figure 9.3.) Notice that the data
are plotted as glyphs, while the model is plotted as a continuous line. This is
standard practice for displaying data together with a model of that data. In
situations other than toy examples, the model will not fit the data exactly,
and the minimum SSE will not be so close to zero.

It turns out that fitting polynomial models to bivariate data amounts
to inverting matrices (see Problem 338). Least squares fit to nonpolynomial
models can be quite daunting, involving very annoying algebraic manipulation.
One special class of models, trigonometric series, can be fit using Fourier series
techniques. Data resulting from time series are an excellent candidate for
Fourier analysis, and courses in time series and many courses in mathematical
analysis treat Fourier series in depth. A time series is simply a set of data taken
across a period of time with the measurement times saved as the independent
variable on which the data depend. For example, the time of sunrise each day
forms a time series.

Another attack on fitting of data relies on first transforming the data so
that a simple model fits, fitting the model, and then inverting the transforma-
tion. Example 27 shows a standard example of this kind of transformation.

236 Evolutionary Computation for Modeling and Optimization

-5

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5 3 3.5

"Data"
x^3-2x+1

Fig. 9.3. Plot of the data from Table 9.1 together with the best fitting polynomial
curve.

Example 27. Assume that we have data drawn from a system undergoing ex-
ponential growth:

P (t) = A0e
rt + ε(t), (9.2)

with P (t) being the population at time t, A0 being the population at time
t = 0, r being the growth-rate parameter, and ε(t) being the random error
away from exponential growth. If we assume that ε(t) is small and take the
natural log, the model of the data becomes:

ln(P (t)) = rt + ln(A0), (9.3)

which is a linear function of two variables. Simply taking the natural log of
the independent variable permits us to fit a line to the data. The slope r of
that line is the growth-rate parameter, while its intercept is the natural log
of the initial population.

Problems

Problem 335. In Example 26, we saw that to fit a plane to points in 3-
space we needed 3 parameters: the unknown coefficients of x and y, and an

Fitting to Data 237

unknown constant. A term in a multivariate polynomial has degree n if the
sum of the exponents of its member variables are n. Thus the third-degree
terms in a general 2-variable polynomial, minus their coefficients, would be
x3, x2y, xy2, and y3. In fitting a multivariate polynomial model, each term
of each degree requires its own coefficient. Compute the number of unknown
coefficients needed to do a least squares fit to a data set of an nth-degree
polynomial model with k variables. (This is the number of parameters needed
to do the fit.)

Problem 336. Suppose that you wished to fit the model y = a, a constant
function, to a data set {(xi, yi) : i = 1, . . . , n}. What type of value would you
obtain, relative to the data, for the parameter a? Hint: since we didn’t tell
you the values of the data, we’re not looking for a numerical answer; give a
descriptive name.

Problem 337. Suppose you wished to fit a parabola y = ax2 + bx + c to the
data given below. Compute the SSE in terms of a, b, c and, using multivariate
calculus, compute the values of a, b, and c that minimize the SSE.

x 1 2 3 4 5 6 7 8
y 2 3 10 15 26 35 49 63

Problem 338. This problem requires familiarity with simple linear algebra.
Show, by algebraic derivation, that fitting a polynomial of the form f(x) =
a0 + a1x+ · · ·+ anxn to a data set can be phrased as the solution of a matrix
equation

Ax = b.

Give the entries of the matrix A and the vector b as summations over (func-
tions of) the coordinates of the data points.

Problem 339. True or False: The total amount of deviation of the values
of the model from the data points is all that matters in minimizing SSE.
The distribution among the data points of the deviations from the model is
unimportant.

Problem 340. For the population data given below, use the techniques out-
lined in Example 27 to find the growth rate for the population.

Time: 0 1 2 3 4 5 6 7 8 9 10 11 12
Population: 19 22 26 33 39 47 56 65 80 94 112 140 164

You also obtain an estimate for the initial population, for which you have
an observed value. Is there any reason to prefer the observed or estimated
value? Explain.

Problem 341. Problem 338 implies that fitting a univariate polynomial re-
quires that we invert a matrix; in essence, the solving of linear equations
suffices. Can we do a least squares fit of the model

238 Evolutionary Computation for Modeling and Optimization

y = sin(ax + b)

to bivariate data without solving nonlinear equations? Justify your answer,
assuming an arbitrary number of data points.

Problem 342. The data below were taken from a polynomial of degree no
more than 5 with integer coefficients. Either find or write a program that can
do a least squares fit of polynomial models to data. Construct a table like
Table 9.2 and give the polynomial. Note that the values were rounded off to
make the table.

x 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
y -2.84 -2.39 -1.69 -0.85 0 0.686 0.998 0.686 -0.538 -3

Problem 343. Essay. Explain why fitting a single continuous curve to an
entire data set may not be a good idea. Give at least one example in which
splitting the data set into two parts yields a better result than treating the
data set as a unified whole. What sorts of processes in the natural world might
produce such a data set?

9.2 Simple Evolutionary Fit

In this section, we will adapt the real function optimizer from Chapter 3 to
do a least squares fit to various models. We will introduce some evolutionary
algorithms (which may be of some interest in their own right) to serve as
sources of data for a least squares fit. We will start with a simple example of
the art: fitting a line to data.

Experiment 9.1 Write or obtain software for an evolutionary algorithm op-
erating on genes of the form (a, b), where a and b are real numbers. Initialize
a and b uniformly at random in the range −10 ≤ a, b ≤ 10. Let the fitness
function be the SSE between a data set of points {(xi, yi) : i = 1, . . . , n} and
the model y = ax + b. This function is to be minimized, of course.

The evolutionary algorithm should operate on a population of 100 genes
using single tournament selection with tournament size 4. Use single-point
crossover and single-point real mutation with mutation size ε = 0.2. Call a
population successful when its SSE drops to within 0.1% of the true minimal
SSE. (You must compute the true minimal SSE using calculus; it may be
handy to build the ability to do this into your software. See Equations C.1 and
C.2 for a formula for the correct values of a and b.)

For each of the data sets below, run the algorithm 50 times, saving the
number of generations required for success. Plot the fraction of populations
that have succeeded as a function of the number of generations. Report which
data sets are the most difficult to fit, which is a separate question from the
quality of fit.

Fitting to Data 239

Data set 1:
x 0 1 2 3 4 5 6 7 8 9
y 2 2 6 6 10 10 14 14 18 18

Data set 2:
x 0 1 2 3 4 5 6 7 8 9
y 1 2 5 10 17 26 37 50 65 82

Data set 3:
x 0 1 2 3 4 5 6 7 8 9
y 4 0 4 0 4 0 4 0 4 0

Experiment 9.1 is intended mostly to get you started with curve fitting.
The data sets are, respectively, a line with periodic errors, a quadratic curve,
and a simple periodic function. None of them really fit well with a linear
model, although the first data set comes close. An interesting question is
whether being less like a line makes a data set easier or harder to fit with a
linear model.

The next experiment is intended to make a point about mutation. When
doing a least squares fit to data, the sensitivity to changes in one or another
dimension in the space of parameters may not be uniform. Likewise, as we ap-
proach minimum error, smaller mutations are better at helping the algorithm
converge.

Experiment 9.2 Modify the software from Experiment 9.1 to use different
mutation operators as specified below. For each of the mutation operators
given, save and plot the time to success on data set 1 from Experiment 9.1
and compare their plots with one another and with the plots of the data for
the first data set in Experiment 9.1.

• One-point real mutation with mutation size ε = 0.2, 50% of the time, and
ε = 0.02, 50% of the time.

• One-point real mutation with mutation size ε = 0.02.
• One-point real mutation with mutation size ε = 0.2√

n
, where n is the current

generation number, starting at 1.
• Two-point real mutation with mutation size ε = 0.02.

Which mutation operator gave the best performance? In your write-up,
speculate as to the reasons for the differential performance.

One of the things that would be nice for curve-fitting software to do is to
automatically figure out the model for us. With the simple evolutionary fit,
this requires something like a lexical product of fitness (defined in Section 5.1)
in which the degree of the polynomial is used as a tie-breaker when the SSEs

240 Evolutionary Computation for Modeling and Optimization

of two polynomials are essentially the same. Using the results shown in Figure
9.2, we can get a reasonable notion of “similar” SSE. The next experiment
implements an evolutionary curve fitter that tries to find which model to use.

Experiment 9.3 Modify the software from Experiment 9.1 to operate on a
different sort of gene. The genes should have 7 real numbers and an integer.
Use one-point crossover with the integer being viewed as being in the gene
before the first real number. The real numbers are the coefficients of a poly-
nomial whose degree is specified by the integer. The first real is the constant
term, the last is the coefficient of x6.

Mutation should be real single-point mutation with mutation size ε = 0.2
7 times in 8, and 1 time in 8 it should modify the integer degree by ±1, with
a lower bound of 1 and an upper bound of 6. Correct impossible mutations by
not performing them. The coefficients above the degree given by the integer
are unused, but are available for crossover.

As before, we wish to minimize the SSE of the polynomial specified by the
gene. When two genes have SSE fitness that differs by less than 0.1 take as
more fit the polynomial that is of lower degree.

Test the algorithm on the data sets given in Table 9.1 and Problem 342,
running the algorithm 20 times for each polynomial. Report whether the algo-
rithm was able to find the degree correctly and whether there was a consensus
degree in the best members of final populations. Repeat the experiment on the
first data set with the degree forced always to be 5. The program can reset the
degree by zeroing out the higher-degree coefficients: does it do so efficiently?

Now we will analyze a simple artificial life system with evolutionary curve-
fitting software. This system is based on a game called the Public Investment
Game. Suppose that you want to model public spending on something most
people need, say roads. Clearly, it would be “fair” for people with similar
amounts of money to pay the same amount for roads. However, a person who
spends less than the others still benefits from the roads.

A simple model of this type of situation can be constructed as follows. A
referee gives each person in the game $100. Each person may secretly put some
number of dollars in an envelope. The contents of the envelope are doubled and
the result divided among all players evenly. The initial money represents each
person’s available money. The money placed into the envelope represents the
money spent to build the roads: public spending. The doubling of the money
in the envelope represents the value of having roads.

The question we will examine is how simple strategies of play evolve under
different conditions. As we will see, playing this game as a single-shot game
and then selecting for players that have the most money quickly leads to no
public spending.

The basic software we will use works as follows. A population of 60 in-
vestors is represented by an array of integers initialized to a value of 100. The
integer is the amount to put in the envelope. The population is shuffled into
random groups of 12 investors that play the Public Investment Game, once.

Fitting to Data 241

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400

"Mean Investment"

Fig. 9.4. Average investment level of individuals over 50 populations from play 1
to play 400 of the Public Investment Game.

The fitness of each investor is 100 minus the money put in the envelope plus a
share of the doubled investment money. The population is then shuffled into
random groups of two investors. The investor in each pair with the lower fit-
ness adopts the strategy (integer) of the investor with the higher fitness, plus
a uniformly distributed integer in the range −5 to 5. Numbers above 100 or
below 0 are mapped to 100 or 0, respectively. Ties are broken uniformly at
random.

This is a very simple evolutionary algorithm mimicking a population of
inexperienced investors learning from one another by observation. If this al-
gorithm is run 100 times for 400 plays of the Public Investment Game, then
the average over all populations and all investors within a population behaves
as shown in Figure 9.4. Problem 345 gives insight into why this happens.

An interesting phenomenon occurs if we complicate the model by adding
two global features: a minimum investment level called the law, and a penalty
for failure to invest at least the amount specified by the law called the fine.
The law could be thought of as the mandated level of taxation and the fine
as the penalty for tax evasion. This situation differs from reality in that (i)
investors are allowed to overpay tax and (ii) tax cheats are 100% likely to be
caught. The software is modified as follows: decrease the fitness of an investor
who has an investment amount less than the law by the amount of the fine.

242 Evolutionary Computation for Modeling and Optimization

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400

"Fine 0"
"Fine 16"
"Fine 30"

Fig. 9.5. Average investment over 50 populations of 60 investors with a law of 50
and fines of 0, 16, and 30.

We will investigate what happens with a law of 50 and a number of different
fine levels. Figure 9.5 shows the average investment with a law (minimum
investment) of 50 and fines of 0, 16, and 30 over 100 populations of 60 investors.
Figure 9.6 shows the individual population tracks that led to the average
results displayed in Figure 9.5.

In the cases of the extreme fines, the results are simple. As fast as the
rate of adaption (the ±5 variation in copied strategies) allows, the population
either drops to zero or to the law. With the fine of 16, however, the rapid
adaption down to the level of the fine is followed by an almost evaporative
series of defections to zero. The average track simply descends slowly. For
some of the possible combinations of investments near the law, it is possible
to be slightly ahead if you don’t meet the law. If too many investors arrive
at that state at the same time, then the whole population is paying the fine,
and it no longer matters.

Logically, the law and fine have two sorts of impact. A small fine is simply
a cost of doing business: it is less than the gain from low personal investment.
Given that our investors are simply integers, with no sort of moral sense, fines
that are less than the profit of bidding low are ignored. On the other hand,
high fines will force compliance. A fine of 200, for example, is more than you
can possibly make no matter what happens and amounts to instant failure for

Fitting to Data 243

0
0.0

400

100.0

Investment

time

Fine 0

0
0.0

400time

100.0

Investment

Fine 16

0
0.0

time 400

100.0

Investment

Fine 30

Fig. 9.6. The average investment level for 50 individual populations with the law
set to 50 and fines of 0, 16, and 30.

244 Evolutionary Computation for Modeling and Optimization

any investor not obeying the law. This means that at some point above zero
but below 200 the fines start causing strong compliance.

Examining Figure 9.6, we see that this logic is not complete. With a fine
of zero, the investment level moves smoothly to zero (plus a small amount
due to the variation of −5 to +5 when another investor’s strategy is copied).
With a fine of 30, a smooth decline to the law of 50 is observed; the curve
is similar in character to the decay to zero for no fine. However, when the
fine is 16, something odd happens. As the average bid approaches the law,
the investors manage to divide between those who pay the fine and those
who obey the law. If we examine individual populations, we see that they
are either all fine payers or all in compliance with the law after 400 rounds
of playing the game and learning from fellow investors. Once a population is
made mostly of the exactly lawful (investment levels of the law but not much
more) or criminals (investment levels below the law), it tends to stay in that
condition. Somehow, the dynamics of the simulation permit either outcome,
even though the investors start with generous lawful investment levels of 100.

Investigating more deeply, we perform the following experiment. For fines
of 0 to 40, in increments of 2 dollars, we find the average investment after
400 plays of the Public Investment Game. The play and learning from fellow
investors takes place as before, but now we save only the average investment
level in generation 400. This quantity is plotted versus the fine in Figure 9.7.
This is the data we wish to model with a least squares fit.

If the assertion that an individual population must either become uni-
formly law-abiding or uniformly criminal (within a mutation driven small
distance of zero investment), then the expected investment level for a given
fine is the law times the probability of a given population becoming lawful. In
addition, Figure 9.7 indicates that this probability is zero for small fines, one
for large fines, and follows a sigmoid curve in between. This is enough infor-
mation to choose a model for the average investment as a function of the fine
data. We need a sigmoid curve with a minimum of zero, a maximum of the
law (50 in this case), and which can have its maximum slope and horizontal
position modified. The shifted hyperbolic tangent curve fits our requirements
admirably, see Figure 5.7 and Equation 5.4.

Experiment 9.4 Modify the software from Experiment 9.2, using the best
mutation scheme you found there, to fit to the model

y = 50 × (tanh(a · (x − b)) + 1)/2.

Fit this model to the data given in Figure 9.7. Run for 5000 generations with
10 populations and compare the results. Also, plot the data together with a
graph of the fitted curve with the lowest error. Is there a consensus about the
values of a and b? Find the average over your 10 runs of a and b, and compute
the SSE for those averages. How does the resulting SSE compare with the best
result from each individual population? You may want to work Problems 347–
350 concurrently with this experiment.

Fitting to Data 245

fine avg fine avg
0 0.734667 22 41.7112
2 0.834667 24 46.1248
4 0.977167 26 50.0627
6 1.9965 28 50.5992
8 3.37967 30 50.8558
10 5.683 32 50.772
12 6.51933 34 50.8998
14 10.0245 36 50.8272
16 16.8492 38 50.8257
18 24.7958 40 50.7795
20 32.6318

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40

"avgfin.dat"

Fig. 9.7. Average investment level after 400 plays over 100 populations of 60 in-
vestors as a function of the fine amount with a law of 50.

Problems

Problem 344. In the discussion before Experiment 9.2, the claim was made
that “When doing a least squares fit to data, the sensitivity to changes in
one or another dimension in the space of parameters may not be uniform.”
Suppose we fit the data below to a quadratic curve y = ax2+bx+c. Document
the variation in the SSE when varying each of the coefficients a, b, and c by
±0.1. This will require first performing the quadratic fit, hopefully a very
simple task.

x -4 -3 -2 -1 0 1 2 3 4
y 25 16 9 4 1 0 1 4 9

246 Evolutionary Computation for Modeling and Optimization

Problem 345. Prove: in the Public Investment Game with k > 3 players, if
one player’s bid is lower than all the others, then that player will make the
most money in that round.

Problem 346. Suppose we are having a population of integers learn to play
the Public Investment Game as described in this section with 60 players that
play in groups of 12. The law is 50, and the fine is 16. If all the players begin
with an investment level of 5 or less, show that the population will not become
lawful. (A lawful population is one in which a majority have investment levels
above the law.)

For the next several problems you need to read Experiment 9.4 and the
material leading up to it. Also examine the graph of (tanh(x) + 1)/2 and its
derivative, given below.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-4 -3 -2 -1 0 1 2 3 4

f(x)
f’(x)

The function f(x) = tanh(x)+1
2 and its derivative.

Problem 347. If f(x) = 50 · (tanh(a · (x − b)) + 1)/2 is fit by the method of
least squares to a data set like the one given in Figure 9.7, then the numbers a
and b contain information about the data being modeled. Examine the graph
above of the function tanh(x) and its derivative. What do a and b tell you
about the location of the sloped part of the data set and about the slope dy

dx?

Problem 348. Examine the data in Figure 9.7. The data point for a fine of
10 seems to be high if the curve really is sigmoid. Given the experiment that

Fitting to Data 247

provided the model, would you expect the value given by the fitted curve or
the experimental value of 5.683 to be closer to the value we would obtain by
averaging over 1,000,000 populations (10,000 times as many as were used to
produce the data)?

Problem 349. Least squares fit will work faster if the gene is initialized close
to the correct answer. Give a procedure for initializing the genes of Experiment
9.4 that requires only eyeball estimates of the data, but that will perform
better than the random initialization used in the experiment in its current
form.

g(x,y)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2
-1.5

-1
-0.5

0
0.5

1
1.5

2

0

0.5

1

Fig. 9.8. A curve g(x, y) = 1
1+2x2+6y2 , where the variation away from the mode is

not symmetric.

Problem 350. The current model of Experiment 9.4 presumes that for small
values of the fine, the average investment level is 0. Since half of all investors
are just mutated, and for 5 out of 11 of those this means that a number
between 1 and 5 has been added to their investment, it follows that the average
investment must be greater than 0. In addition, some of these mutants survive.
Give a generalization of the model used in Experiment 9.4 that models the
nonzero nature of the minimum average investment. Also, estimate the value
of the minimum investment for a fine of zero.

248 Evolutionary Computation for Modeling and Optimization

Problem 351. Suppose we are using least squares to do a high-degree poly-
nomial fit to bivariate data with an evolutionary algorithm. This problem is
unimodal and, as Problem 344 shows, subject to different slopes in different
directions about the optimum. Would you expect range- or domain-niche spe-
cialization to help more in this situation? An example of a unimodal curve
with this sort of directional dependence of variation is shown in Figure 9.8.

Problem 352. Essay. We could estimate the current rate of variation of the
SSE with each parameter by simply varying each parameter the same amount
and directly computing the change in SSE. We could then set mutation size
for that parameter to be some global mutation size divided by that variation.
Discuss the pros and cons of implementing such as system with (i) the esti-
mate of variation made only for the best gene in each generation and used to
calculate mutation size for all genes and (ii) the estimate made individually
for each gene. Include the implications of Experiment 9.2 in your discussion
(if you performed it) and also remember to consider both evolutionary search
advantages and computational cost. Use the curve given in Figure 9.8 as an
example of the sort of nonuniform variation in different directions for which
we are trying to compensate.

9.3 Symbolic Regression

In this section, we will use genetic programming (GP), a new version of the
technique introduced in Chapter 8, to do fits to data. We will be evolving
formulas to fit data, i.e., performing symbolic regression. Review the basics
of genetic programming given in Section 8.1. The fitness function we will
be using, as in the preceding section, is minimization of squared error. The
difference is that we will not be fitting parameters of a given model, but rather
selecting a model (complete with parameters) in the form of a parse tree or
parse trees.

The use of parse trees lets us generate random formulas. This means that
we are searching an enormously larger space than in the preceding sections.
The search is no longer a simple unimodal optimization over the real numbers;
it is a mixed search of a discrete space of formulas with incorporated real
parameters.

In Chapter 8, the set of operations and terminals was tiny and fixed. In this
chapter, we will need to worry about which terminals and operations we need
for each experiment. We will also want to be able to enable and disable given
terminals and operations. Because of this, you will need an entire class of parse
tree routines that let you specify which terminals and operations are available.
We will simply assume this capability and leave it to you (or your instructor)
to write or download the necessary routines. If only a limited number of GP
experiments from this chapter are performed, then much simpler parse tree
code can be used.

Fitting to Data 249

For our first exploration, we will use the set of terminals and operations
given in Table 9.3. The set of terminals and operations used for the plus-
one-recall-store problem in Chapter 8 had the advantage that it required no
error trapping; each function could accept without error every value that
it encountered. The operations in Figure 9.3 share this property, except for
division. Division by 0 is not allowed. When doing genetic programming, we
modify singularities so as to prevent impossible values. This means that the
formulas obtained may not be quite standard, and so a bit of care is required.

Node Symbol Semantics
Terminals

real varies A real constant in the range -1 to 1
x x Holds the value of the independent variable

Unary Operations
minus Unary minus, negates its argument
square sqr Computes the square of its argument
sine sin Computes the sine of its argument

cosine cos Computes the cosine of its argument
arctangent atan Computes the arctangent of its argument

Binary Operations
plus + Adds its arguments

minus - Computes the difference of its arguments
times * Multiplies its arguments
divide / Computes the quotient of its arguments, returning 0 for a

divide by zero

Table 9.3. Terminals and operations for the first set of experiments.

Since error trapping is very system- and language-specific, the problem of
detecting impossible divisions is left to the writer of a given piece of GP code.
Notice that for the present, real constants are to be in the range −1 ≤ c ≤ 1.
This is less limiting than you might think, because such constants can be used
to simulate other constants with a fairly small number of operations. We are
now ready to do our experiment.

Experiment 9.5 Write or obtain software for an evolutionary algorithm to
perform genetic programming that operates on a population of 400 parse trees.
Initialize the population to have trees with 6 nodes and use the chop operation
to contain tree size at no more than 12 nodes. Use single tournament selection
with a tournament size of 4 as your model of evolution. When bred, pairs of
trees should be crossed over 50% of the time and simply copied 50% of the
time. Mutate new trees (crossed or copied) 50% of the time. Let the fitness
function be minimization of the SSE with the set of points

P =
{(

i

40
− 1,

1
(i/40 − 1)2 + 1

)
: i = 0, . . . , 80

}
.

250 Evolutionary Computation for Modeling and Optimization

Run 30 populations for either 500 generations or until the SSE drops below
10−6.
Report the following:

(i) One best-fitness formula from each population,
(ii) The number of populations that did not need to evolve 500 generations.

Create a fraction-of-successes graph where success is defined as finishing
early.

At this point, we pay off on a promise made in Chapter 8 and introduce
some new mutation operators. These augment, rather than replace, the sub-
tree mutation introduced in Chapter 8. There are at least three ways to mu-
tate a parse tree without modifying the tree structure. Two of these mutations
would have been rather pointless in the PORS environment.

Definition 9.2 A constant mutation locates a constant in a parse tree
and applies an appropriate mutation to it. A real-valued constant would have
a number from some distribution added to it as with real point mutation. An
integer or character constant could be replaced with an appropriate new value.

Definition 9.3 A terminal mutation locates a terminal and generates a
new terminal. Constant mutations, defined above, are a special case of this.
The difference is that this mutation can replace constants with variables and
vice versa.

Definition 9.4 An operation mutation locates an operation and changes
its identity while preserving its arity (a unary operation is replaced with an-
other unary operation; a binary operation is replaced with another binary op-
eration, etc.). To use this mutation requires that multiple operations of each
arity be available.

Experiment 9.6 Perform Experiment 9.5 again, but this time instead of us-
ing subtree mutation alone, use it 25% of the time and also use constant
mutation, terminal mutation, and operation mutation 25% of the time each.
Report the same data and compare. Does the new mix of mutation operators
help?

Experiments 9.5 and 9.6 try to approximate a known function on a fixed
grid of sample points. It is interesting how many different solutions an evolu-
tionary algorithm can find (see Problem 353). Take the problem, for example,
of approximating the fake bell curve, f(x) = 1

x2+1 . What effect does using a
fixed set of sample points have on the evolutionary process? It may be the
case that using a different random set of sample points for each generation is
a good thing. Problem 357 addresses this issue. At present, we will treat the
question experimentally.

Fitting to Data 251

Experiment 9.7 Modify the software from Experiment 9.6 so that the SSE
used for fitness is computed, in any one generation, on the set of points

Pr =
{(

i

40
− 1 + r,

1
(i/40 − 1 + r)2 + 1

)
: i = 0, . . . , 80

}
,

where −0.4 ≤ r ≤ 0.4. Remember to have a single set of points (value of r) for
each generation, but change r for each new generation’s fitness evaluations.
Run 30 populations. Take the best creature in the final generation of each
population and compute the SSE on the set of points P used in Experiment
9.6. Compare the quality of solutions obtained in each experiment and the
number of times the algorithm halted early.

A traditional operation in genetic programming is the if-then-else opera-
tion. It requires that we put a Boolean interpretation on the data type for
the genetic programming. For real numbers, one reasonable interpretation is
“positive or zero is true, negative is false.” We will use this interpretation
for the remainder of the chapter. If-then-else, symbolized ITE, is a ternary
function with the following definition:

ITE(x, y, z) =

{
y if x ≥ 0,

z if x < 0.
(9.4)

The ITE operation permits evolution to embed decisions into formulas. If a
function has split rules, then ITE permits us to code them in a transparent
fashion. The next experiment is intended as a simple demonstration of this.

Experiment 9.8 First repeat Experiment 9.5, running 30 populations, on
the set of points

S0 =
{(

i

10
− 1, f

(
i

10
− 1
))

: i = 1, . . . , 20
}

,

where f(x) is 0 when x is negative and 1 otherwise. Now modify your GP
software from Experiment 9.5 to use the ITE operation. With the modified
parse trees, rerun Experiment 9.5 on the set of points S0. Compare the SSE
of the best creatures from the two experiments. How often did the second set
of experiments come up with an essentially correct answer?

Experiment 9.8, in addition to illustrating the use of the ITE operation
in dealing with discontinuous functions, does something else entertaining. In
the first half, we are using a continuous family of functions to approximate a
collection of sample points drawn from a discontinuous function. This is nearly
impossible (and gets harder as we increase the number of sample points). The
point is this: trying to do an impossible approximation teaches you something
about the approximating technique. Examine creatures with low SSE evolved
in the first half of Experiment 9.8. How do they do their approximating?

252 Evolutionary Computation for Modeling and Optimization

Problems

Problem 353. Review Experiment 9.5. For each of the formulas below, rate
that formula as an accurate approximation to f(x) = 1

x2+1 in general and on
the set of points P.

(i) f1(x) = cos2(arctan(x)),
(ii) f2(x) = cos2(x),
(iii) f3(x) = 1

x2+0.99975 , and

(iv) f4(x) = cos(arctan(x)) sin(arctan(x))
x .

Problem 354. For each of the functions in Problem 353, estimate how hard
it is for the evolutionary algorithm described in Experiment 9.5 to find that
function, given the fitness function and model of evolution used.

Problem 355. Several of the functions used in the experiments in this section
are listed below. For each, state and support your opinion as to whether
deleting the function from those available to the GP system would decrease
or increase time to success.

(i) sin(x),
(ii) cos(x),
(iii) x2,
(iv) arctan(x).

Problem 356. Take 3 of the best functions evolved in Experiment 9.5 that
did not come from populations that finished early. Graph them on the interval
−2 ≤ x ≤ 2. Recalling that the fitness function used to produce these functions
operated in the interval −1 ≤ x ≤ 1, comment on their behavior outside the
fitness relevant region.

Problem 357. Essay. Review Experiment 9.7. When we sample the SSE of
the function on different sets of points each time, the fitness values of different
parse trees jump about. First: prove that they do not do so in a manner that
preserves relative fitness. By that we mean that if on one set of sample points
parse tree 1 has higher fitness than parse tree 2, then the situation may be
reversed on another set of sample points. Second: comment on the effect that
this stochastic method of computing fitness has on the population’s tendency
to get stuck in local optima. Reason in terms of fitness landscapes, if possible.

Problem 358. Review Experiment 9.8. The set of points S0 is drawn from
the Heaviside function,

H0(x) =

{
1 if x ≥ 0,

0 if x < 0.

Assume that we measure the true SSE of a function f(x) on an interval
I = [a, b] with an integral:

Fitting to Data 253

SSE[a,b] =
∫ b

a

(f(x) − H0(x))2 · dx.

Discuss the minimum SSE possible if f(x) = a · tanh(b · x).

Problem 359. In Problem 18, you were asked to find a minimal GP repre-
sentation for a given polynomial. Supposing you can use arbitrary constants,
the symbol x, and the operations + and *, give the minimum number of
operations needed for a single-tree GP representation of a polynomial

f(x) = a0 + a1x + · · · + anxn

when you have no ability to factor and when each ai is nonzero.

Problem 360. Review the definition (Definition 3.4) of fitness landscapes.
Describe the domain space for Experiment 9.5. If we are to graph a function,
we must have some way of representing the domain as a space where distances
between points are apparent. What definition of distance works for this space?

Problem 361. What extensions to the GP system described in this section
would you need to solve differential equations? In addition to describing how
to automatically extract the derivative, describe the modifications to the SSE
fitness function required to attempt to solve y′ = x + 2y.

Problem 362. Essay. Examine the following function in LISP-like notation,
an evolved formula from a run of Experiment 9.5.

(Cos (Div (Sin (Div(Sin X1) -0.898361))
(Sub 0.138413 0.919129)))

The subtree (Sub 0.138413 0.919129) is a verbose way of coding the constant
−0.780716. It would be possible to shrink parse trees by detecting subtrees
that compute a constant value and replacing them with a real constant ter-
minal. The question is this: is this helpful? Consider the effects on evolution
of such compaction.

9.4 Automatically Defined Functions

A standard technology used in genetic programming is the automatically de-
fined function, or ADF. In standard programming, an ADF would be called a
subroutine. In order to use ADFs, we need to modify our parse tree routines
to accommodate them. We will restrict ourself to one-variable ADFs for the
present.

Our parse tree routines should be modified to allow or disallow the use of
a unary operation called ADF. Our basic creature will now be made of two
parse trees. The first is a “main” parse tree that can use the ADF operation,

254 Evolutionary Computation for Modeling and Optimization

and the second is an ADF that does not use that operation. In the main tree,
when the ADF operation appears, its argument is sent to the ADF parse tree
as the terminal x, and the ADF parse tree is evaluated. (Both parse trees use
the terminal x, but in the ADF the value of x is the value of the argument of
the call to the ADF, while in the main parse tree, it is the input variable.)

Again: the ADF parse tree is not allowed to use the ADF operation. This
would amount to recursion, which would open a substantial can of worms. An
example of a parse tree and accompanying ADF appear in Figure 9.9.

+

+ x 2

(main) (adf)
ITE

x -x x

1.5 x

adf *

Fig. 9.9. A parse tree and ADF.

ADFs fulfill the same role in genetic programming that subroutines do in
normal programming. They provide code fragments that can be used multiple
times during the execution of the program. This implies that some problems
will benefit more from ADFs than others. We will test this notion in the next
experiment.

Experiment 9.9 In this experiment, we will approximate two polynomials
from a fixed set of points. Use 41 points with x-coordinates equally spaced in
the range −2 ≤ x ≤ 2. Modify your parse tree routines to enable the use of
ADFs. Also, disable the trigonometric functions used in previous experiments.
Use the software of Experiment 9.5.

Let the main parse trees have a maximum size of 36 and an initial size
of 12. When ADFs are used, let the ADFs have an initial size of 4 and a
maximum size of 8. Reproduction of parse trees with ADFs copies both the
main tree and the ADF.

When crossover is required in a population with ADFs, do one of the fol-
lowing, selecting uniformly at random: cross the main trees in the usual fash-
ion, cross the ADFs in the usual fashion, or take the main tree and ADF from

Fitting to Data 255

distinct parents. Mutation should pick the main tree or the ADF to mutate
with equal probability. A mutation should be used 50% of the time.

Approximate the following functions:

(i) f1(x) = x3 − 2x2 − x + 2,
(ii) f2(x) = x6 − 4x5 + 2x4 + 8x3 − 7x2 − 4x + 4.

Treat success as an SSE of 0.001 and run 50 populations for each of the two
functions, both with and without ADFs. Report and graph the time to success
for all 4 sets of runs. (The first function is much easier to approximate, so
concentrate on the difference the ADF made.)

In addition, for the best parse trees, state the fraction that used an ADF for
each polynomial. Finally, examine the best parse trees from each population
and state whether factorization of f1 or f2 was used. How did the parse tree
represent the functions? (The best parse trees are the ones with the lowest
SSEs and the fewest nodes.)

There is no reason, beyond simplicity, to limit ourselves to a single ADF. It
is possible, for example, to design structures that contain a large set of parse
trees that refer to one another. Problem 363 looks at possible generalizations
of the notion of ADF given here. In Chapter 10, we will look at other ways
of fragmenting parse trees to form something more like a computer program
and less like a single statement.

Many other such methods exist. You could brainstorm and come up with
some good ones yourself. Remember, though, that being a neat idea is not
enough. If you are going to modify the basic model of genetic programming,
there is a series of questions you should ask yourself.

What does it cost in software? A different way to do genetic program-
ming must be implemented if it is to be of any use. If you did the modi-
fications to permit ADFs, you have some idea that moving beyond basic
parse trees can be an annoying and bug-ridden task. When vetting a new
idea, think carefully through what will be needed to build the software
that supports it. You can do ADFs with variable numbers of arguments, li-
braries of useful ADFs, libraries of parse tree fragments, and other similar
things. The question is, can you get them running reliably?

What is the cost in instruction cycles? If you modify the representa-
tion used by GP software, you will make it faster (small chance) or slower
(large chance). If the change of representation reduces the evolution’s
time-to-solution (as ADFs should have done in at least one part of Exper-
iment 9.9), then a modest decrease in the speed of evaluating the fitness
of individual creatures is acceptable. Be sure to do back-of-the-envelope
estimates of the increased time your modifications will take.

What is the cost in readability? As well as coding your new representa-
tion for use on a computer, you will need some method of representing it
to people. (There are some cases in which a black box that nobody ever
looks under the hood of is acceptable, but these are rare.) Ask yourself

256 Evolutionary Computation for Modeling and Optimization

whether you have a method of displaying the results of your new repre-
sentation that is no worse than the LISP-like display of parse trees. If
you’ve got one that is substantially better, good; this even pays for some
added computational or programming cost. Always keep in mind at design
time that a little work now on your I/O and display routines can pay off
substantially at data analysis time.

Problems

Problem 363. Essay. It is stated in the discussion of ADFs on page 254 that
“The ADF parse tree is not allowed to use the ADF operation.” Explain why
not and discuss the difficulties and potentialities of relaxing this restriction.

Problem 364. Design a set of operations and terminals, including 3 terminals
a, b, and c, that permit you to write a parse tree that computes the roots of
the quadratic f(x) = ax2 + bx + c. The first root should be returned the
first time the parse tree is evaluated, the second the second time the parse
tree is evaluated. You may either define a value NAN (not a number) or, for
advanced students, return the complex roots. Since the parse tree must return
two values, it must have some sort of memory that lets it know whether it has
been called before. If the root is unique, return it twice. Question: would an
ADF help?

Problem 365. Find a minimal GP representation, as a single parse tree, of
the polynomial f2(x) from Experiment 9.9 using the operations used in that
experiment. Give the answer both with and without ADFs. Does using an
ADF result in fewer total nodes?

Problem 366. In the spirit of Chapter 8, we give the following question.
Suppose you are allowed to build a parse tree and ADF using only one real
constant a, the variable x, and the operations ADF, +, and *. If the sum of the
nodes used in the main parse tree and ADF is at most n, what is the highest-
degree polynomial you can manage for n = 8, 12, or 16 nodes? Beginning
students can simply present their best construction; advanced students should
prove that they have a correct answer.

Problem 367. Reread the three boldfaced questions at the end of Section
9.3. Keeping them in mind, consider the following structure. We generate
6 parse trees, T1–T6, with at most 8 nodes over some otherwise reasonable
set of operations and terminals, including only one variable terminal x. Each
parse tree can use the parse trees with smaller index as ADFs. We use an
evolutionary algorithm (leave the details vague) to fit (by minimizing SSE)
to a system of two equations f(x) and g(x), where T5 is used to approximate
f(x) and T6 is used to approximate g(x). Answer all three questions for this
system.

Fitting to Data 257

9.5 Working in Several Dimensions

Thus far, we have only done one-dimensional data fitting with genetic pro-
gramming. We will now look at issues that arise in multiple dimensions. Our
old friend, the fake bell curve, will again be the function of choice for our
experiments. The first issue we choose to deal with is the curse of dimension-
ality.

In Experiment 9.5, we fitted a fake bell curve using a collection of 81 sample
points with x-coordinates uniformly spaced on the interval −1 ≤ x ≤ 1.
Imagine that we wish to fit the fake bell curve B2(x, y) = 1

x2+y2+1 in two
dimensions. If we used the same spacing of points, we would need to use
812 = 6561 points. Clearly, as the number of dimensions increases, the number
of points needed for a given spacing skyrockets. Before attempting anything
too clever, we will check how much harder the problem gets when we hold the
number of points constant.

Experiment 9.10 Rerun Experiment 9.5 with a new termination condition:
SSE at most 0.001 or 2000 generations. Also increase the initial and maximum
tree size to 8 and 16 respectively. Save the time-to-solution data. Now modify
the software from Experiment 9.5 to permit two variable terminals and use
the evolutionary algorithm to fit parse trees representing functions f(x, y) to
the fake bell curve in two dimensions using points:

PB2 =
{(

i

4
− 1,

j

4
− 1,

1
(i/4 − 1)2 + (j/4 − 1)2 + 1

)
: i = 0, . . . , 8, j = 0, . . . , 8

}
.

Save time-to-solution and estimate the increase in difficulty of adding a dimen-
sion while holding the number of points constant. Does the two-dimensional
version of the experiment find any essentially correct solutions?

This curse of dimensionality is not unique to us; engineers and physicists
have struggled with it for a long time (and found a way to cope). In engineering
and physics, it is often necessary to integrate a function of many variables.
If we suppose that error estimates require a rectilinear grid with a spacing
of 0.05, then 9 dimensions will require, at 21 points per dimension, some
7.94 × 1011 sample points. Present-day computers are not up to working with
so many points, and future, more efficient, computers would have trouble with
just slightly higher dimensions.

The solution engineers and physicists use for integrating multidimensional
functions is to pick points at random, termed Monte Carlo integration. An
advanced text on numerical analysis will go over the techniques of Monte
Carlo integration, including the critical error estimates used to decide how
many random points are enough. We will simply use the idea of sampling
points to learn to approximate functions in many dimensions.

Experiment 9.11 Modify the software from the second half of Experiment
9.10 to operate on n randomly selected points (x, y,B2(x, y)) with −1 ≤ x, y,≤

258 Evolutionary Computation for Modeling and Optimization

1. An array of points should be generated in each generation and used to
evaluate the fitness of all the parse trees in that generation. Use this fitness
for selection, but also compute the fitness as in Experiment 9.10 and use it
to determine success. Compare the time to success of the previous experiment
(measured in generations) with that of this experiment using data taken for
n = 20, 81, and 200 points. Do random points work any better than regularly
spaced ones? How does the number of points used affect the time to success?
Remember to compensate for the effect of computing more sample points.

The fake bell curve, in any number of dimensions, could be defined as
Bb(p) = 1

d(p)2+1 , where p is a point in R
n and d(p) is the distance from the

point to the origin. Given that this distance function enormously simplifies
computation of the fake bell curve, it is possible that the fake bell curve would
benefit from the use of ADFs.

Experiment 9.12 Modify the parse tree routines from Experiment 9.9 and/or
9.10 to permit two-variable ADFs and then reperform the 3 sets of runs from
Experiment 9.11 using ADFs. Use the variation operators given in Experiment
9.9. Permit the ADF trees an initial 6 and a maximum of 10 nodes. Compare
with the results of Experiment 9.11: does using ADFs help?

One problem with genetic programming, as performed so far in this chap-
ter, is the mutation of real constant terminals. Real constant terminals are
called ephemeral constants. Subtree mutation never makes small changes to
the value of such real constants: it either leaves them alone or completely
changes them. There are a number of ways to deal with this. The simplest is
to add a mutation operator that locates a constant within a tree and performs
a real mutation, as in Chapter 3.

The fake bell curve uses only the constant value 1, so we will switch to a
different function with more constants. Recall that the area of an ellipse with
major axis 2a and minor axis 2b is πab.

Experiment 9.13 Implement a mutation operator that can locate a real con-
stant (equal chance among all constants in a parse tree) and do a real mutation
with mutation size ε to it. Add this new mutation operator to the software used
in Experiment 9.11.

In this experiment we will evolve parse trees to find the area of an ellipse
of diameters 2a and 2b. Use a population of 400 parse trees with an initial
size of 6 and a maximum size of 12 nodes. Let your model of evolution be
single tournament selection with tournament size 4. Use crossover in 80% of
all mating events and subtree mutation in 50% of mating events. Minimize the
SSE of your parse trees with the formula Area = πab for 80 randomly chosen
values of a and b in the range 0.1 ≤ a, b ≤ 4, choosing new random values in
each generation. Test for success by looking for an SSE of 0.001 or less on the
ellipses with a, b valued at any multiple of 0.5 in the range 0.5 ≤ a, b ≤ 4.

Do 30 runs, saving time-to-success data and giving up after 2000 gener-
ations. Now, run the 30 populations again with each new tree mutated 50%

Fitting to Data 259

of the time with the new mutation operator (in addition to and with probabil-
ity independent of the subtree mutation) with ε = 0.2. Did the new mutation
operator help?

Now let’s do an experiment to explore the problems caused by increasing
the number of dimensions.

Experiment 9.14 Modify the software used in Experiment 9.10 to use 200
randomly selected sample points for fitness evaluation. Perform 30 runs each,
attempting to approximate the fake bell curve in 1, 2, 3, and 4 dimensions.
Compare the results obtained in each case. Estimate the relative difficulty of
the problems.

As is always the case, there is a large number of things we could do to
further explore these issues, comparing random sample points with a fixed grid
that moves (as in Experiment 9.7), for example. This chapter has dealt only
with artificial, manufactured data. You are encouraged to locate real data of
interest and use the techniques you have learned to try to fit to the data. In
later chapters, we will explore using genetic programming to model discrete
data and heterogeneous data. In real-life applications, mixed real values and
discrete data are the rule rather than the exception.

Problems

Problem 368. Experiment 9.10 uses the 81 points of Experiment 9.5 to form
a regular two-dimensional grid with 81 points. Suppose that we wish to do a
similar comparison across 1, 2, and 3 dimensions with the number of points
the same for each dimension. What numbers of points less than 1000 permit
this? Hint: this is almost trivial.

Problem 369. Examine the operations given in Table 9.3. When we move to
multiple dimensions, there is more potential utility to having operations that
take many arguments. With some operations, it is obvious what modifications
are needed to allow more arguments. For example, it is obvious what an n-
ary addition operator does: it adds up all of its arguments. For each of the
operations in Table 9.3, give your best shot at defining how that operation
would act on an arbitrary list of arguments. Also, rate your construction
as completely natural, as reasonable but different from the original, or as
contrived.

Problem 370. Essay. Read the three boldfaced questions at the end of Sec-
tion 9.3. Keeping them in mind, consider the following idea. Modify all oper-
ations so that they operate on a list of arguments of arbitrary size. Answer
all three of the questions with respect to this system.

Problem 371. Essay. Read the three boldfaced questions at the end of Sec-
tion 9.3. Keeping them in mind, consider the following idea. Our experience

260 Evolutionary Computation for Modeling and Optimization

in approximating the fake bell curve has shown that one weakness of genetic
programming is the poor job it does at discovering constants. Consider a sys-
tem with exactly 10 available constant terminals (instead of the generic real
number constant terminal). Each parse tree is augmented with an array of 10
real numbers. These array genes undergo two-point crossover and single-point
real mutation with an appropriate mutation size during breeding. Answer all
three of the questions with respect to this system.

Problem 372. Review Experiment 9.13. We observed in Experiment 9.5 that
it was easier for the evolutionary algorithm to find the approximation f(x) =
cos2(tan−1(x)) for the fake bell curve in one dimension than for it to find the
correct formula. For each of the following features, comment in a sentence or
two on the degree to which it might help the software from Experiment 9.5
find the formula 1

x2+1 .

(i) A terminal one that returns the value 1.
(ii) The mutation operator introduced in Experiment 9.13.
(iii) A reciprocal operator.

Problem 373. Review. Using calculus, verify the formula for the area of an
ellipse given on page 258. Recall that an ellipse is defined by the relation

x2

a2 +
y2

b2 = 1.

Refer to the graph below for inspiration.

a

b

πabA=

Problem 374. Suppose that in the course of more than 100 populations run
working out Experiments 9.5 and 9.7, only one formula appeared as the best-
of-run that approximated the functional form of the fake bell curve. This was

f(x) =
0.993126

0.991796 + x2 .

A large number of variations on the solution

g(x) = cos2(arctan(x))

appeared as best-of-runs. Why? Consider the shape of the cosine function and
the number of ephemeral constants required.

Fitting to Data 261

9.6 Introns and Bloat

Genetic programming is the first instance of a variable-sized representation we
have studied. In Chapter 8, we did genetic programming, but in a fashion that
minimized the impact of size variation. The PORS trees were used to explore
the behavior of a particular size of parse tree. This limited their ability to use
their variable size for much of anything.

The depth of a parse tree is the maximum number of links from the root to
any terminal. The main function shown in Figure 9.9 has depth 3, while the
ADF has depth 1. In standard genetic programming, as opposed to genetic
programming described thus far in this text, the depth of trees is controlled,
but not their size. The decision to control size in the genetic programming
in this text was motivated by research on the subject of bloat. In working
with a variable-sized genome, bloat is defined to be the use of space to gain
advantages not directly related to fitness. In this section, we will do a few
experiments to explore the phenomenon of bloat.

Bloat came as a surprise to the first researchers to encounter it. They
observed that the average size of parse trees grows to near the maximum
possible, whatever restrictions on size are present. In Problem 291, we saw
that parse trees can grow without bound as a result of subtree crossover. The
question remains, however, as to why they grow in this manner. Since there are
more large trees than small trees, bloat could be the result of simple random
drift. However, providing secondary fitness pressure for “parsimony” (small
tree size) does not have much effect. There seems to be a positive selection
pressure for large size.

One explanation of parsimony-resistant bloat makes an analogy to natural
genetics. Genes, in living creatures, often contain DNA that does not code for
anything and that is spliced out at the RNA stage, during translation of DNA
into protein. These chunks of DNA are called introns. Introns permit DNA
to undergo crossover that does not disrupt the protein-coding portions. Since
subtree crossover of the sort used in genetic programming is highly disruptive,
there is a selection pressure to develop substructures in the parse trees that
allow the parse tree to resist crossover-based disruption. The question then
becomes, “what do these substructures look like?” It is intuitive that they
will depend on numerical identities, but their exact form is not clear. Let us
experiment.

Experiment 9.15 Rewrite the software used in Experiment 9.5 so that it
saves the average size of parse trees in the final population. Rerun the exper-
iment in its original form and with the upper bound on the size of parse trees
changed from 12 to 60. Make the following analysis.

(i) Plot the generation of solution versus the average size of tree in the pop-
ulation. Is there a correlation in either of the two sets of runs?

(ii) Which set of runs had the better average number of generations to solu-
tion?

262 Evolutionary Computation for Modeling and Optimization

(iii) Which set of runs had the better fitness among those runs that ran out of
time?

(iv) Examine the best-of-run formulas. Are there any structures that might
be introns? Are there any structures that look like they were created by
repeated subtree crossover?

One way to see whether bloat is useful is to make it easier. A designated
intron is a function that returns its argument or, if it is not a unary function,
one of its arguments. If bloat is useful for avoiding crossover-based disruption,
making it easy by including a designated intron should enhance bloat. It is
an open question whether it will enhance the performance of a GP system.

Experiment 9.16 Rewrite the software used in Experiment 9.5 so that it
saves the average size of parse trees in the final population. Also, modify the
parse tree software to include a unary operation, say, that simply returns its
argument. Rerun the experiment twice with the maximum size of parse trees
set to 12 and to 60. Compare with the results from Experiment 9.15. Is the
say operation used oftener than it would be by random chance? Do the runs
with the say operation exhibit superior performance?

Problems

Problem 375. The following formulas are results that occurred in our version
of Experiment 9.5. Verify that each equals f(x) = 1

x2+1 , and then spot the
potential bloat in each. Some of the functions have more than one instance of
something that could be bloat.

(i) q(x) = cos(− arctan(x)) cos(arctan(x)),
(ii) g(x) = cos(arctan(x)) cos(−(arctan(x) − (x − x))),
(iii) h(x) = cos2(arctan(x)(cos(x − x))2),
(iv) a(x) = cos2(xarctan(x)

x),
(v) b(x) = x(

(x
cos(arctan(x)))
cos(arctan(x))

) ,

(vi) c(x) = cos2((x − x) + arctan(x)).

Problem 376. Give a method of using introns for string genes of the sort
used in Sunburn or VIP, from Chapter 4. Explain how the introns might help.
Give also the design of an experiment to tell whether the introns help.

Problem 377. A recessive gene in biology is a gene that has no effect on the
phenotype of the creature carrying it. Call a subtree recessive if it can be
changed without changing the fitness of the tree above it. Construct a tree
that has a recessive subtree and that is an exact answer for Experiment 9.5.

Problem 378. Reread Problem 362. Are such constant subtrees a possible
source of bloat? What other purpose could they serve?

10

Tartarus: Discrete Robotics

In this chapter, we will deal with an environment called Tartarus in which a
virtual robot (thought of as a bulldozer) shoves boxes around trying to get
them up against the walls. The bulldozer lives on a grid and is supplied with
information about adjacent grids via its sensors. The Tartarus environment
was proposed by Astro Teller in his paper “The Evolution of Mental Mod-
els” [55]. In the first section we will use a string evolver to test the support
routines that maintain the Tartarus environment. In the second section we
will use genetic programming (GP) with a parse tree representation to run
the bulldozer. In the third we will modify the GP language to allow the pro-
grams a form of memory like the one in the PORS environment. In the fourth
section, we will use a different sort of memory, that of Chapter 6. This last
modification has many applications that will be useful later.

GP automata, described in Section 10.4, is our first example of a complex,
hybrid representation. Keep in mind that complexity should never be sought
for its own sake. In the initial Tartarus paper the idea of adding calculator-
style memory to parse trees, the subject of Section 10.3, was explored. These
memories permit parse trees to have internal state information that is critical
for good performance in the Tartarus environment. Entangling the memories
that enable internal state information with the operations and terminals that
form the processing power of the parse tree poses a formidable challenge for
evolution (or any search technique). GP automata divide the parse trees from
the state information by moving the storage of state information to a finite
state machine. This decomposition of the method of storing state information
from the parse trees that process sensory information makes searching for a
good Tartarus controller a far easier task for evolution to perform.

Another important notion this chapter introduces is the use of a simple
string evolver as a baseline for the difficult Tartarus task. A standard string
evolver performs poorly on Tartarus, getting at most one-third of the fitness of
more complex representations. Using variable-length strings and exotic mu-
tation operators permits a Tartarus string evolver to exhibit performance
superior to the initial published Tartarus experiments. The meaning of this

264 Evolutionary Computation for Modeling and Optimization

Exp 10.1

Exp 10.2

Exp 10.3

Exp 10.4

Exp 10.5

Exp 10.6

Exp 10.7
Exp 8.1

Exp 10.14

Exp 10.21

Exp 10.16

Exp 10.17

Exp 10.19

Exp 10.22

Exp 10.9

Exp 10.11

Exp 10.10

Exp 10.13

Exp 10.20

Exp 10.18

Exp 10.12

Exp 10.8

Ch 13

Ch 13,14

Exp 10.15

1 Implementing the Tartarus environment.
2 Applying a string evolver to Tartarus.
3 Exploring a periodic string representation.
4 Gene doubling and halving neutral mutations.
5 Another crossover operator for variable length genes.
6 Nonaligned crossover.
7 Genetic programming: a parse tree representation.
8 Adding a random number terminal.
9 Analysis of evolved Tartarus controllers.
10 Adding automatically defined functions.
11 Exploring less subtree crossover.
12 Adding calculator-style memories to the parse trees.
13 Adding more memory.
14 Using indexed memory.
15 Tartarus with GP automata, a complex hybrid representation.
16 Exploring mutation operator usage frequency.
17 More Tartarus controller analysis.
18 Adding think actions, λ-transitions, in the automata.
19 Population seeding.
20 Exploring fitness validation.
21 Exploring variable numbers of fitness trials.
22 Evolving Tartarus boards instead of controllers.

Fig. 10.1. The topics and dependencies of the experiments in this chapter.

result is explored in the Problems; it highlights the importance of state in-
formation. A string controller specifies a fixed dance of moves with no use
of sensory information. That a string can get high fitness by storing only a
sequence of moves and its current position in that sequence of moves (a form
of state information) implies that state information is more valuable than sen-
sory information. As we will see, the best performance comes from using both

Tartarus: Discrete Robotics 265

sensory and state information. The relative importance of these two resources
would not have been understood without the string evolver baseline.

This chapter requires familiarity with genetic programming as introduced
in Chapter 8 and would benefit from familiarity with Chapter 9. This chapter
uses a slightly more complex GP language than PORS, but with simpler data
types: the integers or the integers (mod 3). The use of integer operations
makes implementation of the parse tree evaluation routines much easier than
in Chapter 9. The dependencies of the experiments in this chapter are given
in Figure 10.1.

10.1 The Tartarus Environment

A Tartarus board is a k×k grid, like a checkerboard, with impenetrable walls
at the boundary. Each square on a Tartarus board contains nothing, a box,
or the robot (henceforth called the dozer). A valid starting configuration in
Tartarus consists of m boxes together with a placement and heading of the
dozer. In the starting configuration, no boxes are in a block of 4 covering a
2 × 2 area of the board, and no box is adjacent to the wall. The dozer starts
away from the wall and can be heading up, down, left, or right. An example
of a valid Tartarus starting configuration is given in Figure 10.2.

The goal of Tartarus is for the dozer to shove the boxes up against the
walls. On each move, the dozer may go forward, turn left, or turn right. If a
single box with space to move into is ahead of it, then, when it moves forward,
the box moves as well. If a dozer is facing a wall or a box already against a
wall or a box with another box in front of it, a go forward move does nothing.

We will use a fitness function called the box-wall function for our work in
this chapter. Given a valid initial configuration with k = m = 6, the dozer is
allowed 80 (or more) moves. Each side of a box against a wall, after all the
moves are completed, is worth 1 point to the dozer. This means that a box in
the corner is worth 2 points; a box against the wall, but not in the corner, is
worth 1. Add the scores from a large number of boards to get the fitness value
used for evolution. Figure 10.3 shows 4 boards with scores. The maximum
possible score for any Tartarus board with 6 boxes is 10: boxes in all 4 corners
and the other 2 boxes against the wall.

Definition 10.1 A starting configuration of a Tartarus board is said to be
impossible if its score is 4 or less no matter what actions the dozer takes.

The starting configurations with 2 × 2 blocks of 4 are impossible, which is
why they are excluded.

In the later sections, we will be evolving and testing various sorts of rep-
resentations of dozer controllers in the Tartarus environment. We will need
working routines to support and display the Tartarus environment as well as
a baseline for measuring performance. In this section, we will explore the Tar-
tarus environment without genetic programming. These non-GP experiments

266 Evolutionary Computation for Modeling and Optimization

Fig. 10.2. A 6 × 6 Tartarus board with m = 6, dozer heading left.

will serve as a baseline for comparison of the various genetic programming
techniques.

Experiment 10.1 Build or obtain routines for maintaining and displaying
the Tartarus environment. Develop a data structure for holding Tartarus
boards that saves the positions of the boxes and the dozer’s position and head-
ing. Include the following routines in your software. MakeBoard should cre-
ate a k × k Tartarus board with m boxes and an initial dozer position and
heading in a valid starting configuration. CopyBoard should copy Tartarus
boards. Move should take a board and a move (turn left, turn right, or go
forward) and update the box positions and dozer position and heading. Score
should compute the box-wall fitness function of a board, given a set of moves.
DisplayBoard should print out or display a Tartarus board.

For k = m = 6 (a 6 × 6 world with 6 boxes), generate 40 valid starting
Tartarus configurations and save them so they can be reused. Use each board 20
times. Randomly generate 320 moves (turn right, turn left, and go forward).
Record the fitness at 80, 160, 240, and 320 moves, and compute the average
score. Do this experiment with the following 3 random number generators:

(i) Equal chance of turning left, turning right, and going forward,
(ii) Going forward 60%, turning left 20%, turning right 20%,

Tartarus: Discrete Robotics 267

Score 7 Score 8

Score 9 Score 10

Fig. 10.3. Boards after 80 moves with scores.

(iii) A left turn never follows a right turn, a right turn never follows a left
turn, but everything equally likely otherwise.

Report the average scores in a table indexed by the number of moves and
types of random number generators. Explain why this forms a baseline experi-
ment for Tartarus; would you expect nonrandom dozers to do better or worse
than random moving points?

Experiment 10.1 gives us the basic routines for maintaining Tartarus. We
now move on to a minimal Alife technology for Tartarus, the string evolver.

Experiment 10.2 This experiment fuses string-evolver technology with the
Tartarus routines from Experiment 10.1. Write or obtain software for an evo-
lutionary algorithm for evolving strings over the alphabet {L, R, F}. Use a
population of 400 strings of length 80 evolving under tournament selection

268 Evolutionary Computation for Modeling and Optimization

with two-point crossover and one of one-, two-, or three-point mutation. Each
string specifies 80 moves for the dozer to make. Evaluate the fitness of a string
by testing it on 12 Tartarus boards and summing the scores on the boards to get
a fitness value. All strings in the population should be evaluated on the same
12 boards in a single generation. A new set of 12 boards should be created for
each generation. Run the algorithm for 100 generations.

Graph the average fitness divided by 12 (the average per-board score) and
the fraction of L, R, and F in the population, averaged over 20 runs, for each
of the 3 mutation operators. Summarize and explain the results.

At this point, we digress a bit and do two experiments that illustrate an
odd feature of evolution and use a very interesting mutation operator first
introduced by Kristian Lindgren in a paper on Iterated Prisoner’s Dilemma
[42].

Experiment 10.3 A string with fewer than 80 moves can still be used to
control a dozer for 80 moves by cycling through the string. Modify the software
from Experiment 10.2 to use strings of any length up to 80. Using only one-
point mutation, rerun Experiment 10.2 for strings of length 5, 10, 20, and 40.
Compare the fitness and average final fitness with those for the one-point-
mutation 80-character strings in Experiment 10.2. Keeping in mind that every
shorter string gives behavior exactly duplicated by a longer string, explain what
happened.

For the next experiment, we need the notion of neutral mutations. A neu-
tral mutation is one that does not change a creature’s fitness. The null mu-
tation, mentioned in Chapter 3, is an example of a neutral mutation, but it
does nothing. In his work on Prisoner’s Dilemma, Lindgren came up with a
neutral mutation that changes the creature’s genotype substantially without
changing its phenotype.

Lindgren stored a Prisoner’s Dilemma strategy in a lookup table indexed
by the last several plays. He doubled the length of the lookup table by increas-
ing the index set by one play and then making a new lookup table from two
copies of the old lookup table, one for each possible value of the new index.
The additional index was vacuous in the sense that no matter what that index
said, cooperate or defect, the creature’s response was the same.

“Why bother?” I hear you cry. Imagine that we add Lindgren’s doubling
mutation to a population of Prisoner’s Dilemma players evolving under an
evolutionary algorithm. Occasionally, one of the creatures doubles the size of
its gene. Its behavior does not change, but the strategies that can be derived
from it under a point mutation change radically.

Look back at the results of Experiment 10.3. Evolution finds it much easier
to optimize a short string than a long one. If we optimize a short string,
double its length, and then continue the optimization in a completely new
space (with constructively the same fitness), we may be able to enormously
speed the process of evolution.

Tartarus: Discrete Robotics 269

If we include a gene-doubling mutation operator in the mix of genetic
operations, then we will need another that cuts genes in half. The reason for
this has to do with the behavior of one-sided random walks. Imagine that you
flip a coin and stand still for heads, while moving to the right for tails. The
net effect will be substantial movement to the right. If we occasionally double
a gene and never shorten one, there is danger that all genes will attain some
maximum length before the search of the smaller gene lengths is complete.

Definition 10.2 A gene-doubling mutation for a string-type gene is a
mutation that doubles the length of the string by concatenating two copies of
the string.

Definition 10.3 A gene-halving mutation for a string type gene is a mu-
tation that halves the length of the string by splitting the string into its first
and second halves and saving one at random.

Not that we have defined gene-doubling and gene-halving mutations, we
must confront the problem of crossing over pairs of genes of different lengths.
There are at least three ways to do this, given in the experiments below.

Experiment 10.4 Modify the software from Experiment 10.3 in the following
fashion. First, modify the string data structure so that it includes the length of
the string. Second, modify the crossover operator so that when two strings of
different lengths cross over, the crossover points are chosen inside the smaller
string. Perform mutation so that 90% of the time the algorithm does a single
point mutation, 5% of the time the algorithm does a gene-doubling mutation,
and 5% of the time the algorithm does a gene-halving mutation. Generate
the initial population with a 50% chance each of being length 5 or 10. Ignore
gene-halving mutations on strings of length 5 and gene-doubling mutations on
strings of length 80.

In addition to average fitness and fraction of types of moves, save the
average fitness of each length of string and plot the average of averages within
length classes over the course of evolution. Also, give a histogram of the string
lengths in the final generation, summed over all runs. In your write-up, state
whether better strings were located at all, whether better strings of length 80
were located, and whether evolution was faster.

There is an obvious bias in the crossover operator above. It favors, to
some degree, genetic material in the latter part of the strings for preservation
as an intact chunk. This is offset to a modest degree by the ability of the
gene-halving mutation to “bring the back half forward,” but this may not
help. If the moves in the front part of the genes are “more evolved” (better),
then exhumed back halves may have trouble competing. A crossover operator
that is more difficult to code, but perhaps more fair, is explored in the next
experiment.

270 Evolutionary Computation for Modeling and Optimization

Experiment 10.5 Repeat Experiment 10.4 with a new crossover operator as
follows. When two strings of differing lengths are crossed over, copy the shorter
gene into a scratch variable and double its length, until it is the same length
as the longer gene. Cross over the two resulting genes, now the same length,
and then truncate one of the resulting strings so that it is the length of the
shorter parent gene. This operator produces children of lengths matching the
parents. Present the same data as in Experiment 10.4 and discuss the impact
of changing the crossover operator.

Definition 10.4 A crossover operator is said to be conservative if two iden-
tical parents cross over to create identical children. Such crossover operators
are also sometimes called pure.

One thing that distinguishes evolutionary algorithms that use string genes
from genetic programming is the conservative nature of the crossover opera-
tor. Crossing over strings, even in our last two experiments, lines up equiv-
alent positions in the string. Information doesn’t migrate around the gene,
and identical parents clone themselves when they are reproduced and crossed
over. Subtree crossover in genetic programming, on the other hand, does not
preserve positions. Identical parents produce radically different children. In
the next experiment, we will strike off into the middle ground between conser-
vative string crossover and subtree crossover by using nonaligned crossover.

Nonaligned crossover exchanges substrings of the same length that may
not be lined up in the two strings. This permits genetic information to move
about the collective genome of the population over time.

Experiment 10.6 Repeat Experiment 10.4 using nonaligned crossover. Present
the same data as in Experiment 10.4 and discuss the impact of changing the
crossover operator. Compare also with Experiment 10.5 if you performed it.

Problems

Problem 379. Essay. In Experiments 10.2–10.4 we saved data on the frac-
tion of moves of each type. Explain a way of using that data to modify and
improve performance in Experiment 10.1.

Problem 380. For k = 6 and m = 4, 5, and 6, compute the probability that
placement of the boxes away from the wall, but otherwise at random, will
produce an invalid starting configuration (4 boxes in a 2 × 2 group).

Problem 381. Essay. Given the answer to Problem 380, is it worth excluding
the impossible configurations? Consider both the cost in computer time and
the effects on evolution in your answer.

Problem 382. Give counting formulas for the number of strings of length k
over the alphabet {L, R, F} in which:

Tartarus: Discrete Robotics 271

(i) L and R are never adjacent,
(ii) At least half the characters are F ,
(iii) The sequences LLL and RRR never appear,
(iv) (i) and (iii) both hold.

Hint: find a recursion in terms of the string length.

Problem 383. Explain why each of the classes of strings given in Problem
382 might be a good restricted class from which to draw dozer genes.

Problem 384. Compute the fitness of the following strings when run on the
Tartarus board shown in Figure 10.2. Place the numbers 1–80 on an empty
board to show where the dozer moves and give the final configuration of boxes.
Warning: this is a very time-consuming piece of busy work; the purpose is to
build mental machinery for debugging Tartarus code.

(i) FFFLF ,
(ii) FFLFR,
(iii) FFLFFRFLFR.

Problem 385. Essay. Refer to the material in Appendix B on Markov chains.
Describe a genetic algorithm that evolves the matrix of a Markov chain con-
trolling a dozer in the Tartarus environment. What is a reasonable set of
states for such a Markov chain? Can a chain be designed that outperforms
the 80-move version of Experiment 10.1?

Problem 386. Essay. In Chapter 8, we did some work with seeding popu-
lations. First, explain why the special strings in Problem 382 would be good
for seeding a population for Experiments 10.2–10.4. Next, give a description
of such an experiment, including pseudocode for generating strings in classes
(i)–(iv).

Problem 387. Suppose we are looking at string genes for the Tartarus prob-
lem studied in this section with k = m = 6. Define a set G of genes to have
all of the following properties:

(a) The longest substring of pure L’s or pure R’s is of length 2.
(b) The longest substring of pure F’s is of length 5.
(c) The substrings LR and RL never occur.

Which types of genes from Problem 382 appear in G? Prove that if we have
a collection of boards B that we are using to test fitness of genes of length
n, then, for every gene h of length n outside of G, there is a gene g ∈ G of
length n such that g scores as much as h on the collection B.

Problem 388. Short Essay. In what sense is the set G of genes in Problem
387 like the set T ∗

s from Definition 8.3?

272 Evolutionary Computation for Modeling and Optimization

Problem 389. Programming Problem. Write a short program that effi-
ciently enumerates the members of the set G of genes from Problem 387. Using
this program, report the number of such genes of length n = 1, 2, . . . , 16. For
debugging ease, note that there are 23,522 such genes of length 12.

Problem 390. Essay. The advantage of using aligned crossover operators is
that the population can tacitly agree on the good values for various locations
and even agree on the “meaning” of each location. Nonaligned crossover (see
Definition 7.21) disrupts the position-specificity of the locations in the string.
Consider the following three problems: the string evolver from Chapter 2 on
the reference string

01101001001101100101101,
real function optimization on a unimodal 8-variable function with a mode
at (1, 2, 3, 4, 5, 6, 7, 8), and the string evolver in Experiment 10.6. Discuss the
pros and cons of using nonaligned crossover to solve these problems.

Problem 391. Essay. Consider the three techniques discussed in this sec-
tion: gene doubling, nonaligned crossover, and imposing restrictions (e.g., “no
LR or RL”) on the strings used in the initial population. Discuss how these
techniques might help or interfere with one another.

10.2 Tartarus with Genetic Programming

UL

UM

UR

ML

MR

LL

LM

LR

Fig. 10.4. Dozer sensor terminal placement.

In this section, we will develop a system for evolving parse trees to control
the dozer. The data type for our parse trees will be the integers (mod 3) with

Tartarus: Discrete Robotics 273

the translation to dozer actions 0 = L, 1 = R, 2 = F . The terminals include
the constants 0, 1, and 2. In most of the experiments, we will use 8 “sensor”
terminals that will report what is in the squares adjacent to the dozer. These
terminals are UM (upper middle), UR (upper right), MR (middle right), LR
(lower right), LM (lower middle), LL (lower left), ML (middle left), and UL
(upper left). The positions are relative to the dozer, not absolute. Figure 10.4
shows on which square, relative to the dozer, each sensor terminal reports. A
sensor terminal returns 0 for an empty square, 1 for a box, and 2 for a wall.
We also may use a terminal called RND that returns a uniformly distributed
random number. The terminals are summarized in Table 10.1.

Name Type Description
0, 1, 2 constants The integers (mod 3)
UM, UR, MR, LR, sensors Reports on a square adjacent to the dozer
LM, LL, ML, UL
RND special Returns a uniformly distributed constant (mod 3)

Table 10.1. Dozer GP language terminals.

We will be using a number of operations in the dozer GP language, chang-
ing which are available in different experiments. All the experiments in this
section will use unary increment and decrement (mod 3), addition and sub-
traction (mod 3), a binary maximum and minimum operation that imposes
the usual order on the numbers 0, 1, and 2, and a ternary if-then-else operator
that takes zero as false and nonzero as true. These operations are summarized
in Table 10.2. This list will be substantially extended in the next section, so
be sure to make your code able to handle the addition of new operations and
terminals.

If you wrote and documented the parse tree manipulation code used in
Chapter 8, you will be able to modify it for use in this chapter. We will need
the same parse tree routines as those used in Experiment 8.1, but adapted to

Name Type Description
INC unary Adds one (mod 3) to its argument
DEC unary Subtracts one (mod 3) from its argument
ADD binary Adds its arguments (mod 3)
SUB binary Subtracts its arguments (mod 3)
MAX binary Returns the largest of its two arguments, 0 < 1 < 2
MIN binary Returns the smallest of its two arguments, 0 < 1 < 2
ITE ternary If first argument is nonzero, returns second argument; otherwise

returns third argument

Table 10.2. Dozer GP language operations.

274 Evolutionary Computation for Modeling and Optimization

the terminals and operations given above. The first experiment will test the
technique of genetic programming in the Tartarus environment using the 8
environmental sensors. The next experiment will test the effects of adding the
RND random number terminal. The parse tree manipulation routines should
be able to allow and disallow the use of the RND terminal.

There is some entirely new code needed: given a board including dozer
position and heading, compute the values of the 8 terminals used to sense the
dozer’s environment.

Experiment 10.7 Look at the list of tree manipulation routines given in Ex-
periment 8.1. Create and debug or obtain software for the same set of routines
for the terminals and operations given in Tables 10.1 and 10.2, and also termi-
nal and operation mutations (see Definitions 9.3 and 9.4). In this experiment,
do not enable or use the RND terminal.

Using these parse tree routines, set up a GP system that allows you to
evolve parse trees for controlling dozers. Recall that the three possible outputs
are interpreted as 0, turn left; 1, turn right; and 2, go forward. You should
use a population of 120 trees under tournament selection with a probability of
0.4 of mutation. Your initial population should be made of parse trees with 20
program nodes, and you should chop any parse tree with more than 60 nodes.

Sum the box-wall fitness function over 40 boards to get fitness values, re-
membering to test each dozer controller in a generation on the same boards,
but generate new boards for each new generation. Evolve your populations for
100 generations, saving the maximum and average per-board fitness values in
each generation as well as the best parse tree in the final generation of each
run. Do 30 runs and plot the average of averages and average of best fitness.

Answer the following questions:

(i) How do the parse trees compare with the strings from Section 10.1?
(ii) Do the “best of run” parse trees differ from one another in their tech-

niques?
(iii) Are there any qualitative differences between the strings and the parse

trees?

Now we again ask the question, can evolution make use of random num-
bers? In this case, we do so by activating the RND terminal in our GP software.

Experiment 10.8 Modify your parse tree routines from Experiment 10.7 to
include the RND terminal. Do the same evolution runs, answer question (ii)
from Experiment 10.7, and compare the results of this experiment with those
obtained without the RND terminal.

It is of interest to know to what degree the parse trees in the “best of run”
file from Experiment 10.8 are simply generating biased random numbers as
opposed to reacting to their environment.

Tartarus: Discrete Robotics 275

Experiment 10.9 Build or obtain a piece of software that can read in and
evaluate the parse trees saved from Experiment 10.8 and determine the fraction
of moves of each type (turn left, turn right, or go forward) and detect the use
of RND and of the sensor terminals. Do 100 evaluations of each parse tree
confronted with no adjacent boxes, one adjacent box in each of the 8 possible
locations, a wall in each of the 4 possible positions, and each of the 20 possible
combinations of a box and a wall. Answer the following questions:

(i) Do the parse trees act differently in the presence of boxes and walls?
(ii) What is the fraction of the parse trees that use the RND terminal?
(iii) What is the fraction of the parse trees that use (some of) the sensor ter-

minals?
(iv) Do any parse trees use only sensors or only the RND terminal?

In a paragraph or two, write a logically supported conjecture about the degree
to which the parse trees under consideration are only biasing mechanisms for
the RND terminal.

Now, we will revisit the automatically defined function. The ADF is the
GP structure acts like a subroutine. This is accomplished by adding a second
parse tree to the structure of the dozer controller. As in Section 9.4, the
second parse tree contains the “code” for the ADF. In the “main program”
parse tree we add a new operation called ADF. An example of a parse tree
and its accompanying ADF are shown in Figure 10.5. In our implementation,
ADF will be a binary operation: there will be two new terminals called x and
y in the ADF parse tree that have the values of the two arguments passed to
the ADF. This will require fairly extensive modifications of our GP software.
These include the following:

+

+ x 2

(main) (adf)
ITE

x -x x

1.5 x

adf *

Fig. 10.5. Main parse tree and ADF parse tree.

276 Evolutionary Computation for Modeling and Optimization

• We must be able to maintain two separate (but closely related) GP lan-
guages for the main and ADF parse trees. In the main parse tree, there is
a new binary operation called ADF. In the parse tree describing the ADF,
there are two new terminals x and y.

• The parse tree evaluator must be able to evaluate the two parse trees
appropriately. Whenever an ADF operation is encountered in the main
parse tree, the evaluator must compute the values of its arguments and
then evaluate the ADF parse tree with those values used for x and y.

• Randomly generated dozer controllers now contain two parse trees, and
all the utility routines must work with both trees.

• Our mutation operator must now choose whether to mutate the main or
the ADF parse tree.

• Crossover should do one of three things:
– Cross over the main parse trees of the parents.
– Cross over the ADF parse trees of the parents.
– Take the main and ADF trees from distinct parents in both possible

ways.

The use of ADFs in genetic programming gives many of the benefits of
subroutines in standard programming. They are small pieces of code that can
be called from several locations in the main parse tree. A good ADF can
evolve and spread to multiple different members of the population, roughly a
form of code reuse. A program with an ADF is more nearly modular and may
therefore be easier to mine for good ideas than a single large parse tree. Let
us see to what degree using ADFs helps our dozer controllers.

Experiment 10.10 Make the modifications needed to allow the software from
Experiment 10.8 to use ADFs. Use a starting size of 20 nodes for the main
parse trees and 10 nodes for the ADF trees. Chop the main parse trees when
their size exceeds 40 nodes, and the ADF trees when their size exceeds 20.

Redo the runs for Experiment 10.8 using ADFs both with and without the
RND terminal. Set the mutation rate to 0.4. Half the time mutate the ADF;
half the time mutate the main parse tree. For crossover, cross over the ADF
with probability 0.4, the main tree with probability 0.4, and simply trade the
main tree and ADF tree with probability 0.2.

In your write-up, compare the performance of the 4 possible types of evolved
controllers, with and without RND and with and without ADF.

There is another issue to treat before we conclude this section on plain
genetic programming for Tartarus. Crossover is a very disruptive operation
in genetic programming. In a normal evolutionary algorithm, it is usually the
case that if we cross over two identical creatures, then the resulting children
will be identical to the parents. This is manifestly not so for genetic program-
ming, as we saw in Problem 291.

The standard crossover operation in genetic programming, subtree crossover,
is an example of a nonconservative crossover operator.

Tartarus: Discrete Robotics 277

In the theory of evolutionary computation as presented in the earlier chap-
ters, the role of crossover was to mix and match structures already in the
population of creatures rather than to generate new ones. The GP operator
is far more capable of creating new structures than a standard (conservative)
crossover operator. It is thus probably a good idea to use null crossover, the
do-nothing crossover defined in Chapter 2, a good deal of the time. When ap-
plying null crossover, the children are simply verbatim copies of the parents.

Experiment 10.11 Rebuild the software from Experiment 10.8 to use stan-
dard crossover with probability p and null crossover with probability (1 − p).
Redo the data acquisition runs for p = 0.1, 0.5 and also use the runs done in
Experiment 10.8, which can be viewed as p = 1.0 runs. Compare performance
and redo the sort of analysis done in Experiment 10.9 on the best-of-run files
from all 3 sets of runs.

Problems

Problem 392. Which subsets of the set of the 7 operations given in Table
10.2 are complete sets of operations for Z3? A set S of operations is said to
be complete if any operation with any number of arguments can be built up
from the members of S.

Problem 393. We can view constants as being operations that take zero
arguments. Taking this view, there are 3 operations named 0, 1, and 2 in our
GP language. If we add these 3 operations to those in Table 10.2, then which
subsets of the resulting set of 10 operations are complete? (See Problem 392
for a definition of complete.)

Problem 394. Essay. Why would it be nice to have a complete set of oper-
ations in a GP language? Is it necessary to have such a complete set? Is there
any reason to think having more than a minimal complete set of operations
is nice?

Problem 395. Give a clear description of (or pseudocode for) a conservative
crossover operation for use on parse trees. Compare its computational cost
with the standard crossover operator.

Problem 396. Suppose we have a GP language with only binary operations
and terminals, including a binary ADF. If the ADF and the main parse tree
between them possess a total of exactly n nodes, give a formula for the max-
imum number of operations executed in evaluating a parse tree pair. Assume
that every instruction of the ADF must be reexecuted each time it is called
by the main parse tree.

Problem 397. Prove that the total number of nodes n in the main parse tree
and ADF in Problem 396 is even.

278 Evolutionary Computation for Modeling and Optimization

Problem 398. Evaluate the parse tree with ADF shown in Figure 10.5 for:

(i) ML = MR = 0,
(ii) ML = 1, MR = 0,
(iii) ML = 0, MR = 1,
(iv) ML = MR = 1,
(v) ML = 2, MR = 0,
(vi) ML = 0, MR = 2,
(vii) ML = 1, MR = 2, and
(viii) ML = 2, MR = 1.

Problem 399. Write by hand a parse tree in the GP language used in this
section that will exhibit the following behaviors in the presence of isolated
blocks:

• If a block is in the square to the left or right of the dozer, the dozer will
turn toward it.

• If a block is behind the dozer, the dozer will turn.
• If a block is ahead of the dozer, the dozer will go forward.

You may use an ADF if you wish.

Problem 400. Take the parse tree you wrote for Problem 399 and diagram
its behavior for 80 time steps on the board shown in Figure 10.2.

Problem 401. Essay. In Problem 399, you were asked to create a parse tree
that exhibited three behaviors. This is an ambiguous task; each behavior re-
sponds to a particular environmental event, but these events are not always
distinct. First, explain how many events the three behaviors requested are re-
sponding to and detail carefully which combinations of the events can happen
at the same time. Second, establish and defend a precedence structure on the
behaviors that will yield a good score for Problem 400. Advanced students
should instead defend their precedence structure against the entire space of
possible boards.

Problem 402. When you did Problem 399, you probably noticed that the
dozer can push a single box over to the wall and get stuck. Assume that the
answer to Problem 399 was done as a single parse tree, and that that parse
tree is being used as a terminal ADF (an ADF that takes no arguments).
Write a main parse tree that returns the output of its ADF with probability
p and otherwise does something random (i.e., returns an evaluation of RND)
for at least 5 different values of p, using no more than 20 nodes in the main
parse tree.

Tartarus: Discrete Robotics 279

10.3 Adding Memory to the GP language

The setup of the Tartarus world makes it impossible for the dozer controller,
in many circumstances, to tell the difference between pushing a box forward
and pushing it in a futile fashion against a wall. How long should a dozer push
a box before giving up? How can a dozer controller know how long it has been
pushing a block? There are two broad approaches to this problem. One is for
the dozer controller to learn to count to the width of the world minus one; the
other is for the controller to avoid instructing the dozer to push a box more
than once without turning. The latter strategy may require more time steps
to accomplish its goal, but is much simpler for evolution to discover. To see
this, try to come up with a method of counting in any of the GP technologies
used so far. Tricky, isn’t it?

In his paper “The Evolution of Mental Models” [55], Astro Teller added to
his dozer control language a new type of structure called indexed memories. He
had 20 memories that were accessed by a binary store operation (arguments
were the number to store and an index into the memories) and a unary recall
operation (the argument was an index into the memories). We will use a
much simpler form of memory, mimicking that used for the PORS problem
in Chapter 8. We will add a varying number of new unary operations and
terminals for using one or more memory locations with our GP language.

Experiment 10.12 Add to the GP language we have been using so far an
STO and RCL instruction, as in Chapter 8. The store operation is unary. It
places a number (mod 3) into an external memory location and also returns
the number stored as its value. The RCL operation is a terminal returning the
contents of the external memory. Initialize the external memory to zero.

With this modified GP language, use the same evolution as in Experiment
10.8 to test the utility of having a memory. We had 4 sorts of GP languages
for Tartarus available before we added the memory: with and without ADF and
with and without the RND terminal. Adding in a memory gives a total of 8
possible GP languages, 4 of which we have already tested. Do evolutionary runs
for one of these 4 possibilities. (Later experiments will refer to the memory-
with-ADFs version of this experiment.)

• memory alone,
• memory with ADFs,
• memory with RND terminals available, or
• memory with ADFs and RND terminals available.

For those runs you perform, compare performance with other available
data. If you have runs using and not using the RND operator, discuss the
degree to which the RND terminal can interfere with use of the memory. Place
your discussion in an evolutionary context: in your opinion, does use of the
RND terminal create local optima that arrest the development of memory-
using strategies?

280 Evolutionary Computation for Modeling and Optimization

Having a single memory gives the dozer controller, in some sense, three
internal states, 0, 1, and 2, stored in the memory. Since the version of Tartarus
we are using is 6 squares across, this may not be enough. It may well be
worth trying more memories. We will try two distinct techniques: indexing
3 memories and making 3 separate pairs of memory manipulation terminals
available.

Experiment 10.13 Modify the software from Experiment 10.12 to have 3
unary operations, STO1, STO2, and STO3, and 3 terminals, RCL1, RCL2,
and RCL3, that access 3 separate memories. Do the evolutionary runs with
ADFs but no RND terminals and compare the results with the single-memory
version.

The next experiment will be more like the indexed memories used by Teller.
We will transform the unary store instruction into a binary store instruction
and the recall terminal into a unary recall operation.

Experiment 10.14 Rebuild the GP language used in Experiment 10.12 to
use 3 memory locations as follows. Instead of a unary store operation STO,
have a binary store operation so that (STO x y) places the value x into mem-
ory location y. Instead of a recall terminal RCL, have a unary recall operation
so that (RCL x) returns the contents of memory x. Do the same evolution-
ary runs with ADFs but no RND terminals and compare the results with the
single-memory version and with Experiment 10.13.

So far, we have evolved dozer controllers for the Tartarus problem that
have access to two types of resources: sensory information and memory. If
you look carefully, you can find controllers that use only sensory information,
that use only memory, and that use both. To our surprise, memory is more
valuable, by itself, than sensory information, at least as they appear in the
implementations of this chapter. This in turn raises the questions, “What
other types of memory are available?” and “Is there another collection of
sensory information we could present to the controllers?” We will address this
issue in the Problems and attempt an exploratory answer to the question,
“How much memory is enough memory?”

Problems

Problem 403. Using the version of the GP language from Experiment 10.14,
write by hand a dozer controller to attack the board shown in Figure 10.2. We
recommend that this problem be worked in small groups. Cruel instructors
may wish to assign grades competitively.

Problem 404. Identify and explain your identification of dozer controllers
from the chapter so far that:

(i) use memory only,

Tartarus: Discrete Robotics 281

(ii) use sensory information only, and
(iii) use both.

Problem 405. How many internal states (internal means not depending on
the values returned by sensor terminals) can a dozer controller in Experiment
10.13 or 10.14 have?

Problem 406. Define a state of the Tartarus board to be a set of possible
positions for the boxes together with a position and heading of the dozer.
Compute the number of possible states of Tartarus for k = m = 6 (6 × 6
board with 6 boxes). How many memories, storing a value (mod 3) would a
GP language require to give the dozer controller that many internal states?

Problem 407. Essay. Reread Problem 406. Discuss the value of having at
least one internal state per external state. There are three things you may
wish to consider: the problem of recognizing a state of the world, the problem
of managing the information involved, and the effect symmetries of the board
may have. Based on your discussion, try to estimate a useful number of states.

Problem 408. In his experiments, Teller had 20 indexed memories, which
could store a value in the range 0 ≤ n ≤ 19. Based on your answer to Problem
406, how many internal states did Teller’s dozer controllers have per possible
external state of the world?

Problem 409. Refer to Problem 385 if you did it. A Markov chain controller
(Markov chains are discussed in Appendix B) for a dozer is a 3-state Markov
chain with the states corresponding to the 3 actions the dozer uses: turn right,
turn left, and go forward. Suppose we were using a language with a single
memory and the RND terminal, as in Experiment 10.12; then which of the
following Markov chain dozer controllers could we simulate in that language?
The Markov chains are represented by their transition matrices indexed in
the order L(eft), (R)ight, and (F)orward. Give a constructive proof of your
answer when possible.

(i)

⎡
⎣0 1 0

0 0 1
1 0 0

⎤
⎦, (ii)

⎡
⎣ 0 0 1

0 0 1
1/2 1/2 0

⎤
⎦, (iii)

⎡
⎣1/3 0 2/3

0 1/3 2/3
1/3 1/3 1/3

⎤
⎦.

Problem 410. For each of the Markov chains given in Problem 409, compute
which strings of moves they can produce. You answer should be a specification
of a subset of the set of all strings over the alphabet {L, R, F}.

Problem 411. Give the transition matrix of a Markov chain controller that
can produce sequences of moves where the following rules hold:

• no more than 2 left turns in a row,
• no more than 1 right turn in a row,
• no more than 5 moves ahead in a row,

282 Evolutionary Computation for Modeling and Optimization

• no right turns follow left turns,
• no left turns follow right turns.

Hint: how many states do you need at a minimum?

Problem 412. Programming Problem. Write a program that takes as
input a parse tree and produces a C, C++, Pascal, or LISP (your choice of
one) routine that takes a sensor state of Tartarus as input and returns a dozer
move as output, in a fashion exactly that of the parse tree used as input. This
is a parse tree compiler.

10.4 Tartarus with GP Automata

In this section, we will fuse the finite state automata we learned to evolve
in Chapter 6 with parse trees to produce an artificial life technology called a
GP automaton. A number of experiments with GP automata appear in the
literature [1, 2, 28]. Given the obvious desirability of being able to count to
small numbers, a very easy and natural function for a finite state automaton,
it would be nice if we could adapt finite state automata to Tartarus.

In Chapter 6, we used finite state automata with a small input and output
alphabet. Consider a finite state automaton used to control a dozer. The
output alphabet would be simply {L, R, F}. What about the input alphabet?
Since there are 8 terminals that sense adjacent squares, each of which can
take on 3 values (0-empty, 1-box, 2-wall), there are naively 38 = 6561 possible
inputs. The true number is smaller, as you are asked to compute in Problem
413, but there are still many hundreds of possible inputs to the dozer in the
Tartarus environment, a dauntingly large “input alphabet” for our putative
finite state automaton.

If we were to implement a finite state automaton in the tabular fashion of
Chapter 6, then we would require several hundred columns in the transition
table, each specifying the next state and action for a possible state of the
sensor terminals. This means that each data structure would have a number
of genetic loci in the thousands. This structure is too large to use with an
evolutionary algorithm that finishes in a reasonable amount of computer time.

The natural solution to this dilemma is to filter the input data down
to a manageable number of objects before presenting it to the finite state
controller. In effect, we want to compress the input bandwidth of Tartarus
down to something manageable. If we were working with real-valued input
data, for example, we could divide the data into a few ranges and use those
as the input alphabet for our finite state automaton. With Tartarus, it is not
obvious what sort of data compression to use, and so we will leave the matter
to evolution.

In Sections 10.2 and 10.3, we have already created a system for building
and testing potential bandwidth compression devices: parse trees! Our parse

Tartarus: Discrete Robotics 283

trees took a set of sensor terminal values and distilled from them a move:
turn left, turn right, or go forward. Those parse trees with a fitness of 1 or
more were able to make at least one fairly sensible decision for at least one
configuration. If we fuse those decision-makers with a finite state automaton
that can do exactly the sort of counting that is natural for the Tartarus
environment, we may reap great performance improvements.

Name Type Description
0, 1, 2 terminal constants equal to possible input values
UM,UR,MR,LR, terminal Report on squares adjacent to the dozer
LM,LL,ML,UL
ODD unary Return 1 if the argument is odd, 0 otherwise
COM unary Compute one minus the argument (complement)
∼ unary Unary minus
+, − binary The usual addition and subtraction
=, <>, >=, <=, >, < binary Comparisons that return 0 for false and 1 for true
MAX,MIN binary maximum and minimum
ITE trinary if-then-else, 0 = false and 1, 2 = true

Table 10.3. Decider language, terminals, and operations.

Definition 10.5 A GP automaton is a finite state automaton that has a
parse tree associated with each state.

You should review Section 6.1. The GP automata we use for Tartarus are
defined as follows. Each GP automaton has n states, one of which is distin-
guished as the initial state. The initial response will always be to do nothing.
As with standard finite state automata, we will have a transition function
and a response function. The response function will produce moves for the
dozer from the alphabet {L, R, F}. The transition function will produce a
number representing one of the states. Both will use input from parse trees
called deciders. They will operate on the parity (odd or even) of the output of
the deciders. Each state will have a decider associated with it. These deciders
will be integer-valued (any integer, not integers (mod 3)) parse trees using
operations and terminals as given in Table 10.3. Their job is to “look at” the
current Tartarus board and send back a small amount of information to the
finite state automaton.

The data structure used for the GP automaton is an integer specifying the
initial state together with an array of states. Each state is a record containing
a decider, an array of the responses that a state makes if the decider returns
an odd or even number, and the next state to go to if the decider returns an
odd or even number. This data structure is selected with an eye toward the
genetic operators we will be using. An example of a GP automaton is given
in Figure 10.6.

284 Evolutionary Computation for Modeling and Optimization

Start: 1→7
State If Even If Odd Deciders

0 F→6 F→3 (+ (< LM 2) (∼ LR))
1 F→4 L→4 (<= 2 (min LL (> -1 MR)))
2 R→3 T→0 (ITE (∼ LR) LR (Com (Com -1)))
3 F→4 R→1 (ITE UR (Odd (ITE (∼ LR) LR (Com 2))) 2)
4 F→5 R→0 (max UR (- 2 (Com UM)))
5 L→6 R→0 (< (Com ML) (<= 2 LM))
6 F→3 T→1 (ITE (∼ LR) LR -1)
7 T→5 R→3 (ITE (∼ UR) (Odd (∼ LR)) 2)

Fig. 10.6. An 8-state GP automaton for controlling a dozer in Tartarus. (Responses
and transitions are given in the form response → transition. The responses L, R,
and F are the standard moves for Tartarus; T is the new think action unique to
GP-Automata.)

One interesting property of GP automata, in contrast to parse trees, is the
divorce of input and output types. This divorce is inherited from finite state
automata and represents a potentially valuable difference from pure parse tree
systems. While it is always possible to interpret the output of a parse tree to
change its type, e.g., 0 = L, 1 = R, 2 = F , the process can rest on quite
arbitrary decisions.

Genetic Operations on GP Automata

One of the bugaboos of genetic programming is the crossover operator. With
the parse trees appearing in several separate parts of the GP automaton, we
need no longer mix and match our entire data structure when doing crossover.
The crossover operator we will use for GP automata treats the array of states
as a string and simply copies the initial state of each parent to the corre-
sponding child. We thus may use any of the string crossover operators from
Chapter 2 on GP automata: one-point, two-point, as well as the more exotic
operators.

As crossover becomes more straightforward, mutation becomes more vexed.
There is a large number of fairly natural mutation operators that make sense
for GP automata. There are two classes of mutations: mutation of the nonde-
cider parts of the finite state controller and mutation of the deciders.

Definition 10.6 To do a finite state point mutation of a GP automaton,
choose uniformly at random one of: the initial state, a single transition, and
a single response. Replace it with a valid random value.

Definition 10.7 To do an exchange mutation, exchange two uniformly
chosen deciders.

Tartarus: Discrete Robotics 285

Definition 10.8 To do a replacement mutation, copy one uniformly se-
lected decider over another.

Definition 10.9 To do a cross mutation, perform a subtree crossover op-
eration on a pair of uniformly selected deciders.

Definition 10.10 To do a decider point mutation, perform a normal
parse tree point mutation (subtree replacement) on a decider.

In our first experiment in this section, we will simply get some GP au-
tomata evolving. In the second experiment, we will explore the utility of the
various mutation operators. In the third experiment, we attempt to character-
ize the behavior of the various controllers evolved. In the fourth experiment,
we will make a substantial modification to the GP automata paradigm to al-
low the possibility of extended computation. In the fifth, we will take another
look at population seeding, but with a new twist.

Experiment 10.15 Build or obtain routines for handling GP automata. This
should include all 5 of the mutation operators given above, as well as two-point
crossover on the array of states. The deciders should be parse trees using the
operations and terminals given in Table 10.3. Build an evolutionary algorithm
that operates on a population of 60 GP-automata-controlled dozers with 8
states. Use tournament selection with tournament size 4 as your model of
evolution. Do one mutation on each new dozer controller, split evenly among
the 5 mutation operators given and null mutation (doing nothing). Chop any
deciders that grow to have more than 20 nodes. For fitness, evaluate each
controller on 40 Tartarus boards in the usual fashion.

Run the algorithm for 200 generations saving the average and best fitness of
each population in each generation and the fraction of actions of each type. Do
20 runs and save the best controller in the final generation. Compare the per-
board fitness with other experiments you have done. For comparison, write a
program that tests each of the best-of-run controllers on 5000 Tartarus boards.
The average over 5000 boards can be used to rate controllers in a stable fashion.
In your write-up, graph the average, over populations and runs, of the average
and best fitness in each generation.

With GP automata software in hand, we are ready to explore the various
mutation operators.

Experiment 10.16 Take the software from Experiment 10.15 and rebuild it
to allow you to set the probability of using each mutation operator. Redo the
experimental runs but with the following mixes of mutation operators (use all
the mutation operators in a run equally often):

(i) Finite state point mutation and decider point mutation.
(ii) Finite state point mutation and cross mutation.

286 Evolutionary Computation for Modeling and Optimization

(iii) Finite state point mutation, cross mutation, and exchange mutation.

Report the same data as in Experiment 10.15 and compare the performances
of the two experiments.

The next experiment is intended to help you understand the results of the
preceding two experiments. If things are going as they did for us, then using
GP automata caused a substantial increase in performance. It would be nice
to try to achieve some degree of qualitative understanding of this increase.

Experiment 10.17 To help understand and analyze your results, write or
obtain a lab program that can read in the best-of-run GP automata from Ex-
periments 10.15 and 10.16. This program should allow you to test the GP
automata on a number of boards and also should allow you to watch the dozer
move, time step by time step, on boards that you specify. The details are left
to you, and the project should be graded in part on the design of the lab. Use
the lab to develop a taxonomy of dozer behaviors. Write up an explanation of
how (and how well) each type of behavior you found works.

In many ways, a GP automaton is more like a normal computer program
than a standard GP parse tree. Instead of a single statement (parse tree)
living in a trivial or iterative control structure, the program represented by
a GP automaton has many statements (deciders and actions) that live inside
a nontrivial control structure (the finite state automaton). One important
difference between a standard computer program and a GP automaton is
that a computer program may execute many statements before it produces
output, while a GP automaton produces one piece of output per statement
(decider) executed.

It is not too hard to extend the GP automata paradigm to include the
execution of multiple deciders before producing output. In standard finite
state automata, there are sometimes transitions that produce no response.
These are called λ-transitions after λ the empty string. We will add a new
action, the null action, to the responses that the GP automata can make.
When a GP automaton produces a null action, it immediately makes the
transition to the next specified state and executes it normally, without waiting
for the next time step, a form of λ-transition. This means that null actions can
allow the execution of multiple deciders per time step in the GP automata.
There is one potential pitfall: infinite loops. A GP automaton that uses null
actions has the potential to get stuck in a loop in which one null action leads
to another forever. To finesse this potential problem, we will simply cut off a
GP automaton if it evaluates more than some fixed number of deciders in a
time step.

Experiment 10.18 Modify the software from Experiment 10.15 to allow null
actions and extended computation in the fashion described above. Cut off the
GP automaton if it uses 8 null actions in a row and have the dozer sit in place
for a time step in this event. Do the same evolution runs as in Experiment
10.15 and compare performance.

Tartarus: Discrete Robotics 287

There is an interesting point to be made by our attempt to improve per-
formance by using null actions. When a null action is executed, the automata
is, in effect, saying, “I don’t have enough information; I need to think about
this some more.” Then it moves to another state and uses the decider in that
state to determine its action. It is using two parse trees instead of one to make
its decision. In fact, it can use up to eight parse trees. Adding the null action
increases the complexity of the decisions being made while making the data
structure only marginally more complex.

There are many outputs possible from each decider (any integer). In a
GP automaton, it is possible to divorce actions (L, R, F) from computations
(done using integers) from inputs (sensors). This means that without type
checking or the attendant computational complexity, it is possible to use three
distinct data types. In dealing with discrete events in a real-parameterized
situation that requires discrete responses, the advantage of this separation of
the three classes of data (input, computational, and output) will become more
pronounced.

At the beginning of this section, while setting the stage for GP automata,
we noted that using finite state automata in the Tartarus environment is quite
tricky due to the large size of the input bandwidth, and then cheerfully noted
that the parse tree technology from the preceding sections gave us a very
natural bandwidth-compression technology. We then used random parse trees
in our GP automata, even though we have software that could give us parse
trees. In the next experiment, we will take the natural step of creating our
initial populations of GP automata from preevolved parse trees. In order to
do this next experiment, you will need the software from Experiment 10.7.

Experiment 10.19 First change the software from Experiment 10.7 to have
a chop limit of 20 nodes and to use the language used by the deciders in this
section. Interpret the integer output (mod 3) to produce actions. Perform 10
runs, saving the entire final populations of all the runs into a single file. Now
modify the software from Experiment 10.15 to use parse trees chosen randomly
from this file, instead of randomly generated parse trees. Perform the same
evolutionary runs as in Experiment 10.15 and compare the performance. Be
sure to account for, or at least mention, the additional computation done before
the GP automata in this experiment started evolving.

There are, as usual, a large number of other experiments one could perform
with the technologies in this chapter. Students looking for projects might try
exploring the mutation operators more completely, changing the board size,
changing the fitness function, or changing the task being attempted by the
dozers. Variation of task will be done in a large way in Chapter 12. It also
might be of interest to see how performance varies as the number of states in
the automata are varied. Finally, we have made no effort to test GP automata
with access to randomness or memories in their deciders. We will come back
to the idea of GP automata in different environments in later chapters.

288 Evolutionary Computation for Modeling and Optimization

Problems

Problem 413. Using any of the GP languages from Sections 10.2 and 10.3,
the dozer controller may “see” a large different number of configurations of
adjacent squares. Compute how many such configurations there are.

Problem 414. Is the crossover operator given in this section for GP automata
conservative? See Definition 10.4.

Problem 415. Give an example of a GP automata application in which it
would be valuable to exploit the divorcing of input, computation, and output
data types, so as to use 3 separate data types.

Problem 416. Essay. Consider a parse tree dozer controller and a GP au-
tomaton dozer controller. Assuming that both have the same number of nodes
of parse trees somewhere inside, which executes more code per time step on
average? Treat both models of GP automaton computation given in this sec-
tion (with and without null actions).

Problem 417. Programming Problem. Write a program that takes as
input a GP automaton and produces a C, C++, Pascal, or LISP (your choice
of one) routine that takes a sensor state of Tartarus as input and returns a
dozer move as output, in a fashion exactly like that of the GP automaton
used as input. This is a GP automaton compiler.

Problem 418. Essay. Explain the possible evolutionary utility of the ex-
change and replacement mutation operators. If available, support your ideas
with data from the experiments.

Problem 419. Using 4-state GP automata similar to those used in Experi-
ment 10.18, write by hand a dozer controller to attack the board shown in
Figure 10.2. We recommend that this problem be worked in small groups.
Cruel instructors may wish to assign grades competitively. (Compare with
Problem 403.)

Problem 420. Essay. In this chapter, we enhanced standard genetic pro-
grams with random number terminals, ADFs (subroutines), memory, indexed
memory, and finite state automata. Describe techniques for and discuss the
possible advantages and disadvantages of adding stack manipulation opera-
tions and terminals to the GP languages used in the Tartarus environment.
Assume an operation PUSH that puts x on the top of the stack and returns
the value of x, and terminals POP (pops the stack), TOP (reports the value
on the top of the stack), and EMP (returns 0 if the stack is not empty, 1 if it
is).

Problem 421. Explain the sense in which the string genes are finite state
automata. Where is the state information stored? How many transitions are
there out of each state when a string gene is viewed as a finite state automa-
ton?

Tartarus: Discrete Robotics 289

Problem 422. Give a procedure for constructing a GP automaton with n
states that has the property that its transition and response functions dupli-
cate the behavior of a string of length n.

Problem 423. Essay. Suppose we have a source of excellent string genes of
length 8. Would you expect a population generated by the technique suggested
in Problem 422 to do better compared to the random populations used in
Experiment 10.15: (i) at first, and (ii) by the end of the experiment?

Problem 424. Essay. Review Problem 408. In “The Evolution of Mental
Models” Teller reports fitnesses in the ballpark of 4.5, averaged over a large
number of boards. If all went as it should, the best GP automata you evolved
in this section got fitnesses up in the area of 5 to 6.5. In light of the various
string baseline experiments in Section 10.1, what is a good number of states
to use?

10.5 Allocation of Fitness Trials

How many Tartarus boards should we use to evaluate the fitness of a dozer
controller? We dealt with a similar problem in Chapter 5 in evaluating the
fitness of symbots (see Problem 178). While we want to have a controller that
does well on all 300,000+ possible Tartarus boards, we cannot afford to test
it on them all. If we do not use a large number of boards, there is a danger
that an inferior controller will outscore a superior controller on the Tartarus
boards we happen to pick. The conflict then is between computer time needed
to test controllers and quality of fitness evaluation needed to save the superior
controllers. Let us verify that this problem exists.

Experiment 10.20 Take the best-of-run GP automata that you saved in Ex-
periment 10.15. Rank order them by the average per-board fitness they achieved
in the evolutionary algorithm that produced them. After that, fix a set of 5000
Tartarus boards selected uniformly at random, and evaluate the GP automata’s
per-board average fitness on those boards. Rank order them according to the
new fitness numbers. Did the order change?

If your experiment went as ours did, a 40-board test does not produce
the same rank ordering that a 5000-board test does. It is not unreasonable
to imagine that this problem is more acute for better controllers. With a
population of random controllers that have not undergone evaluation and
selection, it is likely that most of them will be quite unfit. Testing on only a
few boards is enough to sort out the slightly-more-fit minority. At the other
end of evolution, we have many controllers that are quite good, and we are
likely to be making fine distinctions among them. Since the best controller in
the population may have to survive for dozens of fitness evaluations before

290 Evolutionary Computation for Modeling and Optimization

a better controller arrives, it has dozens of chances to die from an unlucky
selection of test boards. With this thought in mind, we propose our first
experiment in wisely allocating fitness trials.

Experiment 10.21 Ask your instructor which evolutionary algorithms from
this chapter are to be modified to perform this experiment. Good ones would
be from among Experiments 10.3, 10.7, 10.13, and 10.15. Replace the fitness
evaluation in the evolutionary algorithms you are going to modify with a fitness
evaluation that uses 10 boards for the first generation and a number of boards
that is the larger of 10 or 10 times the maximum average per-board fitness in
the preceding generation, rounded to the nearest integer thereafter. Report the
effect, if any, on the average and standard deviation (over runs performed for
a given setup) of the maximum fitness in the final generation.

Let us turn our attention now from the issue of how many boards to
the issue of which boards. The ideal situation would be to locate a small
collection of boards with the property that if a dozer controller does well on
those boards, then it will do well on the full set of boards. The problem is
that there is no a priori way to know which those boards are. We can turn to
nature for inspiration in this regard, by transforming our noisy optimization
problem of finding a good dozer controller into a coevolution of boards and
controllers.

The basic idea is this: Any 6 × 6 Tartarus board has 10 points of fitness
“at risk” (the maximum possible score for a dozer on that board). Whenever
a dozer meets a board, those 10 points are divided between the dozer and the
board: the dozer gets points as usual, and the board gets those points not
earned by the dozer. This gives us a fitness function for boards; boards with
high fitness are those on which it is difficult for the dozers to score points.
An impossible board is one on which it is impossible for any dozer to score
10. Now we can evolve the boards. Recall that a “board” is a placement of 6
boxes with no close group of 4 boxes, together with a placement and heading
of the dozer.

Experiment 10.22 Rebuild the software from Experiment 10.7 to use an
evolving population of boards in the following manner. Have 40 slots for boards
and fill them with 40 distinct boards (allow no repetition). Make sure that no
board with a close group of 4 is included in the group. For fitness evaluation,
test all dozer controllers on all 40 of the boards, awarding fitness to the boards
in the manner described in the text. After the fitness evaluation, sort the boards
by fitness and delete the k worst boards, replacing them with new ones. Save
the best-of-run dozer controllers for each run and compare them, using the
software developed in Experiment 10.20, with the best-of-run dozer controllers
from Experiment 10.7. Perform this experiment for k = 2, 10, and 20. In
addition to saving the best dozer controller in each run, save the highest-
scoring board in the final generation.

Tartarus: Discrete Robotics 291

Problems

Problem 425. The evolutionary algorithm used to find difficult boards in
Experiment 10.22 works by replacing the worst members of the population
of boards with new random boards. Give a design for an evolutionary algo-
rithm that would function more efficiently, in your opinion, at locating difficult
boards.

Problem 426. Examine the board above. Prove that the maximum score pos-
sible on the above board is 4. This board was discovered by Stephen Willson
and is an example of an impossible board.

Problem 427. Essay. When we excluded boards with close groups of 4
boxes, it was because such configurations are impossible. If we are evolving
difficult boards as in Experiment 10.22, then the system may locate impos-
sible ones. Comment on whether an evolutionary algorithm like the one you
designed in Problem 425 or the minimal system used in Experiment 10.22 is
more efficient at finding impossible boards.

Problem 428. In this chapter, we have used random number generators,
strings, parse trees, parse trees with memories, and GP automata as dozer
controllers. If you were to build an evolutionary algorithm whose express pur-
pose was to locate impossible boards, which of these would you pick as the
controller? Would it be better to evolve the controller or to pick a set of really
good controllers you had already evolved?

Problem 429. Construct another impossible configuration besides the one
given in Problem 426 and anything involving a close-packed group of 4. You
may make the board larger and use more boxes.

11

Evolving Logic Functions

In this chapter, we will be evolving logic functions. We will use neural nets
like those used for the symbots in Chapter 5. We will explore different ways
of coding them and different mutation and crossover operators. We will also
compare neural nets with both basic and one advanced type of genetic pro-
gramming as data structures for evolving logic functions. We assume you are
familiar with the logic of NOT, AND, OR, NAND, NOR, XOR, parity, and
majority functions. When writing out logic functions, we will use the conven-
tion that NOT is the unary operation ¬, and AND and OR are the binary
operations ∧ and ∨, respectively. In the genetic programming section we will
switch to printable characters (∼, *, and +) for these logic functions. The
dependencies of the experiments in this chapter are given in Figure 11.1.

Evolving logic functions is a traditional test problem for both neural nets
and genetic programming. This chapter presents basic techniques for evolving
neural nets, and many others appear in the literature. Section 11.4 not only
introduces the application of genetic programming to evolving logic functions
but also introduces a rather clever idea of Peter Angeline’s called a Multi-
ple Interacting Programs system, or MIPs, net. Dr. Angeline once described
MIPs nets in the following fashion: “Take a neural net. Put a parse tree on
each neuron. Now throw away the neural net.” MIPs nets are an example of a
representation that permits a number of really interesting crossover and mu-
tation operators as well as a nonstandard operator similar to gene-doubling in
which a parse tree is duplicated. This operator incorporates a powerful tech-
nique from biology into evolutionary computation. Duplicating a gene and
then varying one copy is an important source of new genetic diversity.

11.1 Artificial Neural Nets

Artificial neural nets are structures inspired by biological nervous systems.
In a living creature, neurons are connected to one another at synapses. The
neuron is both excited and inhibited by impulses coming in from different

294 Evolutionary Computation for Modeling and Optimization

Exp 11.1 Exp 11.6

Exp 11.7

Exp 11.5Exp 11.4Exp 11.3

Exp 11.2

Exp 11.11

Exp 11.13

Exp 11.12

Exp 11.8

Exp 11.9

Exp 11.10
Ch 13

Exp 11.14

Exp 11.15

Ch 13

1 Evolving a 2-input logical exclusive OR.
2 Evolving a matrix with row-peeling crossover.
3 Evolving threshold weights.
4 Extending to NOR, AND, and “echo” functions.
5 Evolving 3-input functions.
6 Using the connection list representation.
7 Evolving functions with the connection list representation.
8 Lexical fitness with the number of neurons.
9 Evolving a binary adder with carry.
10 Adding neutral mutations.
11 A parse tree representation for logic functions.
12 Evolving logic functions with parse trees.
13 Exploring leaf mutation.
14 Extending the parse tree representation to MIPs nets.
15 Gene duplication with MIPs nets.

Fig. 11.1. The topics and dependencies of the experiments in this chapter.

synapses. When the total level of excitation passes a threshold, the neuron
fires, or turns on. A biological nervous system functions through the effects of
many such firings in a net of interconnected neurons. It changes by changing
its physical connections and their properties. This is accomplished both by
changing the strength of synaptic connections and by changing the chemical
environment. This chemical modification happens directly when neurons re-
lease biochemicals and indirectly when the neurons cause various organs to
release biochemicals. The bandwidth and operation of a biological neural net
often defies understanding or even adequate description.

An artificial neural net is simpler. It has neurons with inputs and outputs
and intraneuron connections that are analogous to biological synapses. Each
connection has a weight, usually a real number, and a direction. The direction
establishes which neuron is sending the message along the connection and
which neuron is receiving. The character of a neuron is determined by its

Evolving Logic Functions 295

transfer function. This function computes the neuron’s output from the sum of
its weighted inputs. When functioning, a neuron follows these steps: first, the
inputs from connected neurons are multiplied by their connection weights and
summed; the neuron then passes that sum through its transfer function; then,
the result is sent along all the neuron’s output connections. The neurons in a
neural net can update their output values synchronously or asynchronously.
The choice of updating method has a large effect on the behavior of the net.
Graphs of several common transfer functions appear in Figure 11.1.

-1.5

-1

-0.5

0

0.5

1

1.5

-4 -2 0 2 4

Heaviside

-1.5

-1

-0.5

0

0.5

1

1.5

-4 -2 0 2 4

Arctangent

-1.5

-1

-0.5

0

0.5

1

1.5

-4 -2 0 2 4

Hyperbolic tangent

Fig. 11.2. Heaviside, arctangent, and hyperbolic tangent transfer functions for
neurons.

When one is building a neural net, there are many choices to be made.
What type of transfer function are you going to use? Should you allow the

296 Evolutionary Computation for Modeling and Optimization

transfer functions to take parameters? What sort of connection topology are
you going to use? How are you going to program your neural net?

Definition 11.1 The connection topology of a neural net is a specification
of which neurons are connected to which other other neurons. The connection
topology is a directed graph. If this graph contains no directed cycles, then the
net is said to be feed-forward; otherwise, it is recurrent.

There are many ways to program neural nets. We will use evolutionary
algorithms. For large net sizes and for some problems, evolutionary-algorithm-
based programming of neural nets appears to be inferior to other methods.
Where the evolutionary method shines is in the programming of small neural
nets that have to do an ill-defined task and in programming systems of small
neural nets that are later integrated together to do a complex task as we did
with the symbots of Chapter 5.

The simplest transfer function used in neural nets is a step function. A neu-
ron that uses this function is called a Heaviside neuron. It sums its weighted
inputs, and it outputs 1 if the result is greater than a threshold value t, and it
outputs 0 if the result is t or less. The first graph in Figure 11.1 is a Heaviside
transfer function. These exceedingly simple neurons are more than adequate
to the job of building neural nets that implement logic functions. Logic func-
tions take n binary inputs and produce a single binary output. Examples of
logic functions are AND functions (which output 1 only if all their inputs are
1), OR functions (which output 1 if any of their inputs are 1, and 0 otherwise),
and NOT functions (which has a single input and whose output is 1 minus its
input). Logic functions are described with truth tables, examples of which
appear in Figure 11.3. Truth tables list all possible combinations of inputs
with their corresponding outputs.

2-input XOR Function
Input 1 Input 2 Output

0 0 0
0 1 1
1 0 1
1 1 0

3-input AND Function
Input 1 Input 2 Input 3 Output

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Fig. 11.3. Examples of truth tables for logic functions.

Evolving Logic Functions 297

There are two broad classes of neural nets: feed-forward and recurrent. Re-
current nets have loops; feed-forward nets don’t have loops. What is a loop?
Recall that all connections in a neural net have a direction. A loop is a se-
quence of connections, followed in the positive direction, that returns to its
starting point. Other things being equal, a recurrent net is much more com-
plex in its behavior than a feed-forward net. Recurrent nets can, for example,
develop long-term memory; the ability of feed-forward nets to remember pre-
vious inputs is limited to the longest sequence of connections following an
input.

Problems

In the following problems, assume that the neurons are Heaviside neurons.
You select the threshold value t. Use the same t for all the neurons in a single
net.

Problem 430. Implement each of the following logic functions as a neural
net:

(i) NOT,
(ii) 2-input AND,
(iii) 2-input OR,
(iv) 2-input XOR.

Problem 431. A majority function is a logic function with an odd number
of inputs whose output is equal to the majority of its inputs (majority vote).
Construct neural nets that implement 3-input and 5-input majority functions.

Problem 432. Compute the number of different n-input logic functions.
Hint: count the number of ways to fill in the output column in a truth table.

Problem 433. Show that you can implement any n-input logic function us-
ing multiple instances of a single 2-input logic function. Give a neural net
implementation of such a function with the fewest possible neurons.

Problem 434. Give a bound on the number of neurons needed to implement
an n-input AND function, trying to make the bound as small as possible.

Problem 435. Suppose we are building an n-input logic function that out-
puts 1 for exactly k of the possible inputs. Prove that we need at most k + 1
neurons to build the function. This bound is not tight. Give an example of a
4-input function that outputs 1 for exactly 6 of its possible inputs and that
uses fewer than 7 neurons.

Problem 436. What is the smallest number of 3-input majority functions
and NOT functions needed to implement a 4-input AND function? Assume
that you have a input constant of 0 or 1 available. Advanced students: prove
that the constant is necessary.

298 Evolutionary Computation for Modeling and Optimization

Problem 437. Essay. Given that evolution is the primary method we will
use to find, design, or program the structures we are studying in this book,
why is question 436 relevant?

Problem 438. Essay. The connections in a neural net hold the knowledge
(or functionality) of the neural net. The pattern of connections and the weights
are both relevant. How much information can be packed into a single abstract
real number? Be sure to state the definition of the term “information” you
are using in your essay. Discuss the relevance of your answer to a neural net
that might actually get built.

Problem 439. Construct a recurrent neural net with two inputs r and t that
acts as follows. If t is 1, then the output of the net should be equal to r. If
t is 0, then the output should be whatever it was the last time t was 1. This
net is a very simple form of memory device: r is what is to be remembered,
and t tells the device when to remember it.

Problem 440. Suppose you want to store in a computer unambiguous speci-
fications of logic functions. How many bits will you need to specify an n-input
logic function? Notice that the two examples in Figure 11.3 use 12 and 32
bits, respectively. (There are 12 or 32 1’s and 0’s in the truth tables.) These
are not minimal representations.

11.2 Evolving Logic Functions

In this section, we will be evolving logic functions that use the truth values
0 = false and 1 = true. The neurons in our neural nets will be Heaviside
neurons, making this assignment of truth values a natural one, since it is
already the output type of the neurons.

An n-input logic function can be thought of as a string over the alphabet
{0, 1} of length 2n that is the output column of its truth table when inputs
are listed in the standard binary order, the one that corresponds to counting
in binary. The truth table of the AND function, shown in Table 11.1, would
correspond to the string 0001, for example. Table 11.2 gives the output strings
for several standard logic functions.

In order to implement a logic function as a neural net, we will evolve
the output strings of logic functions to match a reference string that is the
output string of the desired function. How many neurons should we use?
What connection topology should we use? In this section, we will implement
an n-input function as a feed-forward network with 3 layers of neurons with
all possible connections between one layer and the next and no connections
between neurons in the same layer. There will be m neurons in the first layer,
k neurons in the second layer, and 1 in the last. The real parameters of each
neural net will be an n × m matrix F that holds the connection weights of

Evolving Logic Functions 299

2-input AND function
Input1 Input2 Output

0 0 0
0 1 0
1 0 0
1 1 1

Table 11.1. AND function truth table.

Inputs Function Output String
1 NOT 10
2 OR 0111
2 AND 0001
2 XOR 0110
2 NOR 1000
2 NAND 1110
3 Majority 00010111
3 Parity 01101001
3 AND 00000001
3 OR 01111111

Table 11.2. Output strings for various logic functions.

the inputs to the first layer of neurons, an m × k matrix S that holds the
connection weights of the first layer to the second, and a k × 1 matrix T
that holds the connection weights of the second layer to the output neuron,
together with (m+k+1) different threshold values for the Heaviside functions
of the neurons. This involves nm + mk + m + 2k + 1 total real values. For
2-input functions, we will find that m = k = 2 will suffice, which means that
we will need 15 real parameters.

In addition to a model of evolution and some mutation operators taken
from real function optimization, we need a fitness function. Our initial fitness
function will be the number of agreements of the output string of a neural
net representing a logic function (see Problem 443) with a reference string
that is the output string of the desired logic function. We also need a way of
evaluating the neural net efficiently. If v is the vector of inputs to the net,
then vF is the set of inputs to the first layer. Running this vector through the
thresholds of the first layer gives us a new 0, 1 vector u, and uS is the vector of
summed inputs to the second layer. Running this through the thresholds of the
second layer produces a 0, 1 vector t that is the input to the third layer, and so
tT is the number that the final neuron thresholds to give an output. From this

300 Evolutionary Computation for Modeling and Optimization

discussion, one can see that running the neural net amounts to multiplying
vectors by matrices and thresholding the resulting vectors. Thresholding in
this case amounts to mapping values above the neuron’s individual threshold
value to 1 and those below to 0. The last piece needed to evolve neural nets
is a crossover operator.

0.3

0.2

0.7

−1.0

−0.2

0.6

0.9

0.8

0.41

0.25 Output

Inputs

t=0.5 t=0.5

t=0.5t=0.5

Fig. 11.4. The neural net logic function based on matrices F , S, and T .

The structure of the neural net as 3 matrices and a list of individual
neural thresholds is not a string of real numbers. Each of the matrices could
be peeled either by rows or by columns to make a string of real numbers. The
6 strings, 3 from the matrices and 3 from the thresholds of each layer, could
be concatenated in any order. For simplicity, we will always use one of two
ways of transforming the neural net into a string: row peeling of all 3 matrices
or column peeling of all 3 matrices. Suppose we have a 2-input neural net with
m = k = 2. If all the neurons have threshold values of 0.5, and if we have

F =
[

0.2 0.3
−1 0.7

]
,

S =
[

0.6 −0.2
0.9 0.8

]
,

T =
[

0.25
0.41

]
,

then the row peeling would yield the string of reals

(0.2, 0.3,−1, 0.7, 0.5, 0.5, 0.6,−0.2, 0.9, 0.8, 0.5, 0.5, 0.25, 0.41, 0.5),

while the column peeling would yield

(0.2,−1, 0.3, 0.7, 0.5, 0.5, 0.6, 0.9,−0.2, 0.8, 0.5, 0.5, 0.25, 0.41, 0.5).

In both row and column peeling, we put the matrix entries and the threshold
values together in the order in which we use them in traversing the net. Once
we have the neural net parameters peeled into a string of reals, we can use
any of the crossover operators we have used in the past for real function
optimization.

Evolving Logic Functions 301

Notice that in this experiment we are simplifying matters by leaving the
neuron’s internal parameter (the threshold value) constant, rather than per-
mitting it to evolve. The neural net specified by F , S, and T is given in Figure
11.4.

Experiment 11.1 Create or obtain software for an evolutionary algorithm
to operate on a gene containing an n × m matrix, an m × k matrix, and
a k × 1 matrix, coding a logic function as described in the text. Let all the
neurons have the same threshold value α. Take, as your fitness function, the
number of positions on which the output string of the evolving neural net agrees
with the output string of the desired function. Use single tournament selection
with tournament size 4 and single-point uniform real mutation with mutation
size ε = 0.2. Use column peeling to generate the strings for crossover. Set
n = k = m = 2, take α = 0.5, and perform exactly one mutation on each gene
generated by crossover.

With a population size of 200, run an evolutionary algorithm 100 times for
at most 400 generations on the task of locating weights for an XOR function.
Let the initial connection weights be in the range −1 < x < 1, and do not
permit the threshold numbers to change. Save the number of generations to
solution. Repeat the experiment with α = −0.5. In your write-up, use the
normal approximation to the binomial at the time half of one set of runs are
completed to decide whether the choice of α makes a significant difference.

The next experiment is for the suspenders-and-belt student. It is intu-
itive that the choice between column peeling and row peeling isn’t all that
important. The only way to tell for sure is to do the experiment.

Experiment 11.2 Modify the software from Experiment 11.1 to use row peel-
ing instead of column peeling. Do the same runs and compare the time-to-
solution results in the same fashion, both within this experiment and between
experiments.

Definition 11.2 Call a logic function irreducible if for each input i, there
is some combination of values for the other inputs for which changing the
value of i will change the value of the output.

What distinguishes interesting logic functions from boring ones? The def-
inition of irreducibility is an attempt to formally define that property. (For
more about irreducibility, see Problems 444, 445, and 446.) One quite simple
and interesting function is the parity function on n inputs. If an odd num-
ber of its inputs are 1, the parity function returns 1; otherwise, it returns 0.
Notice that XOR is 2-input parity. Because the n-input parity function is so
interesting, it is a standard test case for systems that are supposed to induce
logic functions.

A cascade of (2-input) functions is shown in Figure 11.5. Very often, a cas-
cade of functions extends the functionality of the function to a larger number

302 Evolutionary Computation for Modeling and Optimization

Fig. 11.5. A cascade of 3 AND functions.

of inputs. A cascade of n 2-input AND or OR functions yields an (n + 1)-
input AND or OR function, for example. Likewise, a cascade of (n − 1) XOR
functions yields n-input parity. This implies that for an evolutionary algo-
rithm that works on large logic functions, some sort of variation operator that
creates cascades would be a good thing.

t

a

b

Fig. 11.6. A minimal fragment of a neural net representing a logic function.

At the moment, we want to look at a small, meaningful subunit of a neural
net. One neuron connected to two inputs can implement a 2-input function.
Such a net fragment is depicted in Figure 11.6. For a fixed threshold value
t, we can determine the neural net’s behavior as a function of its two input
weights, a and b. There are 16 possible behaviors, corresponding to the 16
2-input logic functions, only some of which are possible. We find which logic
functions we have by applying the 4 possible combinations of zero-one inputs
(00, 11, 01, and 10) and examining the output behavior. For input 00, the
neural net outputs 0 ≥ t; for 11, it outputs a + b ≥ t; for 01, it outputs b ≥ t,
and for 10, it outputs a ≥ t. The result is a “phase diagram,” indexed by the
values of a and b. A pair of such phase diagrams for threshold values t = 0.5
and t = −0.5 are given in Figure 11.7.

Evolving Logic Functions 303

a

b

(not a) and b

a and (not b)

a and b

a or b

a+b=t

a=t

b=t

−1 0 1
−1

0

1

b

False

a

t=+0.5

−1 0 1
−1

0

1

b

a

a+b=t

True

a or (not b)

not (a or b)

not (a and b)

(not a) or bnot a

not b

b=t

a=t

t=−0.5

Fig. 11.7. Phase diagram of logic in the neural net fragment from Figure 11.6
in terms of connection weights a and b. Note what logic functions are possible for
positive and negative thresholds, respectively.

304 Evolutionary Computation for Modeling and Optimization

Make sure that Figure 11.7 makes sense to you. It seems that the two-
connection-weights-and-one-neuron fragment shown in Figure 11.6 can pro-
duce very different sets of logic functions depending on whether the threshold
is positive or negative. In particular, the two functions from which any other
function can be built, ¬(a∧b) (NAND) and ¬(a∨b) (NOR), appear only when
the threshold is negative. This sheds light on the outcome of Experiment 11.1.
It also suggests a second experiment to see what thresholds evolution will se-
lect, left to its own devices.

Experiment 11.3 Modify the software from Experiment 11.1 to make the
threshold weight of each neuron evolvable and initialized in the range (−1, 1).
Rerun the experiment, documenting whether solution time with floating thresh-
olds is significantly different from that with fixed positive or negative threshold
values. Also, plot the fraction of neuron thresholds that are positive and neg-
ative in the final generation of each population. (The instructor may wish to
assign Problem 452 with or before this experiment.)

Experiment 11.3 is intended to check whether the theoretical suggestions
of Figure 11.7 are correct. If they are, then most populations should have at
least one negative threshold weight. This question is explored in more detail in
Problem 452, but be sure at least to consider the question of what outcomes in
terms of distribution of negative thresholds would be interesting or suggestive.

At this point, we suggest an experiment designed to verify something
hinted at in other places: XOR is hard. In earlier experiments, we used an
evolutionary algorithm to locate XOR functions. Now we will locate some
other functions as well for comparison.

Experiment 11.4 Modify the software from Experiment 11.1 to search for a
NOR (output string 1000), an AND (output string 0001), and an “a” function
0101 (it just echoes one of its inputs). Save the time-to-solution data and
decide which of these functions is significantly easier to locate than (i) the
others and (ii) the XOR function located in Experiment 11.1. Notice that all
3 of the logic functions in this experiment can be implemented as a neural net
fragment of the type shown in Figure 11.6.

To conclude this section, we will increase the size of the neural nets for
which we are searching. All the experiments thus far have been on 5-neuron
nets with 2 inputs. In the remainder of the chapter, we will work with larger
neural nets, and so this experiment will provide a basis for comparison.

Experiment 11.5 Modify the software from Experiment 11.1 to search for
3-input AND and parity functions. This means that n = 3, and we will take
m = k = 3 as well. Set the neuron thresholds to −0.3 and do 100 runs for
each function, leaving the parameters the same. Save the times-to-solution and
compare them for these two functions.

In this section, we have built code for evolving 3-layer feed-forward neural
nets with all possible connections between layers. In the next section, we will

Evolving Logic Functions 305

retool our representation of neural nets to permit us to evolve connections as
well as connection weights.

Problems

Problem 441. Compute the output string for the following logic functions:
(Assume that the inputs are listed in the usual binary counting or lexico-
graphic order.)

(i) 5-input parity,
(ii) 3-out-of-5 majority,
(iii) a cascade of 4 NAND functions,
(iv) a cascade of 4 NOR functions.

Problem 442. Give a logical function that will yield the following output
strings. Call your inputs x1, x2, . . . , xn and use only AND, OR, and NOT to
build your logical expressions. Assume that x1 is the lowest-order bit of the
input (the one that changes the most often).

(i) 0110,
(ii) 01101001,
(iii) 00000001,
(iv) 11111110,
(v) 01110000.

Problem 443. Suppose you have an n-input neural net called NET that
somehow implements a logic function L. Give pseudocode that produces the
output string of L. Do not nest n loops; this is inelegant.

Problem 444. Give an algorithm for detecting irreducibility (see Definition
11.2).

Problem 445. Explain why irreducible logic functions are interesting.

Problem 446. Prove that n-input parity, n-input AND, and n-input OR
functions are all irreducible.

Problem 447. Suppose that the inputs of a neural net are on the vertices
of a regular pentagon. Give the output string for a neural net that outputs
1 when no symmetry of the pentagon (rotation or flip) takes the pattern of
inputs to itself, and outputs 0 otherwise. Hint: if we had said square instead
of pentagon, the answer would be 0110100110010110.

Problem 448. Suppose we generalize Problem 447 to an n-gon. We call such
a neural net an n-input asymmetry detector. Prove that the output string of
the neural net must be a palindrome.

306 Evolutionary Computation for Modeling and Optimization

Problem 449. Examine Figure 11.7. The choice of the neuron threshold in
the 1-neuron 2-input neural net fragment creates a good deal of variation in
which logic functions are possible. Each of the negative threshold functions
is a logical inversion of one of the positive threshold functions, and 7 func-
tions appear in each diagram. Since there are 16 functions altogether, two are
missing. Which two?

Problem 450. Examine Figure 11.7. If the two weights a and b are generated
uniformly at random between 1 and −1, then what is the probability of each
of the functions (i) for α = +0.5 and (ii) for α = −0.5?

Problem 451. Examine Figure 11.7. For what value of the negative threshold
would the NAND (¬(a ∧ b)) and NOR (¬(a ∨ b)) have equal probability of
appearing? Assume that the selection of a and b is made uniformly at random
on the interval −1 ≤ x ≤ 1. Reading (or doing) Problem 450 may clarify this
question.

Problem 452. Essay. A fact of digital logic is that the only 2-input functions
from which you can construct any other are NAND and NOR. Because of this,
the information in Figure 11.7 suggests that a negative threshold is probably a
good thing. Experiment 11.3 tests how often negative thresholds evolve. Here
is the essay question: what evidence from Experiment 11.3 demonstrates the
value of negative weights and why? Possible answers include overabundance
and appearance at least once in each neural net. Be sure to state and defend
your conclusions.

11.3 Selecting the Net Topology

Even with a fixed number of inputs, some logic functions require more neurons
than others. Compare, for example, minimal neural-net implementations of a
3-input AND and a 3-input parity function. In addition, a net done by layers
with all possible connections present will often have connections it does not
need. When we do not know ahead of time what the good number of neurons or
connections is, it would be nice to let evolution select not only the connection
weights, but the topology (wiring diagram, layout) of the neural net. One
way to do this is to fix the number of neurons and evolve a list of weighted
connections between neurons. Neuron number can, to some degree, be evolved
by noticing when evolution has chosen to connect a neuron in a fashion that
makes it irrelevant to the output of the neural net.

In order to ensure that we get a sensible feed-forward net, we need to
impose some restrictions on the possible connections (read Section 11.1 for
terminology). Our evolutionary algorithm will operate on a list of connections.
Each connection will be of the form (ai, bi, ωi), meaning that the output of
neuron ai is connected to the input of neuron bi with connection weight ωi.

Evolving Logic Functions 307

An example of such a neural net is given in Figure 11.8. From that example, it
is clear that we need the following restrictions. First, the inputs and neurons
are numbered consecutively and all connections go from smaller numbers to
larger numbers (ai < bi). This ensures that the net is feed-forward. Second,
all bi must be large enough not to be inputs. Third, the output is taken from
the highest numbered neuron. We will call this scheme for specifying a neural
net a connection-list-specified neural net.

0

1

2

3

4

5
0.2

0.4
0.6

-0.2

-0.4

1.2

Output

-0.1

Fig. 11.8. Neural net derived from the connection list: (0, 3, 0.2), (1, 3, 0.4),
(1, 5, 0.6), (2, 4, 1.2), (3, 4, −0.1), (3, 5, −0.2), (4, 5, −0.4). (Notice that inputs are
numbered and treated as neurons.)

There are some restrictions that seem natural, but are unnecessary. For
example, it would be natural to demand that when i �= j, ai �= aj or bi �= bj .
In other words, no double connections. Instead, we will simply interpret a
double connection as a connection whose strength is the sum of the individual
connections. This gives evolution the freedom to reduce the number of con-
nections in a net by superimposing them. Implicit in this is a need to simplify
an evolved net once we have it in hand.

Evaluating a Connection-List-Specified Neural Net

Once we have a list of connections that specify a neural net, we have the
problem of actually evaluating the list and producing a net. What follows
is one possible method. Suppose our neurons are Heaviside neurons with a
fixed threshold, and that including inputs we have n neurons. From the list,
we will derive a weight matrix as follows. First, initialize an n × n matrix M
to all zeros. Traversing the connection list, add ωi to M [ai, bi]. Now all the
connections are stored in M .

Evaluating the net is done recursively. Initialize a Boolean n-vector v to
[input]; that is, put true in v[i] for i equal to the index of an input. Keep also

308 Evolutionary Computation for Modeling and Optimization

//global definitions
int v[n]; //is neuron output i known?
double m[n]; //value of neuron output i, if known
int i;

[...]
//prepare to call recursive net evaluator
for(i=0;i<n;i++){

v[i]=(i<inputs);
if(v[i])m[i]=INPUT[i];else m[i]=-1; //load known input values

}
return(receval(n-1));

[...]

int receval(int index){ //return the output value of neuron index

double scratch;
int i;

if(v[index])return(m[index]); //if value is known, return it
//otherwise compute it
scratch=0;
for(i=0;i<index-1;i++)if(M[i,index]!=0)scratch+=M[i,index]*recval(i);
v[index]=1; //value now known
if(scratch<alpha)m[index]=0;else m[index]=1; //Heaviside computation
return(m[index]);

}

Fig. 11.9. Code for recursive evaluation of a neural net, given the connection matrix
M . (“Alpha” is the Heaviside threshold. “Inputs” is the number of input neurons.)

an output n-vector m of reals that holds the output values of each neuron.
It is initialized to hold the known input values. These vectors are used by a
recursive routine that returns the output value of any desired neuron, given
values for the input neurons, by summing the appropriate row of M times
the outputs of relevant neurons connected to the desired neuron. When the
output of a given neuron is known, it is in m and the corresponding entry of
v is true. Otherwise, a recursive call is used. Code for this evaluation routine
is given in Figure 11.9.

Notice that the algorithm given in Figure 11.9 does not compute a neu-
ron’s output value until it needs it. This is called lazy evaluation and is a
standard method of reducing computational work. Before we define evolution-
ary algorithms for connection-list neural nets, let’s do a sampling experiment
that will permit us to implement and debug our evaluator.

Evolving Logic Functions 309

Experiment 11.6 Implement or obtain software for generating and evalu-
ating connection-list-specified neural nets. The number of inputs and neurons
should be easy to change. Generate 1000 different 3-input nets with 5 neu-
rons other than the inputs and 15 connections. Use Heaviside neurons with a
threshold value of α = −0.5. Evaluate them, determining their output string,
and tally how many times each output string appears. Report the empirical
probability of each of the 256 possible functions. Which was more likely, AND
or parity?

To expand the software from Experiment 11.6 into an evolutionary algo-
rithm for evolving logic function specifications, we need variation operators for
connection-list-specified neural nets. Crossover is not difficult. If we treat the
triples (ai, bi, ωi) that specify connections as atomic objects, then we can do
crossover on the list as if it were a string, treating connections as characters.

There are two different types of objects inside a connection that should be
modifiable by mutation. Thus, we need two distinct notions of point mutation.
A topological mutation replaces the values of ai and bi with new, semantically
correct values, e.g., ai < bi and bi is not an input neuron. A weight mutation
is a real point mutation of the parameter ωi. We will use Gaussian real point
mutations with mean zero and specified variance. These add a zero-mean
Gaussian to the weight ωi. The formula for Gaussian random numbers is
given in Equation 3.1.

Experiment 11.7 Using the connection-list-specified neural net routines from
Experiment 11.6 and the variation operators described above, build or obtain
software for an evolutionary algorithm to evolve logic functions. Use the fit-
ness function, population size, and model of evolution from Experiment 11.1.
Perform two-point crossover of the list of connections and mutate each new
gene 0 to 2 times with the number of mutations selected uniformly at random.
Do a topological mutation one time in four and a weight mutation with a vari-
ance of 0.2 three times in four. Use 3 input and 6 noninput neurons with 20
connections.

Run 100 populations for at most 400 generations, attempting to locate a
3-input AND and a 3-input parity function. Compare time-to-solution data.
Compute and record the average number of noninput neurons used in correct
solutions (computing the number of neurons used should be built into your
evaluator).

It may be that logic functions implemented by neural nets with fewer pa-
rameters are easier to locate. Rather than trying several different numbers of
neurons, the next experiment employs lexical fitness to encourage the evolu-
tionary algorithm not to use some of its neurons.

Experiment 11.8 Modify the software from Experiment 11.7 to put “number
of neurons used” in a lexical fitness function. For two neural nets that get the
same number of positions correct in the output string, break ties by judging

310 Evolutionary Computation for Modeling and Optimization

the neural net that used fewer of its neurons more fit. Do the same runs as in
Experiment 11.7 and compare the results.

Binary Adder with Carry In and Out
Inputs Outputs

Bit1 Bit2 Carry Carry Sum
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Fig. 11.10. Two-bit adder with carry, input, and output.

It is possible that we will want a neural net with more than one output.
It’s not hard to code such an object, but we need to modify (a little) the
coding of our connection-list-specified neural nets and (somewhat more) our
fitness function. A common 2-output object is the 2-bit adder, which, as its
name suggests, adds 2 bits. The outputs are the sum and carry of the 2 bits.
To make an adder for binary natural numbers, we also need to accept carry
bits into the adder. The adders can then be cascaded to add any number of
bits. The truth table for a binary adder is given in Figure 11.10.

The structure of the connection list is modified as follows. The value of ai

may never be that of an output neuron. In the past, we had only one output
neuron. The binary adder shown in Figure 11.10 has two output neurons. This
means that the two largest neuron indices are off limits for values of ai, where
before only the largest was.

The fitness function is modified by changing the definition of the output
string. The binary adder has 3 inputs, and so has an 8-character output string,
but this character string is over the alphabet {00, 01, 10, 11}. We will turn this
into a 16-character output string by running through the sum bits, then the
carry bits. That makes the output string for the binary adder a 16-character
string, to wit, 0110100100010111. To generate the output string for an evolving
neural net, we generate, for the combinations of 3 inputs in lexicographical
order, the string of sum outputs followed by the string of carry outputs. This
is compared to the correct output string, and fitness is the number of bits in
agreement.

Experiment 11.9 Modify the software from Experiment 11.7 as outlined to
permit the evolutionary algorithm to search for a binary adder with carry. Use
the same parameters as Experiment 11.7, save that there should be 8 noninput

Evolving Logic Functions 311

neurons and 28 connections. Do 100 runs. Save solution times and compare
to the difficulty of locating a 3-input parity function.

A neutral mutation operator is one that does not modify the fitness of
an organism, but that does modify its gene. After a creature has undergone
a neutral mutation, it may have different children than it otherwise would
have had. For a connection-list-specified neural net, there is a natural choice
of neutral mutation. The connections appear in the list in some order, and
that order is irrelevant to the functioning of the net. Our neutral mutation is
some means of reordering the list of connections. In the tradition of keeping
mutations small, we will implement neutral mutation by swapping a pair of
list elements selected uniformly at random.

Experiment 11.10 Modify the software from Experiment 11.7 to use neutral
mutations half the time on new genes, in addition to and separate from other
mutations. Using the same parameters, do 100 runs. Save solution times and
compare with the results of not using the neutral mutation. Do a second set of
runs in which the rate of neutral mutations drops smoothly from 1.0 after the
first generation to 0.0 in generation 200. Compare with the other runs. Does
neutral mutation help? Does it disrupt convergence near the end of evolution?
Option: add to the evaluator the ability to compute the number of nonzero
connections. Does neutral mutation affect this statistic?

In the next section, we will compare neural nets to genetic programming
as a method of performing logic function induction.

Problems

Problem 453. Suppose we have n input and k noninput neurons. If there
are no multiple or repeated connections, then what is the maximum number
of connections possible in the connection-list scheme used in this section?

Problem 454. Suppose we have n input and k noninput neurons. A connec-
tion topology is a list of connections with unknown weights. If there are no
multiple or repeated connections, then what is the maximum number of net
connection topologies possible?

Problem 455. Reread Problem 454. Find two connection topologies that are
different, in the sense of Problem 454, but neither of which can be used to
implement a logic function the other cannot.

Problem 456. Short Essay. Reread Problem 455. Call two topologies dif-
ferent if one can, by selecting weights, implement a logic function in one that
no selection of weights will implement in the other. Is it difficult to count the
number of different connection topologies?

312 Evolutionary Computation for Modeling and Optimization

Problem 457. Compute the minimal number of Heaviside neurons, with
threshold α = 0.5, needed to implement a 3-input AND and a 3-input parity
function. Prove that your solutions are minimal.

Problem 458. On page 307, it is asserted that the restriction ai < bi in a
connection list forces the neural net to be feed-forward. Prove this assertion.

Problem 459. Examine the code given in Figure 11.9. When computing the
output value of the neural net for a given set of inputs, does it evaluate the
output value of every neuron? If so, explain why it needs to; if not, explain
how the list of neurons it does use might be useful.

Problem 460. Compute the truth table of the logic function implemented in
Figure 11.8. Assume that the neurons are Heaviside neurons with a threshold
of α = −0.5.

Problem 461. For the following list of connections, for 3 input and 3 nonin-
put neurons, give the neural net that is coded and compute its truth table.
Assume that the neurons are Heaviside neurons with a threshold of α = −0.5.
Remember that the output of the neural net is computed from the highest-
numbered neuron. The input neurons are numbered 0–2, the others 3–5.

(a,b, ω)
(0,3,−0.41)
(3,5,−0.43)
(1,4,−0.32)
(2,4,−0.39)
(4,5,−0.44)
(1,3,−0.34)

Problem 462. Give an algorithm that takes as its input a list of connections
for specifying a neural net and outputs a reduced list of connections and the
numbers of neurons actually used in the output. This reduced list should be
minimal; explain why yours is. This type of software is called a target compiler:
it takes a specification for a digital object, trims out the unneeded parts, and
gives a minimal functional object as output.

Problem 463. Design, by hand, a feed-forward neural net to perform the
binary-adder-with-carry task given in Figure 11.10. Use as few neurons and
connections as you can.

Problem 464. Short Essay. In the first two sections of this chapter we insist
that our neural nets be feed-forward. Explain why.

Problem 465. Essay. In Experiment 11.7, we use a somewhat arbitrary ra-
tio, 1:3, of topological to weight mutations. Explain the functions of these
mutations. The evolutionary algorithm is searching both for a neural net con-
nection topology and its weights. Of these two sorts of mutations, which one

Evolving Logic Functions 313

makes more changes in the output string, on average? Justify your answer
mathematically or experimentally. Would varying the ratio of the two muta-
tion types over evolutionary time be a good idea? Why?

11.4 GP Logics

In the last two sections, we have tried various neural network technologies to
search for logic functions. Another evolutionary computation technique that is
used to search for logic functions is genetic programming. There are pros and
cons. An advantage of genetic programming is that it starts with a complete
set of logic operations. A disadvantage is that since genetic programs are
organized as trees, their operations have a fan-out of just one. Fan-out is an
electrical engineering term. In a circuit, the fan-out of a device is the number
of inputs of other devices to which the output of the device is connected.
Neuron 3 in Figure 11.8 has a fan-out of two, for example. Inputs to a parse
tree, in contrast to operations, have an arbitrarily large fan-out since they are
terminals.

Before proceeding with this section, you should review Sections 8.1 and
8.2. We will need a genetic programming language that operates on logical
variables with logical operators. The tree manipulation routines given in Sec-
tion 8.2 will be needed, respecialized to a logical language. We will begin by
specifying a logical GP language and testing it. The logical language we will
use is given in Table 11.3.

Language Element Type Symbol Semantics
True terminal T constant: logical true
False terminal F constant: logical false
xi terminal xi input variable
NOT unary operation ∼ inverts argument
OR binary operation + true if either argument is true
AND binary operation ∗ true if both arguments are true

Table 11.3. Logical language for genetic programming.

Experiment 11.11 Write or obtain software for a parse tree language that
implements the logical GP language given in Table 11.3. Make sure that the
number of input variables in a given tree is easy to specify on the fly. Once
the parse tree routines are written and debugged, compute the output strings
of 1000 random parse trees with 12 nodes and 3 input variables. Compute the
empirical probability of AND and of 3-input parity, comparing the result with
the results of Experiment 11.6.

314 Evolutionary Computation for Modeling and Optimization

Notice that parse trees form a drop-in replacement for the neural nets we
used in the earlier sections of this chapter. The definition of “output string”
and with it the fitness functions we used in the last chapter remain the same.
Since we have radically changed the coding used for the logic functions, the
time to convergence for various logic functions, all other things being as close
to equal as possible, may well be different. The next experiment checks this.

Experiment 11.12 Using the parse tree routines from Experiment 11.11 and
the variation operators described in Section 8.1, build an evolutionary algo-
rithm to evolve parse-tree logic functions. Use the fitness function, population
size, and model of evolution from Experiment 11.1. Use 3 input variables and
trees with at most 16 nodes. Let initial trees have from 6 to 16 nodes with
the number of nodes selected uniformly at random. Run 100 populations for
at most 400 generations, attempting to locate a 3-input AND function and a
3-input parity function. Compare the time-to-solution of these two tasks, and
also compare to the results obtained in Experiment 11.7. Option: try perform-
ing these experiments again without subtree crossover and see what the effect
is on solution time.

For neural nets topological mutations and weight mutations had differ-
ent effects on evolution. The next experiment tries using a different mutation
operator for parse trees. Subtree mutation consists in deleting a subtree and
replacing it with another. Another possible mutation operator is a leaf mu-
tation, which picks a terminal of the tree uniformly at random and replaces
it with another terminal. In Problem 469, we ask you to suggest why leaf
mutation might be helpful in getting a population to use cascading.

Experiment 11.13 Modify the software from Experiment 11.12 to incorpo-
rate leaf mutation. Do 100 runs, modified as follows. Start trying to evolve a 2-
input parity function. Ten generations after a 2-input parity function is found,
modify the rate of the mutation operators from 100% subtree replacement to
half-and-half subtree replacement and leaf mutation. At the same time, change
the fitness function to search for 3-input parity. At this time the number of
variables must be increased from 2 to 3. Save time-to-solution and compare
with the results of Experiment 11.12.

Now we will introduce a multitree variation on the parse tree approach
that reduces the fan-out problem. It is based on an idea called MIPs nets,
or Multiple Interacting Program systems nets, invented by Peter Angeline.
An example of such a system is shown in Figure 11.11. A MIPs net contains
multiple parse trees. The outputs of some trees are made available to other
trees as input terminals. This is similar to the automatically defined functions
(ADFs) used in other genetic programming systems, but there is no master–
slave relationship between the trees.

We still want to have a feed-forward structure for searching. In a feed-
forward MIPs net we number the trees, and higher-numbered trees have access

Evolving Logic Functions 315

+ *

x0 x1 x0 x1 T0 ~

+

T1

T2T1T0

Fig. 11.11. A 3-tree logic function. (The output of trees with smaller number is
available as input terminals to trees with larger numbers.)

to the input of lower-numbered trees. To do this, we will use “other tree”
terminals which are numbered 0–255. In a given tree, number i, we take the
index of the “other tree” terminal, mod i. This ensures that we will always
access the output value of a tree with a smaller number and does not presume
any particular number of trees. Tree0 will get a result of false from its other
tree terminals. During evaluation, we evaluate Tree0 first. After evaluation, we
know its output value, and this is then made available to the other trees. Tree1
is evaluated next, and so on, until the highest-numbered tree is evaluated, and
its output is the output value of the net.

A MIPs net does not have any particular number of trees; rather, it has
a limit on its total number of nodes. The modifications of our parse tree
software needed to use MIPs nets are as follows. First, add a new type of
terminal with 256 flavors, T0–T255. Second, change the basic structure to be
a vector of pointers, large enough to permit a generous number of trees. We
will require new mutation operators: add a new random tree (enlargement),
and delete one tree selected at random (contraction). MIPs nets do not use
crossover; the system uses four types of mutations: subtree mutation, leaf
mutation, enlargement, and contraction.

Experiment 11.14 Write or obtain software for an evolutionary algorithm
to evolve MIPs nets as described. Assume that a net has at most 24 nodes and
at most 8 trees. When generating the initial population, generate from 1 to 4
trees in each MIPs net with from 3 to 6 nodes in each tree. Use a steady-state
evolutionary algorithm in which a pair of nets are selected and compared. A
mutant of the better net is copied over the worse one. The output of a MIPs
net is the output of its highest-numbered tree; use agreement with the desired
output string as the fitness function.

Use 1 to 2 mutations on each new tree, of which 25% pick a tree at random
and do a subtree mutation, 25% pick a tree at random and do a leaf mutation,

316 Evolutionary Computation for Modeling and Optimization

25% are enlargement (add a tree with 3 to 6 nodes), and 25% are contraction.
When a MIPs net has 8 trees, perform contraction in place of enlargement.
When a MIPs net has 1 tree, perform enlargement in place of contraction.
When a MIPs net exceeds the total node boundary, perform contractions unless
it has 1 tree with too many nodes, in which case use a chop operation.

Do 100 runs on a population of 200 MIPs nets for at most 400 genera-
tions, looking for a 3-input parity function. Compare with other experiments
searching for a 3-input parity function.

One of the mechanisms that biological evolution uses is to duplicate a gene,
freeing one copy of that gene to change without disrupting critical biological
function. Following some ideas from Chapter 10 on GP automata deciders, we
note that MIPS nets have the potential to exploit this type of evolutionary
mechanism. Call this a gene duplication and implement it by picking a tree
uniformly at random and copying it over another picked uniformly at random.
Let us experimentally check the effect of such a mutation operator.

Experiment 11.15 Modify the software from Experiment 11.14 to include
gene duplication. Use the 4 mutation operators from Experiment 11.14 80%
of the time, and use gene duplication the remaining 20% of the time. Per-
form the same runs and compare the time-to-solution with and without gene
duplication.

Problems

Problem 466. Compute the number of 12-node parse trees in the language
given in Table 11.3. Assume 3 input variables. You may want to look at
Problem 296.

Problem 467. Prove or disprove: all 3-input logic functions can be realized
with 12-node parse trees in the language given in Table 11.3. There are 256
of these, so you must use symmetries to represent entire classes of functions
with single examples.

Problem 468. Compute the output string for each of the following parse
trees:

(i) (+ (∼ x0) (+ (∼ x1) (∼ x2))),
(ii) (+ (* (∼ x0) (* x1 (∼ x2))) (* x0 (* (∼ x1) (∼ x2)))),
(iii) (+ (+ x1 x0) (∼ (+ x0 x1))),
(iv) (+ (* (∼ x2) (* x0 (∼ x1))) (* x1 (* (∼ x2) (∼ x0)))).

Problem 469. Show, pictorially, how subtree crossover makes it easier to
discover cascades of functions. Discuss, in a few sentences, the problem with
getting the terminals right. A cascade of AND functions is given in Figure
11.5.

Evolving Logic Functions 317

Problem 470. Construct, by hand, a parse tree that computes the logic func-
tion with output string 0110100110010110.

Problem 471. What logic function does the MIPs net given in Figure 11.11
compute? Give the truth table and name it if it has a name.

Problem 472. In Figure 11.10, a 2-output logic function (a binary adder with
carry in and out) is described. In a few sentences, explain how to use a MIPs
net to code for multiple-output logic functions, and illustrate your technique
by constructing a MIPs net that computes the binary adder function.

Problem 473. In doing genetic programming, there is no need to limit our-
selves to binary operations. Both the AND and OR functions are defined for
any number of inputs. Describe how to modify the GP software used in this
section to accommodate arbitrary-input AND and OR operations. Be sure to
explain how mutation (or crossover) can change the number of arguments a
given operator uses.

Problem 474. If we use AND, OR, and NOT, then what is the minimum
number of operations needed to compute (i) 3-input parity, (ii) 4-input parity,
and (iii) 5-input parity.

Problem 475. We can change the function computed by a parse tree by mod-
ifying its terminals. True or false: if two parse trees have the same operations
(possibly connected differently), then each has the same number of functions
it could code for under various modifications of its terminals. In essence, you
are asked to establish whether some trees are inherently more diverse than
others. Prove your answer.

Problem 476. Essay. Give the design of an experiment used to compute the
optimum ratio of leaf mutations to subtree mutations in evolving parse trees
as in Experiment 11.13.

Problem 477. In Chapter 10, we discovered that storing internal state infor-
mation was key to performing well on the Tartarus task. Suppose we modify
MIPs net evaluation so that the output value of each tree in the last time step
is stored and is the value of the terminal referring to that tree in the current
time step. In essence, this is a one-time-step delay. Can a MIPs net evaluated
in this manner store internal state information? Justify your answer in a few
sentences.

12

ISAc List: Alternative Genetic Programming

In this chapter, we will look at ISAc lists, another method of producing pro-
grams by evolution. ISAc lists are far simpler than the genetic programming
techniques we studied in previous chapters and can be stored as a simple ar-
ray of records. This data structure is also, for several test problems, better
adapted to grid robots than the GP automata from Chapter 10. In addition
to introducing ISAc lists, this chapter will also explore several new grid robot
tasks. A version of the Vacuum Cleaner task, whose goal is to visit every
square in the grid, appears in [38]. The Herbivore task, in which we add the
ability to eat boxes to the grid robots’ palette of actions, is a simple model
of foraging. The North Wall Builder task asks the grid robots to construct a
simple structure.

While the main point of this chapter is to introduce ISAc lists as a new
representation for evolvable code, there are other important points. We explore
population seeding with the new representation, both within and between grid
robot tasks. The thread of using a simple string evolver as a baseline for more
complex representations continues. Some effort is made to explore the scaling
of grid robot tasks by increasing the size of the boards.

12.1 ISAc Lists: Basic Definitions

The structure we will now study, the If-Skip-Action list (ISAc list), was in-
vented by Mark Joenks [3] during a fit of boredom in a machine-language pro-
gramming class. Joenks observed that machine-language instructions come in
a linear order, followed during execution, except when interrupted by jumps.
It struck him that if we wrote a very simple machine language that tested con-
ditions and, based on the result, either specified an action or made a jump,
then we would have an evolvable programming language. An example of an
ISAc list is given in Figure 12.2.

An ISAc list is a vector, or array, of ISAc nodes. An ISAC node is a
quadruple (a, b, act, jmp) where a and b are indices into a data vector, act is

320 Evolutionary Computation for Modeling and Optimization

Exp 12.3

Exp 12.4

Exp 12.5

Exp 12.9

Exp 12.19Exp 12.18

Exp 12.17

Exp 12.16

Ch 13

Exp 12.11

Exp 12.8

Exp 10.2

Exp 12.12

Exp 12.13

Exp 12.14

Exp 12.20

Exp 12.21

Exp 12.22

Exp 12.23
Exp 12.15

Exp 12.10

Exp 12.7

Ch 13

Exp 10.15

Exp 12.2

Exp 12.1

Exp 12.6

1 ISAc lists for Tartarus.
2 Exploring board and population size.
3 Population seeding.
4 Population seeding.
5 Adding a random action.
6 Shorter ISAc lists.
7 Larger boards.
8 String evolver baseline for the Vacuum Cleaner task.
9 ISAc lists for the Vacuum Cleaner task.
10 Population seeding.
11 String evolver baseline for the Herbivore task.
12 Herbivore with ISAc lists.
13 Population seeding.
14 Seeding Herbivore with Vacuum Cleaner genes.
15 Seeding Herbivore with string baseline genes.
16 String baseline with North Wall Builder.
17 North Wall Builder with ISAc lists.
18 Alternative fitness function.
19 Larger boards with population seeding.
20 Use of null actions.
21 Adaptive strings.
22 Stochastic alphabet strings.
23 Adaptive stochastic strings.

Fig. 12.1. The topics and dependencies of the experiments in this chapter.

an action that the ISAc node may take, and jmp is a specification of where
to jump, if the action happens to be a jump action. The data vector holds
inputs, scratch variables, and constants, in other words, everything we might
put into the terminals of a genetic programming setup. An ISAc list comes
equipped with a fixed Boolean test used by every node. Execution in an ISAc
list is controlled by the instruction pointer.

ISAc List: Alternative Genetic Programming 321

Node a b act jmp comment
0 3 2 2 6 if 1 − 0 > 0 set register to zero
1 0 2 1 2 If x − 0 > 0 jump to 3
2 3 2 1 5 If 1 − 0 > 0 jump to 6
3 3 2 3 9 If 1 − 0 > 0 increment register
4 3 2 4 4 If 1 − 0 > 0 decrement x
5 3 2 1 0 If 1 − 0 > 0 jump to 1
6 1 2 1 7 If y − 0 > 0 jump to 8
7 3 2 1 10 If 1 − 0 > 0 jump to 11
8 3 2 3 7 If 1 − 0 > 0 increment register
9 3 2 5 2 If 1 − 0 > 0 decrement y
10 3 2 1 5 If 1 − 0 > 0 jump to six
11 3 2 0 4 If 1 − 0 > 0 NOP

Fig. 12.2. An example of an ISAc list that operates on 2 variables x, y and a scratch
register. (The data vector v is of the form [x, y, 0, 1]. The ISAc actions are 0-NOP,
1-jump, 2-zero register, 3-increment register, 4-decrement x, and 5-decrement y. The
Boolean test for this ISAC list is if (v[a] − v[b] > 0), i.e., is item “a” larger than
item “b”?)

The operation of an ISAc list is as follows. We start with the instruction
pointer at the beginning of the ISAc list, indexing the zeroth node. Using the
entries a, b, act, jmp of that node, we look up data item a and data item b
in the data vector and apply the Boolean test to them. If the test is true, we
perform the action in the act field of the node; otherwise, we do nothing. If
that action is “jump,” we load the contents of the jmp field into the instruction
pointer. We then increment the instruction pointer. Pseudocode for the basic
ISAc list execution loop is shown in Figure 12.3.

IP← 0 //Set Instruction Pointer to 0.
LoadDataVector(v); //Put initial values in data vector.
Repeat //ISAc evaluation loop

With ISAc[IP] do //with the current ISAc node,
If v[a] − v[b] > 0 then PerformAction(act); //Conditionally perform action
UpdateDataVector(v); //Revise the data vector
IP ← IP + 1 //Increment instruction pointer

Until Done;

Fig. 12.3. Algorithm for executing an ISAc list.

There are 3 types of actions used in the act field of an ISAc node. The first
is the NOP action, which does nothing. The inclusion of the NOP action is
inspired by experience in machine-language programming. An ISAc list that
has been evolving for a while will have its performance tied to the pattern

322 Evolutionary Computation for Modeling and Optimization

of jumps it has chosen. If we insert new instructions, the target addresses of
many of the jumps change. We could tie our “insert an instruction” mutation
operator to a “renumber all the jumps” routine, but this is computationally
complex. Instead, we have a “do nothing” instruction that serves as a place-
holder. Instructions can be inserted by mutating a NOP instruction, and they
can be deleted by mutating into a NOP instruction without the annoyance of
renumbering everything.

The second type of action used in an ISAc list is the jump instruction. The
jump instructions are goto instructions. For those of you who have been brain-
washed by the structured programming police, any kind of control structure,
“for,” “repeat-until,” “do-while,” is really an “if (condition) then goto (label)”
structure, carefully hidden from the delicate eyes of the software engineer by
his compiler or codegenerator. In a high-level language, this “goto hiding” aids
in producing sensible, easy-to-read code. ISAc lists are low-level programming
and are rich in jump instructions. These instructions simply load a new value
into the instruction pointer when the Boolean test in their node is true. Notice
that to goto node n we issue a jump to node n−1 instruction. This is because
even after a jump instruction, the instruction pointer is incremented.

The third type of action is the one of interest to the environment outside
the ISAc list. We call these external actions. Both NOP and jump instruc-
tions are related to the internal bookkeeping of the ISAC list. External actions
are reported to the simulator running the ISAc list. In the ISAc list shown
in Figure 12.2, the external actions are “zero register,” “increment register,”
“decrement x,” and “decrement y.” Notice that an ISAc list lives in an envi-
ronment. It sees the environment through its data vector and may modify the
environment through its actions.

Done?

As usual, we will generate random objects and randomly modify them during
the course of evolution. Since the objects we are dealing with in this chapter
have jump statements in them, they will often have infinite loops. This is
similar to the situation we faced in Chapter 10 with the null action. We
will adopt a similar solution, but one that is more forgiving of long finite
loops or non-action-generating code segments. We will place a limit on the
total number of instructions that can be executed before fitness evaluation is
terminated. Typically, this limit will be a small integer multiple of the total
number of external instructions we expect the ISAc list to need to execute to
do its job.

Even an ISAc list that does not get into an infinite loop (or a long fi-
nite loop) needs a termination condition. For some applications, having the
instruction pointer fall off of the end of the list is an adequate termination
condition. The example ISAc list in Figure 12.2 terminates in this fashion. We
will call this type of ISAc list a linear ISAc list. Another option is to make the
instruction pointer function modulo the number of instructions in the ISAc

ISAc List: Alternative Genetic Programming 323

list. In this variation, the first instruction in the list immediately follows the
last. We call this type of ISAc list a circular ISAc list. With circular ISAc
lists, we either have explicit “done” actions, or we stop when the ISAc list has
produced as many external actions as the simulator requires.

Generating ISAc Lists, Variation Operators

Generating an ISAc list is easy. You must choose a data structure, either an
array of records (a, b,act,jmp) or 4 arrays a[], b[], act[], jmp[] with records
formed implicitly by common index. Simply fill the array with appropriately
sized integers chosen uniformly at random. The values of a and b are in the
range 0, . . . , nv − 1, where nv is the number of items in the data vector. The
act field is typically in the range 0, . . . , na + 1, where na is the number of
external actions. The two added actions leave space for the jump and NOP
actions. Since NOP and jump are always present, it is a good idea to let action
0 be NOP, action 1 be jump, and then for any other action, subtract 2 from
the action’s number and return it to the simulator. This will make using ISAc
lists evolved on one task for another easier, since they will agree on the syntax
of purely ISAc list internal instructions. The jmp field is in the range 0, . . . ,
listsize, where listsize is the length of the ISAc list.

The variation operators we will use on ISAc lists should seem comfortably
familiar. If we treat individual ISAc nodes as atomic objects, then we can use
the string-based crossover operators from Chapter 2. One-point, two-point,
multipoint, and uniform crossover take on their familiar meanings with ISAc
lists.

Point mutation of an ISAc list is a little more complex. There are three
sorts of fields in an ISAc node: the data pointer fields a and b, the action field
act, and the jump field jmp. A point mutation of an ISAc list selects an ISAc
node uniformly at random, selects one of its 4 fields uniformly at random,
and then replaces it with a new, valid value. For finer resolution, we also
define the pointer mutation, which selects a node uniformly at random and
then replaces its a or b field, an action mutation that selects a node uniformly
at random and then replaces its act field, and a jump mutation that selects a
node uniformly at random and replaces its jmp field.

Data Vectors and External Objects

In Chapter 10, we augmented our basic parse trees with operations that could
affect external objects: calculator-style memories. In Figure 12.2, various ac-
tions available to the ISAc list were able to modify an external scratch register
and two registers holding variables. Much as we custom-designed the parse
tree language to the problems in Chapters 8, 9, and 10, we must custom-design
the environment of an ISAc list.

324 Evolutionary Computation for Modeling and Optimization

The primary environmental feature is the data vector, which holds inputs
and constants. Figure 12.2 suggests that modifiable registers are another pos-
sible feature of the ISAc environment. To use memory-mapped I/O, we could
permit the ISAc list to directly modify elements of its data vector, taking
these as the output. We could give the ISAc list instructions that modify
which data set or part of a data set is being reported to it in its data vector.
We will deal more with these issues in later chapters, but you should keep
them in mind.

With the basic definitions of ISAc lists in hand, we are now ready to take
on a programming task. The next section starts us off in familiar territory,
the Tartarus environment.

Problems

Problem 478. What does the ISAc list given in Figure 12.2 do?

Problem 479. Using the notation from Figure 12.2, give a sequence of ISAc
nodes that implements the structure

while(v[1]>v[2])do Action(5);

Problem 480. Using the notation from Figure 12.2, give a sequence of ISAc
nodes that implements the structure

while(v[1]==v[2])do Action(5);

Problem 481. Using the notation from Figure 12.2, give a sequence of ISAc
nodes that implements the structure

while(v[1]!=v[2])do Action(5);

Problem 482. Using the notation from Figure 12.2, give a sequence of ISAc
nodes that implements the structure

while(v[1]>=v[2])do Action(5);

Problem 483. Take the commands given for the ISAc list in Figure 12.2 and
add commands for incrementing x and y and decrementing the register. Write
a linear ISAc list that places x − y into the register.

Problem 484. Essay. The code fragments from Problems 479, 480, 481, and
482 show that any comparison of two data vector items can be simulated (less-
than comparisons simply require that we reverse a and b). It may, however,
be the case that the cost in space and complexity of simulating the test you
need from the one test you are allowed will impede discovery of the desired
code. Describe how to modify ISAc lists to have multiple different Boolean
tests available as primitive operations in an ISAc node.

ISAc List: Alternative Genetic Programming 325

Problem 485. Essay. Those readers familiar with Beginners All-purpose
Symbolic Instruction Code (BASIC) will recognize that BASIC’s method of
handling subroutines is easily adapted to the ISAc list environment. For our
BASIC-noncompliant readers, a BASIC program has a number associated
with each line. The command “GOSUB < linenumber >” transfers control
to the line number named. When a “RETURN” command is encountered,
control is returned to the line after the most recent “GOSUB” command.
Several GOSUB commands can be executed followed by several returns, with
a stack of return locations needed to decide where to return. Describe a mod-
ification of the ISAc list environment to include jump-like instructions similar
to the BASIC GOSUB and RETURN commands. Does the current method
for disallowing infinite loops suffice, or do we need to worry about growth of
the return stack? What do we do if the ISAc list terminates with a nonempty
return stack? Should this be discouraged, and if so, how?

Problem 486. Describe the data vector and external commands needed to
specialize ISAc lists to work on the Plus-One-Recall-Store Efficient Node Use
problem, described in Chapter 8. For the Efficient Node Use problem, we
were worried about the total number of nodes in the parse tree. Be sure to
state what the equivalent of “size” is for an ISAc list and carefully restate the
Efficient Node Use problem. Give a solution for size 12.

Problem 487. Reread Problem 486. Is it possible to come up with an ISAc
list that solves a whole class of Efficient Node Use problems?

Problem 488. Essay. In Chapter 9, we used evolutionary algorithms and
genetic programming to encode formulas that were being fit to data. Using
an analogy between external ISAc actions and keys on a calculator, explain
how to use an evolutionary algorithm to fit a formula embedded in an ISAc
list to data. What, if any, real constants go in the data vector? Give an ISAc
list that can compute the fake bell curve

f(x) =
1

1 + x2 .

Be sure to explain your external commands, choice of Boolean test, and data
vector.

Problem 489. Following the setup in Problem 488, give an ISAc list that
can compute the function

f(x) =

{
x2 if x ≥ 0,

−x2 if x < 0.

Problem 490. Following the setup in Problem 488, give an ISAc list that
can compute the function

f(x, y) =

{
1 if x2 + y2 ≤ 1,

1
x2+y2 if x2 + y2 > 1.

326 Evolutionary Computation for Modeling and Optimization

Problem 491. Describe the data vector and external commands needed to
specialize ISAc lists to play Iterated Prisoner’s Dilemma (see Section 6.2 for
details). Having done so, give ISAc lists that play each of the following strate-
gies. Use the commented style of Figure 12.2.

(i) Always cooperate,
(ii) Always defect,
(iii) Tit-for-tat,
(iv) Tit-for-two-tats,
(v) Pavlov,
(vi) Ripoff.

Problem 492. Are ISAc lists able to simulate finite state automata in gen-
eral? Either give an example of a finite state automaton that cannot, for some
reason, be simulated by an ISAc list, or give the general procedure for per-
forming such a simulation, i.e., coding a finite state automaton as an ISAc
list.

12.2 Tartarus Revisited

The first thing we will do with ISAc lists is revisit the Tartarus task from
Chapter 10. You should reread the description of the Tartarus problem on page
265. We will specialize ISAc lists for the Tartarus problem as follows. We will
use a data vector that holds the 8 sensors (see Figure 10.4) and 3 constants,
v = [UM, UR, MR, LR, LM, LL, ML, UL, 0, 1, 2]. The ISAc actions will be 0,
NOP; 1, Jump; 2, Turn Left; 3, Turn Right; 4, Go Forward. This specification
suffices for our first experiment.

Experiment 12.1 Implement or obtain software to create and run circular
ISAc lists, as well as the variation operators described in Section 12.1. Be
sure to include routines for saving ISAc lists to a file and reading them from a
file. With these routines in hand, as well as the Tartarus board routines from
Chapter 10, build an evolutionary algorithm that tests ISAc lists specialized for
Tartarus on 40 boards. Use 80 moves (external actions) on each board with a
limit of 500 ISAc nodes evaluated per board. Use a population of 60 ISAc lists
of length 60. Use point mutation and two-point crossover for your variation
operators and single tournament selection with tournament size 4 for your
model of evolution. Do 20 runs for 200 generations each and compare your
results with Experiment 10.15.

One thing you may notice, comparing this experiment with Experiment
10.15, is that ISAc lists run much faster than GP automata. Let’s see whether
we can squeeze any advantage out of this.

ISAc List: Alternative Genetic Programming 327

Experiment 12.2 Redo Experiment 12.1, testing ISAc lists on 100 Tartarus
boards with population size 400. Do 100 runs and compare the results with
Experiment 12.1. Compare both the first 20 runs and the full set of 100. Also
save the best ISAc list from each run in a file. We will use this file later as a
“gene pool.”

In animal breeding, the owner of a high-quality animal can make serious
money selling the animal’s offspring or stud services. In our attempts to use
evolution to locate good structures, we have, for the most part, started over
every time with random structures. In the next couple of experiments, we will
see whether using superior stock as a starting point can give us some benefit
in finding good ISAc list controllers for Tartarus dozers. There is an enormous
literature on animal breeding. Reading this literature might inspire you with
a project idea.

Experiment 12.3 Modify the code from Experiment 12.2 so that instead of
generating a random initial population, it reads in the 100 best-of-run genes
from Experiment 12.2, making 4 copies of each gene as its initial population.
Do 25 runs and see whether any of them produce Tartarus controllers superior
to the best in the gene pool.

In Experiment 12.3, we started with only superior genes. There is a danger
in this; the very best gene may quickly take over, causing us simply to search
for variations of that gene. This is especially likely, since each member of a
population of superior genes has pretty complex structure that does not admit
much disruption; crossover of two different superior genes will often result in
an inferior structure. To try to work around this potential limitation in the
use of superior stock, we will seed a few superior genes into a population of
random genes and compare the result with that of using only superior genes.
In future chapters we will develop other techniques for limiting the spread of
good genes.

Experiment 12.4 Modify the code from Experiment 12.3 so that instead of
generating a random initial population, it reads in the 100 best-of-run genes
from Experiment 12.2. The software should then select 10 of these superior
genes at random and combine them with 390 random ISAc lists to form an
initial population. Do 25 runs, each with a different random selection of the
initial superior and random genes, and see whether any of them produce Tar-
tarus controllers superior to the best in the gene pool. Also, compare results
with those obtained in Experiment 12.3.

We have, in the past, checked to see whether the use of random numbers
helped a Tartarus controller (see Experiment 10.8). In that experiment, access
to random numbers created a local optimum with relatively low fitness. Using
gene pools gives us another way to check whether randomness can help with
the Tartarus problem.

328 Evolutionary Computation for Modeling and Optimization

Experiment 12.5 Modify your ISAc list software from Experiment 12.4 to
have a fourth external action, one that generates a random action. Gener-
ate the random action so that it is Turn Left 20% of the time, Turn Right
20% of the time, and Go Forward 60% of the time. Redo Experiment 12.4,
permitting this random action in the randomly generated parts of the initial
population, but still reading in random-number-free superior genes. Do 100
runs and compare the scores of the final best-of-run creatures with those ob-
tained in past experiments. Do the superior creatures use the random action?
Did the maximum fitness increase, decline, or remain about the same?

The choice of length-60 ISAc lists in Experiment 12.1 was pretty arbitrary.
In our experience with string baselines for Tartarus in Chapter 10 (Experiment
10.1), string length was a fairly critical parameter. Let us see whether very
short ISAc lists can still obtain decent fitness scores on the Tartarus problem.

Experiment 12.6 Modify your ISAc list software from Experiment 12.2 to
operate on length-10 and length-20 ISAc lists. Do 100 runs for each length
and compare the results, both with one another and with those obtained in
Experiment 12.2. Do these results meet with your expectations?

We conclude this section with another Tartarus generalization. In the past,
we played Tartarus on a 6 × 6 board with 6 boxes. We now try it on a larger
board.

Experiment 12.7 Modify your ISAc list software from Experiment 12.2, and
the Tartarus board routines, to work on an 8 × 8 board with 10 boxes. Do 100
runs, saving the best genes in a new gene pool. Verify that fitness, on average,
increases over time and give a histogram of your best-of-run creatures.

The brevity of this section, composed mostly of experiments, is the result
of having already investigated the original Tartarus problem in some detail.
The Tartarus task is just one of a large number of tasks we could study even
in the limited environment of a virtual agent that can turn or go forward on a
grid with some boxes. In the next section, we will take a look at several other
tasks of this sort that will require only modest variations in software. We leave
for later chapters the much harder problem of getting multiple virtual agents
to work together.

Problems

Problem 493. In Chapter 10, we baselined the Tartarus problem with fixed
sets of moves, and used a simple string evolver (Experiment 10.2) to locate
good fixed sets. Give a method for changing such a string of fixed moves into
an ISAc list that (i) exhibits exactly the same behavior, but (ii) is easy to
revise with mutation.

ISAc List: Alternative Genetic Programming 329

Problem 494. In Experiment 12.1, we permitted up to 500 ISAc list nodes
to be evaluated in the process of generating 80 moves on the Tartarus board.
This may be an overgenerous allotment. Design a software tool that plots the
fitness of an ISAc list for different limits on ISAc nodes. It should perform its
tests on a large number of boards. Is there a way to avoid evaluating the ISAc
list on one board several times? This is a tool for postevolution analysis of a
fixed ISAc list.

Fig. 12.4. An example of an impossible Tartarus starting configuration of the type
discovered by Steve Willson.

Problem 495. When studying the Tartarus problem, Steve Willson noticed
that the close grouping of 4 blocks wasn’t the only impossible Tartarus config-
uration (see Definition 10.1). Shown in Figure 12.4 is another such impossible
configuration. Explain why the Willson configuration is impossible. Is it im-
possible for all initial positions and headings of the dozer?

Problem 496. Compute the number of starting 6 × 6 Tartarus boards for
which there is a close grouping of 4 boxes and the number that are Willson
configurations. Which sort of impossible board is more common? Be sure to
include dozer starting positions in your count.

Problem 497. Reread Problem 495. Describe an evolutionary algorithm that
locates impossible boards. You will probably need to coevolve boards and
dozer controllers. Be careful to choose a dozer controller that evolves cheaply
and easily. Be sure, following the example from Problem 495, that dozer po-
sition is part of your board specification.

330 Evolutionary Computation for Modeling and Optimization

Problem 498. Essay. In the experiment in which we inject a small number
of superior genes into a large population of random genes, there is a danger
we will get only variations of the best gene in the original population. Discuss
a way to use superior genes that decreases the probability of getting only vari-
ations of those superior genes. Do not neglect nonelite selection, use of partial
genes, and insertion of superior genes other than in the initial population. Try
also to move beyond these suggestions.

Problem 499. Given below is a length-16 circular ISAc list. It uses the data
vector described in this section, and the NOP, jump, and external actions
are given explicitly; i.e., ACT 0 is turn left, ACT 1 is turn right, and ACT
2 is go forward. For the Tartarus initial configuration shown in Figure 10.2,
trace the action of a dozer controlled by this ISAc list and give the score after
80 moves. Put the numbers 1–80 on a blank Tartarus board, together with
heading arrows, to show how the dozer moves.

0: If v[9]>v[8] then ACT 2
1: If v[7]>v[9] then ACT 1
2: If v[4]>v[1] then ACT 2
3: If v[10]>v[10] then NOP
4: If v[4]>v[9] then ACT 2
5: If v[10]>v[9] then ACT 1
6: If v[4]>v[0] then ACT 2
7: If v[9]>v[2] then ACT 2
8: If v[2]>v[8] then JMP 3
9: If v[3]>v[6] then ACT 0
10: If v[10]>v[7] then ACT 2
11: If v[7]>v[10] then NOP
12: If v[6]>v[7] then ACT 0
13: If v[0]>v[8] then ACT 2
14: If v[10]>v[7] then ACT 0
15: If v[3]>v[6] then ACT 1

Problem 500. If we increase board size, are there new variations of the Will-
son configuration given in Figure 12.4? Please supply either pictures (if your
answer is yes) or a mathematical proof (if your answer is no). In the latter
case, give a definition of “variations on a Willson configuration.”

Problem 501. Recompute the answer to Problem 496 for 6 boxes on an n×n
board.

Problem 502. Give a neutral mutation operator for ISAc lists. It must mod-
ify the list without changing its behavior. Ideally, it should create variation
in the children the ISAc list can have.

Problem 503. Essay. Suppose we use the following operator as a variation
operator that modifies a single ISAc list: Generate a random ISAc list, perform

ISAc List: Alternative Genetic Programming 331

two-point crossover between the random ISAc list and the one being modified,
and pick one of the two children at random as the new version of the list. Is this
properly a mutation operator? Is it an operator that might help evolution?
Give a quick sketch of an experiment designed to support your answer to the
latter question.

Problem 504. In Experiment 12.5 we incorporate a left–right symmetric ran-
dom action into the mix. Would an asymmetric random action have been
better? Why or why not?

Problem 505. In Section 10.1 (string baseline), we used gene-doubling and
gene-halving mutations (see Definitions 10.2 and 10.3). Give definitions of
gene-doubling and gene-halving mutations for ISAc lists. Your mutations
should not cause jumps to favor one part of the structure.

12.3 More Virtual Robotics

In this section, we will study several virtual robotics problems that can be de-
rived easily from Tartarus. They will incorporate modest modifications of the
rules for handling boxes and substantial modifications of the fitness function.
We will make additional studies using initial populations that have already
undergone some evolution. As a starting point, they will, we hope, perform
better than random structures. In addition to rebreeding ISAc lists for the
same task, we will study crossing task boundaries.

The first task we will study is the Vacuum Cleaner task. The Vacuum
Cleaner task does not use boxes at all. We call the agent the vacuum rather
than the dozer. The vacuum moves on an n×n board and is permitted n2+2n
moves: turn left, turn right, go forward, or stand still. When the vacuum enters
a square, that square is marked. At the end of a trial, the fitness of the vacuum
is +1 for the first mark in each square, −1 for each mark after the first in
each square. We call this the efficient cleaning fitness function. The object
is to encourage the vacuum to visit each square on the board once. We will
need to add the fourth action, stand still, to the external actions of the ISAc
list software.

The only variation between boards is the starting position and heading
of the vacuum. In addition, the heading is irrelevant in the sense that the
average fitness over the set of all initial placements and headings and the
average fitness over all initial placements with a single heading are the same.
Because of this, we will always start the vacuum with the same heading and
either exhaustively test or sample the possible placements. We now perform
a string baseline experiment for the Vacuum Cleaner task.

Experiment 12.8 Modify the Tartarus software to use a world with walls
but no boxes and to compute the efficient cleaning fitness function. Use a

332 Evolutionary Computation for Modeling and Optimization

9×9 board and test fitness on a single board starting the vacuum facing north
against the center of the south wall. Use a string evolver to evolve a string of
99 moves over the alphabet {left, right, forward, stand still } in three ways.
Evolve 11-character strings, 33-character strings, and 99-character strings,
using the string cyclically to generate 99 moves in any case.

Have your string evolver use two-point crossover and 0- to n-point muta-
tion (where n is the length of the string divided by 11), with the number of
point mutations selected uniformly at random. Take the model of evolution to
be single tournament selection with tournament size 4. Do 100 runs for up to
400 generations on a population of 100 strings, reporting time-to-solution and
average and maximum fitness for each run. Compare different string lengths,
and if any are available, trace one maximum-fitness string.

With a baseline in hand, we now will evolve ISAc lists for the Vacuum
Cleaner task. Notice we are sampling from 16 of the 81 possible initial place-
ments, rather than computing total fitness.

Experiment 12.9 Modify the evolutionary algorithm from Experiment 12.8
to operate on ISAc lists of length 60. Evolve a population of 400 ISAc lists,
testing fitness on 16 initial placements in each generation. Report fitness as
the average score per board. Use two-point crossover and from 0- to 3-point
mutation, with the number of point mutations selected uniformly at random.
Do 100 runs lasting at most 400 generations, saving the best ISAc list in each
run for later use as a gene pool. Plot the fitness as a function of the number
of generations and report the maximum fitnesses obtained. How did the ISAc
lists compare with the string baseline?

We will now jump to testing on total fitness (all 81 possible placements),
using the gene pool from the last experiment. The hope is that evolving for
a while on a sampled fitness function and then evolving on the total fitness
function will save time.

Experiment 12.10 Modify the evolutionary algorithm from Experiment 12.9
to read in the gene pool generated in that experiment. For initial populations,
choose 10 genes at random from the gene pool and 390 random structures.
Evolve these populations, testing fitness on all 81 possible initial placements
in each generation. Report fitness as the average score per board. Do 100 runs
lasting at most 400 generations. Plot the fitness as a function of the number
of generations and report the maximum fitnesses obtained.

The Vacuum Cleaner task is not, in itself, difficult. Unlike Tartarus, where
a perfect solution is difficult to specify, it is possible to simply write down
a perfect solution to the Vacuum Cleaner task. You are asked to do this in
Problem 512. The Vacuum Cleaner task does, however, require that the ISAc
list build some sort of model of its environment and learn to search the space
efficiently. This efficient space-searching is a useful skill and makes the Vacuum
Cleaner gene pool from Experiment 12.9 a potentially valuable commodity.

ISAc List: Alternative Genetic Programming 333

In the next task, we will use this efficient space sweeping as a starting point
for learning a new skill, eating.

The Herbivore task will add a new agent name to our roster. Tartarus has
the dozer; the Vacuum Cleaner task has the vacuum. The agent used in the
Herbivore task is called the cowdozer. The Herbivore task takes place in an
n × n world and uses boxes. The rules for boxes, pushing boxes, and walls
are the same as in Tartarus, save that an additional action is added: the eat
action. If the cowdozer is sitting with a box directly ahead of it and it executes
an eat action, then the box vanishes. Our long-term goal is to create agents
that can later be used in an ecological simulation. For now, we merely wish
to get them to eat efficiently.

Fig. 12.5. A valid starting configuration for the Herbivore task.

A single Herbivore board is prepared by scattering k boxes at random
on the board. These boxes may be anywhere, since the eat action causes a
complete lack of “impossible” boards. A valid starting configuration is shown
in Figure 12.5. Be sure to keep the numbering of ISAc actions (NOP, jump,
turn left, turn right, and go forward) consistent in the Vacuum Cleaner and
Herbivore tasks. Give stand still and eat the same action index. This facilitates

334 Evolutionary Computation for Modeling and Optimization

the use of a Vacuum Cleaner gene pool as a starting point for Herbivore. For
the Herbivore task, our fitness function will be the number of boxes eaten.

With the Vacuum Cleaner task, it wasn’t too hard to select an appropriate
number of moves. The task of justifying that choice is left to you (Problem
507). For the Herbivore task, this is a harder problem. The cowdozer must
search the board, and so would seem to require at least as many moves as
the vacuum. Notice, however, that the cowdozer does not need to go to every
square; rather, it must go beside every square. This is all that is required to
find all the boxes on the board. On the other hand, the dozer needs to turn
toward and eat the boxes. This means, for an n × n board with k boxes, that
we need some fraction of n2 + 2n moves plus about 2k moves. We will err on
the side of generosity and compute moves according to Equation 12.1:

moves(n, k) =
2
3
n2 + 2(n + k), n × n board, k boxes. (12.1)

We will now do a series of 5 experiments that will give us an initial un-
derstanding of the Herbivore task and its relation to the Vacuum Cleaner
task.

Experiment 12.11 Modify your board maintenance software to permit the
eat action and the generation of random Herbivore boards. Be sure to be able
to return the number of boxes eaten; this is the fitness function. With the new
board routines debugged, use the parameters from Experiment 12.8, except as
stated below, to perform a string baseline for the Herbivore task. Use board
size n = 9 with k = 27 boxes, and do 126 moves per board. Test fitness on
20 random boards. Use strings of length 14, 42, and 126. Do 0- to q-point
mutation, where q is the string length divided by 14, and the number of point
mutations is chosen uniformly at random. Do 100 runs and save the best
strings from each of the 42-character runs in a gene pool file. Plot average
and maximum fitness as a function of time.

Now that we have a string baseline, we can do the first experiment with
adaptive structures.

Experiment 12.12 Modify the evolutionary algorithm from Experiment 12.11
to operate on ISAc lists of length 60. Evolve a population of 400 ISAc lists,
testing fitness on 100 Herbivore boards. Report fitness as the average score
per board. Use two-point crossover and from 0- to 3-point mutations, with the
number of point mutations selected uniformly at random. Do 100 runs lasting
at most 400 generations, saving the best ISAc list in each run for later use as
a gene pool. Plot the fitness as a function of the number of generations and
report the maximum fitnesses obtained. How did the ISAc lists compare with
the string baseline?

And now let’s check to see how the breeding-with-superior-genes experi-
ment works with Herbivore genes.

ISAc List: Alternative Genetic Programming 335

Experiment 12.13 Modify the evolutionary algorithm from Experiment 12.12
to read in the gene pool generated in that experiment. For initial populations,
choose 10 genes at random from the gene pool and 390 random structures.
Evolve these populations, using the same fitness evaluation as in Experiment
12.12. Report fitness as the average score per board. Do 100 runs, lasting at
most 400 generations. Plot the fitness as a function of the number of genera-
tions and report the maximum fitnesses obtained.

At this point, we will try something completely different: starting a set of
Herbivore simulations with Vacuum Cleaner genes. There are three general
outcomes for such an experiment: vacuum genes are incompetent for the Her-
bivore task and will never achieve even the fitness seen in Experiment 12.12;
vacuum genes are no worse than random, and fitness increase will follow the
same sort of average track it did in Experiment 12.12; Vacuum Cleaner com-
petence is useful in performing the Herbivore task, so some part of the fitness
track will be ahead of Experiment 12.12 and compare well with that from
Experiment 12.13.

Experiment 12.14 Redo Experiment 12.13 generating your initial popula-
tion as follows. Read in the gene pool generated in Experiment 12.9 and use 4
copies of each gene. Do not use any random genes. For each of these genes,
scan the gene for NOPs and, with probability 0.25 for each NOP, replace them
with eat actions. Stand-still actions should already use the same code as eat
actions. Do 100 runs, plotting average fitness and maximum fitness over time.
Compare with the fitness tracks from Experiments 12.12 and 12.13.

Now we look at another possible source of superior genes for the Herbivore
task: our string baseline of that task. In Problem 493, we asked you to outline
a way of turning strings into ISAc lists. We will now test one way to do that.

Experiment 12.15 Redo Experiment 12.13 with an initial population of 84-
node ISAc lists generated as follows. Read in the gene pool of length-42 strings
generated in Experiment 12.11, transforming them into ISAc lists by tak-
ing each entry of the string and making it into an ISAc node of the form
If(1 > 0)Act(string-entry), i.e., an always-true test followed by an action cor-
responding to the string’s action. After each of these string-character actions,
put a random test together with a NOP action. All JMP fields should be ran-
dom. Transform each string 4 times with different random tests together with
the NOPs. Do not use any random genes. Do 100 runs, plotting average fit-
ness and maximum fitness over time. Compare with the fitness tracks from
Experiments 12.12, 12.13, and 12.14.

We have tried a large number of different techniques to build good cow-
dozer controllers. In a later chapter, these cowdozers will become a resource
as the starting point for ecological simulations. We now move on in our explo-
ration of ISAc list robotics and work on a task that is different from Tartarus,
Vacuum Cleaner, and Herbivore in several ways. The North Wall Builder task

336 Evolutionary Computation for Modeling and Optimization

Fig. 12.6. The starting configuration and a final configuration for the North Wall
Builder task. (The stars denote uncovered squares, on which the constructor lost
fitness.)

tries to get the agent, called the constructor, to build a wall across the north
end of the trial grid.

The differences from the grid robotic tasks we have studied so far are as
follows. First, there will be a single fitness case and so no need to decide
how to sample the fitness cases. Second, the blocks are delivered to the board
in response to the actions of the constructor. Third, we remove the walls at
the edges of the world. The constructor will have the same 8 sensors that the
other grid robots had and will still detect a “2” at the edge of the world. What
changes is the result of pushing a box against the edge of the board and of a
go forward action when facing the edge of the board. A box pushed against
the edge of the board vanishes. If the constructor attempts to go forward over
the edge of the board, it vanishes, and its fitness evaluation ends early. For a
given constructor, the survival time of the constructor is the number of moves
it makes without falling off of the board.

The starting configuration and a final configuration are shown in Figure
12.6. North Wall Builder uses a square board with odd side lengths. In order
to evolve constructors that build a north wall, we compute fitness as follows.
Starting at the north edge of the board in each column, we count the number
of squares before the first box. These are called uncovered squares. The North
Wall Builder fitness function(NWB fitness function) is the number of squares
on the board minus the number of uncovered squares. The final configuration
shown in Figure 12.6 gets a fitness of 9 × 9 − 3 = 78.

The box delivery system is placed as shown in Figure 12.6, two squares
from the south wall in the center of the board along the east-west axis. It
starts with a box in place and the constructor pushes boxes as in Tartarus,
save that boxes and the constructor may fall off the edge of the board. If
the position of the box delivery system is empty (no box or constructor on

ISAc List: Alternative Genetic Programming 337

it), then a new box appears. The constructor always starts centered against
the south wall facing north toward the box delivery system. We permit the
constructor 6n2 moves on an n × n board. Having defined the North Wall
Builder task, we can begin experiments with a string baseline.

Experiment 12.16 Modify your board software to implement the rules for
the North Wall Builder task, including pushing boxes off the edge of the world,
returning a value that means that the constructor has fallen off the edge of
the world, and computing the NWB fitness function. In addition to fitness,
be sure to write the routines so that survival time is computed. Having done
this, run a string baseline experiment like Experiments 12.8 and 12.11. Use a
population of 100 strings of length 100, cycling through the strings to generate
the required number of moves. Work on a 9×9 board, allowing each constructor
486 steps. Report maximum and average fitness and survival time as a function
of generations of evolution, doing 30 runs. Add survival time as a tiebreaker
in a lexical fitness function and do 30 additional runs. Does it help?

If your string baseline for the North Wall Builder task is working the way
ours did, then you will have noticed that long survival times are somewhat
rare. In North Wall Builder, reactivity (the ability to see the edge of the world)
turns out to be quite valuable. We now can proceed to an ISAc experiment
on North Wall Builder.

Experiment 12.17 Modify the evolutionary algorithm from Experiment 12.16
to operate on ISAc lists of length 100. Evolve a population of 400 ISAc lists,
using the NWB fitness function by itself and then the lexical product of NWB
with survival time, in different sets of runs. Report mean and maximum fitness
and survival time. Use two-point crossover and 0- to 3-point mutation, with
the number of point mutations selected uniformly at random. Do 100 runs for
each fitness function, lasting at most 400 generations. Save the best ISAc list
in each run for later use as a gene pool. How did the ISAc lists compare with
the string baseline for North Wall Builder? Did the lexical fitness help? Did
it help as much as it did in the string baseline? Less? More?

What is the maximum speed at which the constructor can complete the
NWB task? In the next experiment, we will see whether we can improve the
efficiency of the constructors we are evolving by modifying the fitness function.
Suppose that we have two constructors that get the same fitness, but one puts
its blocks into their final configuration several moves sooner than the other.
The faster constructor will have more “post fitness” moves for evolution to
modify to shove more boxes into a higher fitness configuration. This suggests
that we should place some emphasis on brevity of performance.

One way to approach this is to create a time-averaged fitness function. At
several points during the constructor’s allotment of time, we stop and compute
the fitness. The fitness used for selection is the average of these values. The
result is that fitness gained as the result of block configurations that occur

338 Evolutionary Computation for Modeling and Optimization

early in time contributes more than such fitness gained later. Notice that we
presume that there are reasonable construction paths for the constructor for
which a low intermediate fitness is not required.

Experiment 12.18 Modify the software from Experiment 12.17 to use an al-
ternative fitness function. This function is the average of the old NWB fitness
function sampled at time steps 81, 162, 243, 324, 405, and 486(n2, 2n2, . . . , 6n2).
Retain the use of survival time in a lexical fitness function. Use the new fitness
function for selection.

Report the mean and maximum of the new fitness function, the old fitness
function at each of the 6 sampling points, and the survival time. Do 100 runs.
Does the new fitness function aid in increasing performance as measured by
the original fitness function? Do the data suggest an answer to Problem 525?

Problem 529 asks you to speculate on the value of a gene pool evolved for
one size of board for another size of board. We will now look at the answer,
at least for the North Wall Builder task.

Experiment 12.19 Modify the software from Experiment 12.17 to use 11 ×
11 and 13 × 13 boards. Use the gene pool generated in Experiment 12.17 for
population seeding. Create initial populations either by uniting 10 of the genes
from the gene pool, selected uniformly at random, with 390 random genes,
or by generating 400 random genes. Using the NWB fitness function lex sur-
vival time, do 100 runs for at most 400 generations for each of the two new
board sizes and for each of the initial populations. Report mean, deviation,
and maximum of fitness and survival time. Did the genes from the gene pool
help?

As has happened before, the combinatorial closure of the experiments we
could have performed is enormously larger than those we did perform. You
are encouraged to try other experiments (and please write us if you find a
good one). Of especial interest is more study of the effect that skill at one
task has on gene-pool quality for another task. This chapter is not the last
we will see of ISAc lists; we will look at them in the context of epidemiology
and ecological modeling in future chapters.

Problems

Problem 506. On page 331 it is asserted that for the Vacuum Cleaner task,
the average fitness over the set of all initial placements and headings and the
average fitness over all initial placements with a single heading are the same.
Explain why this is so.

Problem 507. For an n × n board is n2 + 2n a reasonable number of moves
for the Vacuum Cleaner task? Why or why not?

ISAc List: Alternative Genetic Programming 339

Problem 508. Short Essay. Given the way fitness is computed for the Vac-
uum Cleaner task, what use is the stand-still action? If it were eliminated,
would solutions from a evolutionary algorithm tend to get better or worse?
Explain.

Problem 509. Are the vacuum’s sensors of any use? Why or why not?

Problem 510. Would removing the walls and permitting the board to wrap
around at the edges make the Vacuum Cleaner task harder or easier? Justify
your answer in a few sentences.

Problem 511. Is the length of an ISAc list a critical parameter, i.e., do small
changes in the lengths of the ISAc lists used in an evolutionary algorithm
create large changes in the behavior of the evolutionary algorithm, on average?
Justify your answer in a few sentences.

Problem 512. For a 9 × 9 board, give an algorithm for a perfect solution
to the Vacuum Cleaner task. You may write pseudocode or simply give a
clear statement of the steps in English. Prove, probably with mathematical
induction, that your solution is correct.

Problem 513. In other chapters, we have used neutral mutations, mutations
that change the gene without changing fitness, as a way of creating population
diversity. Suppose we change all turn lefts to turn rights and turn rights to
turn lefts in an agent. If we are considering fitness computed over all possible
starting configurations, then is this a neutral mutation for (i) Tartarus, (ii)
Vacuum Cleaner, (iii) Herbivore, or (iv) North Wall Builder? Justify your
answers in a few sentences.

Problem 514. Experiment 12.11 samples 20 boards to estimate fitness. How
many boards are in the set from which this sample is being drawn?

Problem 515. Suppose instead of having walls at the edge of the board in
the Herbivore task we have the Herbivore board wrap around, left to right
and top to bottom, creating a toroidal world. Would this make the task easier
or harder? Would the resulting genes be better or worse as models of foraging
herbivores? Explain.

Problem 516. Suppose that we were to use parse trees to code cowdozers
for the Herbivore task. Let the data type for the parse trees be the integers
(mod 4) with output interpreted as 0=turn left, 1=turn right, 2=go forward,
3=eat. Recalling that 0=empty, 1=box, 2=wall, explain in plain English the
behavior of the parse tree (+ x0 2), where x0 is the front middle sensor.

Problem 517. Short Essay. How bad a local optimum does the parse tree
described in Problem 516 represent? What measures could be taken to avoid
that optimum?

340 Evolutionary Computation for Modeling and Optimization

Problem 518. Compute the expected score of the parse tree described in
Problem 516 on a 16 × 16 board with 32 boxes.

Problem 519. Give the operations and terminals of a parse tree language on
the integers (mod 4) in which the parse tree described in Problem 516 could
appear. Now write a parse tree in that language that will score better than
(+ x0 2). Show on a couple of example boards why your tree will outscore (+
x0 2). Advanced students should compute and compare the expected scores.

Problem 520. For the four grid robotics tasks we’ve looked at in this chap-
ter (Tartarus, Vacuum Cleaner, Herbivore, and North Wall Builder), rate the
tasks for difficulty (i) for a person writing a controller, and (ii) for an evo-
lutionary algorithm. Justify your answer. Is the number of possible boards
relevant? The board size?

Problem 521. Invent and describe a new grid robotics task with at least one
action not used in the grid robotics tasks studied in this chapter. Make the
task interesting and explain why you think it is interesting.

Problem 522. In Experiment 12.14, we used 4 copies each of the Vacuum
Cleaner gene pool members to create an initial population. Given the three
possible classes of outcomes (listed on page 335) among which the experiment
was attempting to distinguish, explain why we did not include random genes
in the initial population.

Problem 523. In Experiment 12.14, we tried using a Vacuum Cleaner gene
pool as a starting point for an evolutionary algorithm generating Herbivore
controllers. For each pair of the four tasks we study in this chapter, pre-
dict whether using a gene pool from one task would be better or worse than
starting with a random population for another. Give one or two sentences of
justification for each of your predictions.

Problem 524. Does using survival time in a lexical fitness for the North Wall
Builder create the potential for a bad local optimum? If so, how hard do you
estimate it is to escape and why; if not, explain why not.

Problem 525. Is the allotment of 6nn moves for a constructor to complete
the North Wall Builder task generous or tight-fisted? Why? (see Experiment
12.18)

Problem 526. Short Essay. In Experiment 12.18, we examine the use of
time-averaged fitness to encourage the constructor to act efficiently. On page
338, it is asserted that for this to help, it must be possible to reach high-fitness
configurations without intermediate low-fitness ones. In other words, fitness
should pretty much climb as a function of time. First, is the assertion correct?
Explain. Second, are there solutions to the North Wall Builder task in which
the fitness does not increase as a function of time?

ISAc List: Alternative Genetic Programming 341

Problem 527. Hand code, in the language of your choice or in pseudocode,
a perfect solution to the North Wall Builder task. Beginning students work
on a 9 × 9 board; advanced students provide a general solution.

Problem 528. A macromutation is a map that takes a gene to a single other
gene making potentially large changes. Give, in a few sentences, a method for
using gene pool members in a macromutation operator.

Problem 529. Essay. For the Tartarus, Vacuum Cleaner, Herbivore, and
North Wall Builder tasks, we can vary the board size. With this in mind,
cogitate on the following question: would a gene pool created from experiments
on one board size be a good starting point for experiments on another board
size? Feel free to cite evidence.

Problem 530. Short Essay. The four boards above are final states for the
North Wall Builder task. They came from simulations initialized with gene
pools, in the manner of Experiment 12.14. What can you deduce from these
boards about the process of evolution from a gene-pool-derived initial popu-
lation containing no random genes? Is anything potentially troublesome hap-
pening?

12.4 Return of the String Evolver

This section includes some ideas not in the main stream of the ISAc list
material, but suggested by it and valuable. Thus far, we have done several
string baseline experiments: 10.2, 10.3, 10.4, 10.5, 12.8, 12.11, and 12.16. The

342 Evolutionary Computation for Modeling and Optimization

4 experiments from Chapter 10 developed the following methodology for a
string baseline of a virtual robotics experiment.

The simplest string baseline evolves fixed-length strings of a length suffi-
cient to supply a character for each move desired in the simulation (Experi-
ment 10.2). The next step is to use shorter strings, cyclically, as in Experiment
10.3. The advantage of this is not that better solutions are available—it is el-
ementary that they are not—but rather that it is much easier for evolution
to find tolerably good solutions this way. Experiments 10.4 and 10.5 com-
bine the two approaches, permitting evolution to operate on variable-length
strings. This permits discovery at short lengths (where it is easier), followed
by revision at longer lengths, reaping the benefits of small and large search
spaces, serially.

In the baseline experiments in the current chapter, we simply mimicked
Experiment 10.3 to get some sort of baseline, rather than pulling out all
the stops and getting the best possible baseline. If your experiments went as
ours did, this string baseline produced some surprising results. The difference
between the string baseline performance and the adaptive agent performance
is modest, but significant, for the North Wall Builder task. In the Herbivore
task, the string baseline substantially outperforms the parse tree derived local
optimum described in Problem 516.

The situation for string baselines is even more grim than one might sup-
pose. In preparing to write this chapter, we first explored the North Wall
Builder task with a wall at the edge of the world, using GP automata and
ISAc lists. Much to our surprise, the string baseline studies, while worse on
average, produced the only perfect gene (fitness 81 on a 9 × 9 board). The
string baseline showed that with walls the North Wall Builder task was too
easy. With the walls removed, the adaptive agents, with their ability to not
walk off the edge of the board, outperformed our string baseline population.
This is why we present the wall-free version of the North Wall Builder task.

At this point, we will introduce some terminology and a point of view. An
agent is reactive if it changes its behavior based on sensor input. The parse
trees evolved in Experiment 10.7 were purely reactive agents. An agent is
state conditioned if it has some sort of internal state information. The test for
having internal state information is, does the same input result in different
actions at different times (neglect the effect of random numbers)? An agent
is stochastic if it uses random numbers.

Agents can have any or all of these three qualities, and all of the qualities
can contribute to fitness. Our best agents thus far have been reactive, state
conditioned, nonstochastic agents. When used individually, we find that the
fitness contributions for Tartarus have the order

reactive < stochastic < state conditioned.

In other words, purely reactive agents (e.g., parse trees with no memory of any
sort) perform less well than tuned random number generators (e.g., Markov

ISAc List: Alternative Genetic Programming 343

chains), which in turn achieve lower fitness than purely state conditioned
agents (e.g., string controllers).

Keeping all this in mind, we have clear evidence that the string baselines
are important. Given that they are also a natural debugging environment for
the simulator of a given virtual robotic world, it makes no sense not to blood
a new problem on a string baseline. In the remainder of this section, we will
suggest new and different ways to perform string baseline studies of virtual
robotics tasks.

Our first attempt to extend string controllers involves exploiting a feature
like the NOP instruction in ISAc lists. In Experiments 10.3, 10.4, and 10.5,
we tinkered with varying the length of the string with a fairly narrow list of
possibilities. The next experiment improves the granularity of these attempts.

Experiment 12.20 Start with either Experiment 12.11 (Herbivore) or Ex-
periment 12.16 (North Wall Builder). Modify the string evolver to use a string
of length 30 over the alphabet consisting of the actions for the virtual robotics
task in question, together with the null character “*”. Start with a popula-
tion of 400 strings, using the string cyclically to generate actions, ignoring
the null character. Do 100 runs and compare with the results for the original
string baseline. Plot the fraction of null actions as a function of time: are
there particular numbers of null actions that seem to be desirable? Now redo
the experiment, but with a 50% chance of a character being null, rather than
a uniform distribution. What effect does this have?

The use of null characters permits insertion and deletion, by mutation,
into existing string controllers. It is a different way of varying the length of
strings. We now will create reactive strings for the Herbivore environment
and subject them to evolution. Examine Figure 12.7. This is an alphabet in
which some characters stand for one of two actions, depending on information
available to the cowdozer’s sensors. We call a character adaptive if it codes for
an action dependent on sensory information. Nonadaptive characters include
the traditional actions and the null character from Experiment 12.20.

Experiment 12.21 Rebuild your Herbivore board routines to work with the
adaptive alphabet described in Figure 12.7, except for the null character. Run
an evolutionary algorithm operating on a population of 400 adaptive strings
of length 30, used cyclically during fitness evaluation. For fitness evaluation,
use a sample of 20 boards to approximate fitness. Use 9 × 9 Herbivore boards.
Use single tournament selection with tournament size 4, two-point crossover,
and 0- to 3-point mutation, with the number of mutations selected uniformly
at random.

Do 100 runs and compare with other experiments for the Herbivore task.
Save the fraction of adaptive characters in the population and plot this in your
write-up. Now perform these runs again with the null character enabled. Was
the effect different from that in Experiment 12.20 (assuming comparability)?

344 Evolutionary Computation for Modeling and Optimization

Character Meaning Adaptive
L Turn left No
R Turn right No
F Move forward No
E Eat No
A If box left, turn left; otherwise, go forward Yes
B If box right, turn right; otherwise, go forward Yes
C If wall ahead, turn left; otherwise, go forward Yes
D If wall ahead, turn right; otherwise, go forward Yes
Q If box ahead, eat; otherwise, go forward Yes
∗ Null character No

Fig. 12.7. Alphabet for the adaptive Herbivore string controller.

The adaptive characters used in Experiment 12.21 are not the only ones we
could have chosen. If we include failure to act, there are

(5
2

)
= 10 possible pairs

of actions. A choice could be made from each pair, based on information from
any of 8 sensors with 3 return values. One is tempted to use a metaevolutionary
algorithm to decide which adaptive characters are the most valuable (but one
refrains). Rather, we look at the preceding experiment’s ability to test the
utility of adaptive characters and note that stochastic characters can also be
defined. A stochastic character is one that codes for an action based on a
random number. In Figure 12.8, we give a stochastic alphabet.

Character Meaning Stochastic
L Turn left No
R Turn right No
F Move forward No
E Eat No
G Turn right, turn left, or go forward with equal probability Yes
H Turn right 20%, turn left 20%, go forward 60% Yes
I Turn left or go forward with equal probability Yes
J Turn right or go forward with equal probability Yes
K Turn left 30%, go forward 70% Yes
M Turn right 30%, go forward 70% Yes
∗ Null character No

Fig. 12.8. Alphabet for the stochastic Herbivore string controller.

Experiment 12.22 Rebuild your Herbivore board routines to work with the
stochastic alphabet described in Figure 12.8, except for the null character. Run
an evolutionary algorithm operating on a population of 400 adaptive strings
of length 30, used cyclically during fitness evaluation. For fitness evaluation,
use a sample of 20 boards to approximate fitness. Use 9 × 9 Herbivore boards.

ISAc List: Alternative Genetic Programming 345

Use single tournament selection with tournament size 4, two-point crossover,
and 0- to 3-point mutation, with the number of mutations selected uniformly
at random.

Do 100 runs and compare with other experiments for the Herbivore task.
Save the fraction of stochastic and of each type of stochastic characters in the
population and plot this in your write-up. Now perform these runs again with
the null character enabled. Compare with other experiments and comment on
the distribution of the stochastic characters within a given run.

We conclude with a possibly excessive experiment with a very general sort
of string controller. We have neglected using string doubling and halving mu-
tations on our adaptive and stochastic alphabets; these might make nice term
projects for students interested in low-level design of evolutionary algorithm
systems. Other more bizarre possibilities are suggested in the Problems.

Experiment 12.23 Rebuild your Herbivore board routines to work with the
union of the adaptive and stochastic alphabets described in Figures 12.7 and
12.8, except for the null character. Run an evolutionary algorithm operat-
ing on a population of 400 adaptive strings of length 30, used cyclically during
fitness evaluation. For fitness evaluation, use a sample of 20 boards to approx-
imate fitness. Use 9×9 Herbivore boards. Use single tournament selection with
tournament size 4, two-point crossover, and 0- to 3-point mutation, with the
number of mutations selected uniformly at random.

Do 100 runs and compare with other experiments for the Herbivore task.
Save the fraction of stochastic, of adaptive, and of each type of character in
the population and plot these in your write-up. Comment on the distribution
of the types of characters within a given run.

Problems

Problem 531. On page 343, it is asserted that string controllers, like those
from Experiments 10.2, 10.3, 10.4, 10.5, 12.8, 12.11, and 12.16, are purely
state conditioned agents. Explain why they are not reactive or stochastic and
identify the mechanism for storage of state information.

Problem 532. Give pseudocode for transforming adaptive string controllers,
à la Experiment 12.21, into ISAc lists with the same behavior. Hint: write
code fragments for the adaptive characters and then use them.

Problem 533. Give a segment of an ISAc list that cannot be simulated by
adaptive string controllers of the sort used in Experiment 12.21.

Problem 534. How many different adaptive characters of the type used in
Experiment 12.21 are there, given choice of actions and test conditions?

Problem 535. Give and defend an adaptive alphabet for the Tartarus prob-
lem. Include an example string controller.

346 Evolutionary Computation for Modeling and Optimization

Problem 536. Give and defend an adaptive alphabet for the Vacuum Cleaner
task. Include an example string controller.

Problem 537. Give and defend an adaptive alphabet for the North Wall
Builder task. Include an example string controller.

Problem 538. Examine the adaptive alphabet given in Figure 12.7. Given
that the Q character is available, what use is the E character? Do not limit
your thinking to its use in finished solutions; can the E character tell us
anything about the evolutionary algorithm?

Problem 539. Essay. Stipulate that it is easier to search adaptive alphabets
for good solutions, even though they code for a more limited collection of
solutions. Explain how to glean adaptive characters from evolved ISAc lists
and do so from some evolved ISAc lists for one of the virtual robotics tasks
studied in this chapter.

Problem 540. Either code the Herbivore strategy from Problem 516 as an
adaptive string controller (you may choose the length) or explain why this is
impossible.

Problem 541. Short Essay. Does the lack of stochastic actions involving
eating represent a design flaw in Experiment 12.22?

Problem 542. Give and defend a stochastic alphabet for the Tartarus prob-
lem or explain why any stochasticity would be contraindicated. Include an
example string controller if you think stochasticity could be used profitably.

Problem 543. Give and defend a stochastic alphabet for the Vacuum Cleaner
task or explain why any stochasticity would be contraindicated. Include an
example string controller if you think stochasticity could be used profitably.

Problem 544. Give and defend a stochastic alphabet for the North Wall
Builder task or explain why any stochasticity would be contraindicated. In-
clude an example string controller if you think stochasticity could be used
profitably.

Problem 545. Reread Problems 385, 409, and 411. Now reread Experiment
12.15. The thought in Experiment 12.15 was to transform a string baseline
gene into an ISAc list. In the three problems from Chapter 10, we were using
Markov chains as controllers for the Tartarus problem. Explain why a string
controller is a type of (deterministic) Markov chain. Explain how to transform
a string gene into a deterministic Markov chain that can lose its determin-
ism by mutation, sketching an evolutionary algorithm for starting with string
genes and evolving good Markov controllers.

Problem 546. Short Essay. Reread Experiment 12.22 and then answer the
following question: does a Markov chain controller ever benefit from having
more states than the number of types of actions it needs to produce? Explain.

ISAc List: Alternative Genetic Programming 347

Problem 547. Give an evolutionary algorithm that locates good adaptive or
stochastic characters. It should operate on a population of characters and a
population of strings using those characters, simultaneously, so as to avoid
using a metaevolutionary (multilevel) algorithm.

13

Graph-Based Evolutionary Algorithms

Fig. 13.1. An example of a combinatorial graph.

This chapter is in some ways a capstone chapter, pulling together prob-
lems and representations from many other chapters. In this chapter we will
use combinatorial graphs to add geographic structure to the populations be-
ing evolved. Many experiments from previous chapters will be taken up and

350 Evolutionary Computation for Modeling and Optimization

expanded. If you are unfamiliar with combinatorial graphs, you should read
Appendix D. Refer to [58] for a comprehensive treatment of graph theory. An
example of a combinatorial graph is given in Figure 13.1. The first several
experiments develop tools for assessing the geographic character of graphs.
We will place individuals on the vertices of the graph and permit mating to
take place only between individuals on vertices connected by an edge.

This is a generalization that gives a feature present in the biological world
to evolutionary algorithms. Consider a natural population of rabbits. No mat-
ter how awesome the genetics of a given rabbit, it can breed only with other
rabbits nearby. Placing the structures of our evolving population into a ge-
ography and permitting breeding only with those nearby limits the spread
of information in the form of superior genes. Single tournament selection is
already available as a method of limiting the number of children of a high-
fitness individual, but as we will see, using a graphical population structure
gives us far more flexibility than varying tournament size does. Even tour-
nament selection has a positive probability of any good gene breeding and
replacing another.

You may wonder why we wish to limit the spread of good genes. The answer
lies in our eternal quest to avoid local optima or premature convergence to a
suboptimal solution. Limiting the spread of a good structure without utterly
destroying it permits the parts of the population “far” from the good structure
to explore independently selected parts of the search space. Where a standard
evolutionary algorithm loses population diversity fairly rapidly and ends up
exploring a single sector of the fitness landscape of a problem quite soon, an
evolutionary algorithm with an imposed geography can continue to explore
different parts of the fitness space in different geographic regions.
Our primary questions in this chapter are these:

1 Does placing a combinatorial graph structure on a population ever change
performance?

2 If so, what sorts of graph structures help which problems?
3 How do we document the degree to which a given graph structure helps?

Throughout the chapter, you should think about the character of the example
problems in relation to the diversity preservation (or other effects) induced
by the use of a graph as a geographic population structure. Recall the broad
classes of problems that exist: unimodal and multimodal, optimization as op-
posed to coevolution. The long-term goal that underlies this chapter is to
obtain a theory, or at least a sense, of how the fitness landscapes of problems
interact with graphical population structures. The relationship of the exper-
iments in the chapter is given in Figure 13.2. Note the very large number of
unconnected components.

Graph-Based Evolutionary Algorithms 351

Exp 13.2

Exp 13.3

Exp 13.4

Exp 13.5 Exp 13.6

Exp 13.8

Exp 13.1

Exp 10.5

Exp 3.8 Exp 13.9

Exp 13.7

Exp 13.10

Exp 13.14

Exp 13.16

Exp 13.17

Exp 5.8

Exp 4.1

Exp 8.2

Exp 13.25 Exp 13.26

Exp 13.28 Exp 13.29

Exp 11.12 Exp 13.30

Exp 13.15 Exp 13.31

Exp 10.13 Exp 13.32

Exp 13.33

Exp 13.34 Exp 13.35

Exp 12.12 Exp 13.36

Exp 12.17 Exp 13.37

Exp 13.11

Exp 13.12

Exp 13.13Exp 2.12

Exp 7.9

Exp 7.7

Exp 6.4

Exp 13.14..13.19

Exp 13.20 Exp 13.21

Exp 11.5 Exp 13.18

Exp 11.7 Exp 13.19

Exp 13.22

Exp 13.23

Exp 13.24

Exp 9.6 Exp 13.27

1 Neutral selection on the hypercube.
2 Analysis of data from neutral-selection experiments.
3 Neutral selection on random regular graphs.
4 Graph-based evolutionary algorithms for one-max.
5 For 2-max, 4-max.
6 The Royal Road problem.
7 Tartarus using a string representation.
8 Changing population size.
9 Fake bell curve.
10 Starting with a bad initial population.
11 Functions with two optima.
12 Changing the local mating rule.
13 Self-avoiding walks.
14 String prediction with finite state machines.
15 Permutations.
16 Traveling Salesman problem.
17 Population seeding.
18 The 3-parity problem with neural nets.
19 Logic functions with connection lists.
20 Change of local mating rule.
21 Changing graphs.
22 Symbots.
23 Sunburn.
24 PORS.
25 Elite fitness
26 Absolute fitness.
27 Fake bell curve.
28 Standard tournament selection baseline.
29 Random regular graphs.
30 The 3-parity problem with genetic programming.
31 The 4-multiplex and 6-parity problems.
32 Tartarus with genetic programming.
33 Tartarus with GP automata.
34 Using a complex vertex/fitness map.
35 Varying the fitness function.
36 Herbivore.
37 North Wall Builder.

Fig. 13.2. The topics and dependencies of the experiments in this chapter.

352 Evolutionary Computation for Modeling and Optimization

13.1 Basic Definitions and Tools

We will impose a graphical structure on an evolutionary algorithm by placing
a single population member at each vertex of the graph and permitting re-
production and mating only between neighbors in the graph. (Note that this
is not the only way one could use a graph to impose a graphical geography
on an evolutionary algorithm.) Our model of evolution will need a way of
selecting a gene from the population to be a parent, a way of selecting one of
its neighbors to be a coparent, and a way of placing the children.

Definition 13.1 The local mating rule is the technique for picking a neigh-
bor in the graph with which to undergo crossover and for placing children on
the graph. It is the graph-based evolutionary algorithm’s version of a model of
evolution.

There is a large number of possible models of evolution. Not only are there
many possible local mating rules, but also, there are many methods for picking
the vertex that defines the local neighborhood. We will explore only a few of
these models. Following Chapter 2, we will define the methods for picking the
parent, locally picking the coparent, and of placing children. A local mating
rule will consist in matching up three such methods.

Definition 13.2 The second parent, picked from among the neighbors of the
first parent, is termed the coparent.

The parent may be picked by roulette, rank, random, or systematic se-
lection operating on the entire population. The first three of these methods
have the exact same meaning as in Chapter 2. Systematic selection orders
the vertices in the graph and then traverses them in order, applying a local
mating rule at each vertex. Any selection method may have deferred or im-
mediate replacement. Deferred replacement does not place any children until
coparents have been picked for each vertex in the graph, matings performed,
and children generated. The children are held in a buffer until a population
updating takes place. Deferred replacement yields a generational graph-based
algorithm. Immediate replacement places children after each application of
the local mating rule and is akin to a steady-state version of the algorithm.

Coparents may be selected (from the neighbors of the parent) by roulette,
rank, random, or absolute fitness. The first three terms again have the exact
same meaning as in Chapter 2. Absolute fitness selects the best neighbor of
the parent as the coparent.

Replacement will involve one of: the parent, parent and coparent, the
neighbors of the parent including or not including the parent. Absolute replace-
ment replaces both parent and coparent with the children. Absolute parental
replacement replaces only the parent with one of the children selected at ran-
dom. Elite parental replacement replaces the parent with one of the children
selected at random if the child is at least as fit as the parent. Elite replacement

Graph-Based Evolutionary Algorithms 353

places the best two of parent, coparent, and children into the slots formerly
occupied by the parent and coparent. Random neighborhood replacement picks
a vertex in the neighborhood of the parent (including the parent) and places
one child selected at random there. Elite neighborhood replacement picks a
vertex in the neighborhood of the parent (including the parent) and places
one child selected at random there if it is at least as good as the current occu-
pant of the vertex. Elite double neighborhood replacement picks two neighbors
at random and replaces each with a child selected at random if the child is
better.

Neutral Behavior of Graphs

Before we run evolutionary algorithms on graphs, we will develop some di-
agnostics to study the way different graphs interact with them. These diag-
nostics will approximate the amount of biodiversity and of potentially useful
mating enabled by a given graph structure. (By useful mating we mean mating
between creatures who are substantially different from each other; crossover
between similar creatures is wasted effort.) In order to study the effects of the
graph independently from the effects of the evolutionary algorithm, we will
use random selection and no variation operators. First, we need some way to
measure biodiversity and the potential for useful mating.

Definition 13.3 If we have identifiable types {1, . . . , k} in a population of N
creatures with ni creatures of type i, then the entropy of the population is

E = −
k∑

i=0

ni

N
· log2

(ni

N

)
.

If you have studied information theory, you will recognize the entropy
defined above as the Shannon entropy of the “probability” of encountering a
creature of a given type when sampling from the population. Entropy will be
our surrogate for biodiversity. It has a number of properties that make it a
good choice as a diversity measure. First of all, it increases as the number of
types of creatures increases. This makes sense: more types, more biodiversity.
The second good property is that if the number of types is fixed, then entropy
increases as the population is more evenly divided among the types. Imagine
a cornfield with one foxtail and one dandelion. Now imagine a field evenly
divided between foxtails, dandelions, and mustard plants. Both fields have 3
types of plants in them, but the second field is far more diverse. The third
desirable property of entropy is that it is independent of the total number of
creatures, and so permits comparison between populations of different sizes.

Definition 13.4 The edge of a population on a graph is the fraction of edges
with different types of creatures at their ends.

354 Evolutionary Computation for Modeling and Optimization

Evolutionary algorithms generate new solutions to a problem in three
ways. The initialization of the population is a source of new solutions, though
if initialization is random, a crummy one. Mutation generates variations of
existing solutions. Crossover blends solutions. When it works well, crossover
is a source of large innovations. An unavoidable problem with standard evolu-
tionary algorithms is that they lose diversity rapidly; soon, crossover is mostly
between creatures of the same approximate “type.” The result is that most
crossover is wasted effort. The edge of a graph is the fraction of potential
crossovers that could be innovative. Figure 13.3 shows the edge and entropy
for 5 graphs over the course of 1,000,000 mating events in a neutral selection
experiment.

Definition 13.5 A neutral selection experiment for a graph G with k ver-
tices is performed as follows. The vertices of the graph are labeled with the
numbers 1 through k in some order. Each label represents a different type of
creature. A large number of mating events are performed in which a vertex
is chosen at random, and then the label on one of its neighbors, chosen at
random, is copied over its own label. At fixed intervals, the labels are treated
as a population and the entropy and edge are computed.

Since neutral selection experiments are stochastic, typically one must av-
erage over a large number of them to get a smooth result. We will explore this
stochasticity in the first experiment of this chapter.

Experiment 13.1 For the 9-hypercube, H9, perform 5 neutral selection ex-
periments with 1,000,000 mating events and a sampling interval of 1000 mat-
ing events. The graph H9 is described in Appendix D. Graph the edge and
entropy for each of the 1000 samples taken and for each of the 5 experiments
separately. Report the number of the sampling event on which the entropy
drops to zero (one label remaining) if it does. Compare your plots with the
average, over 100 experiments, given in Figure 13.3. Comment on the degree
to which the plots vary in your write-up and compare in class with the results
of other students.

Looking at the tracks for entropy and edge from Experiment 13.1, we see
that there is a good deal of variability in the behavior of the evolution of
individual populations on a graph. Looking at Figure 13.3, we also see that
there is substantial variation in the behavior using different graphs.

Definition 13.6 An invariant of a graph is a feature of the graph that does
not change when the way the graph is presented changes, without changing the
fundamental nature of the graph.

Experiment 13.2 Write or obtain software that can gather and graph data
as in Figure 13.3. The graphs (K512, H9, T4,128, P256,1, and C512) used in this
experiment are described in Appendix D. Perform a neutral selection experi-
ment using 1,000,000 mating events with the edge and entropy values sampled

Graph-Based Evolutionary Algorithms 355

0

1

2

3

4

5

6

7

8

9

0 200 400 600 800 1000

"K512.dat"
"H9.dat"

"T4_128.dat"
"P256_1.dat"

"C512.dat"

entropy

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

"K512.dat"
"H9.dat"

"T4_128.dat"
"P256_1.dat"

"C512.dat"

edge

Fig. 13.3. Graphs showing the entropy and edge in a neutral selection experiment
for the complete graph K512, the 9-dimensional hypercube H9, the 4 × 128 torus
T4,128, the generalized Petersen graph P256,1, and the 512-cycle C512. (The plots are
averaged over 100 experiments for each graph. Each experiment performs 1,000,000
mating events, sampling the entropy and edge each 1000 mating events.)

356 Evolutionary Computation for Modeling and Optimization

Name degree diameter edges
C512 2 256 512
P256,1 3 129 768
T4,128 4 66 1024
H9 9 9 2304

K512 511 1 130,816

Table 13.1. Some graph invariants for the graphs whose neutral selection results
appear in Figure 13.3.

every 1000 mating events and averaged over 100 runs of the experiment. Test
the software by reproducing Figure 13.3.

Now rerun the software on the graphs P256,1, P256,3, P256,7, and P256,15.
Graph the entropy and edge for these 4 Petersen graphs together with C512
and K512. This experiment checks to see whether edge and entropy vary when
degree is held constant (3) and also compares them to graphs with extreme
behaviors. In your write-up, comment on the degree to which the edge and
entropy vary and on their dependence on the degree of the graph.

Experiment 13.2 leaves the number of edges the same while changing their
connectivity to provide a wide range of diameters (excluding C512 and K512
which serve as controls). The next experiment will generate graphs with the
same degree and a relatively small range of diameters. This will permit us
to check whether there is variability in neutral selection behavior that arises
from sources other than diameter.

Experiment 13.3 Write or obtain software that can generate random regular
graphs of the sort described in Definition D.22. Starting with the Petersen
graph P256,1 and making 3500 edge moves for each instance, generate at least
4 (consult your instructor) random 3-regular graphs. Repeat Experiment 13.2
for these graphs, including the C512 and K512 controls. In addition, compute
the diameter of these graphs and compare diameters across all the experiments
performed.

For the remainder of the chapter, you should keep in mind what you have
learned about neutral selection. Try to answer the following question: what, if
any, value does it have for predicting the behavior of graph-based evolutionary
algorithms?

Graph-Based Evolutionary Algorithms 357

Problems

Problem 548. List all the local mating rules that can be constructed from
the parts given in this section. Put a check mark by any that don’t make sense
and give a one-sentence explanation of why they don’t make sense.

Problem 549. For a single population in a neutral selection experiment, are
entropy and edge, as functions of time measured in mating events, monotone
decreasing? Prove your answer.

Problem 550. Examine the neutral selection data presented in Figure 13.3.
Say which of the invariants in Table 13.1 is most predictive of entropy behavior
and of edge behavior and why you think so.

Problem 551. Essay. Describe the interaction between edge and entropy. If
edge is high, is entropy decreasing faster on average than if edge is low? At
what level of entropy, on average, is it likely for edge to go up temporarily?
Can you say anything else?

Problem 552. Find a sequence of mate choices for a neutral selection exper-
iment on K5 for which the entropy stays above 1.5 forever. Do you think this
will ever happen? Why?

1:1:1

2:1

3

1

2/3

1/3

Problem 553. Consider a neutral selection experiment on K3. It starts with
distinct labels on all 3 vertices. After the first mating event, there are 2 labels
that are the same and 1 that is different. The next mating event has 1

3 chance
of making all the labels the same and 2

3 chance of leaving two labels the
same and one different. Once all the labels are the same, the system is stuck
there. This behavior, encompassing all possible histories, can be summarized
in the Markov chain diagram shown above. First convince yourself that the
probabilities given are correct for K3. Draw the equivalent diagram for K4,
using the states [1:1:1:1], [1:1:2], [1:3], [2:2], and [4].

358 Evolutionary Computation for Modeling and Optimization

Problem 554. Suppose we are performing neutral selection on Cn, the n-
cycle. Describe all possible collections of labels that can occur during the
course of the experiment.

Problem 555. Suppose that n is even and that we are running a neutral
selection experiment. For Kn, Pn

2 ,2, and Cn, consider the sets of all vertices
that have the same label. Do these collections of vertices have to be connected
in the graph? If the answer isn’t obvious, you could run simulations. The
answer should be quite obvious for Kn.

Problem 556. Extend Table 13.1 by copying the current entries and adding
the information for the Petersen graphs used in Experiment 13.2.

Problem 557. Two graphs are isomorphic if you can exactly match up their
vertices in a fashion that happens also to exactly match up their edges. Notice
that, unless two graphs have the same number of vertices and edges, they
cannot be isomorphic. For the graphs P16,n with 1 ≤ n ≤ 15, find out how
many “different” graphs there are. (Two graphs are “the same” if they are
isomorphic.)

If you are unfamiliar with graph theory, this is a very difficult problem;
so here are four hints. First, consider equivalence of numbers (mod 16). If
you go around the inner circle of the Petersen graph by jumps of size one to
the left or right, you still draw the same edges, and so pick up some obvious
isomorphisms with which to start. Second, remember that isomorphism is
transitive. Third, isomorphism preserves all substructures. If we have a closed
cycle of length 4 in one graph and fail to have one in another, then they cannot
be isomorphic. Fourth, notice that isomorphism preserves diameter.

Problem 558. Compute the diameters of P256,k for 1 ≤ k ≤ 255. What are
the maximum and the minimum, and how do these numbers reflect on the
choice of the 4 Petersen graphs in Experiment 13.2?

Problem 559. Generate 1000 graphs of the sort used in Experiment 13.3.
For the diameters of these graphs, make a histogram of the distribution and
compute the mean, standard deviation, minimum value, and maximum value.
Finally, compare these with the results of Problem 558. Are the Petersen
graphs representative of cubic graphs?

Problem 560. Suppose that we adopt an extremely simple notion of connec-
tivity: the fraction of edges a graph has relative to the complete graph. Thus,
C5 has a connectivity of 0.5, while K5 has a connectivity of 1.0. Answer the
following questions:

(i) What is the connectivity, to 3 significant figures, of the 5 graphs used to
generate Figure 13.3?

(ii) Approximately how many graphs are there with connectivity intermediate
between H9 and K512?

Graph-Based Evolutionary Algorithms 359

(iii) In what part of the range of connectivities from 0 to 1 is most of the
variation in neutral selection behavior concentrated?

Problem 561. Suppose you have a random graph with edge probability
α = 0.5 (for all possible edges, flip a fair coin to see whether the edge is
present). Compute, as a function of the number n of vertices in the graph, the
probability that it will have diameter 1.

Problem 562. Essay. Modify the code you used in Problem 559 to report
whether the graph is connected (see Definition D.7). What fraction of graphs
were connected? Now perform the experiment again starting with C512 instead
of P256,1 and find what fraction of the graphs are connected. Explain the
results.

13.2 Simple Representations

In this section, we will examine the effects of imposing a geography using
graphs on the simplest of evolutionary algorithms, those with data structures
of fixed-sized strings or vectors of real numbers. The initial work will be a
comparison of the 1-max problem and one of its variations, called the k-max
problem.

Definition 13.7 The k-max fitness function Fk-max maps strings of length l
over a k-member alphabet to the count of their most common character. Thus,
F2-max(0110100100110) = 7, while F5-max(ABBCCCDDDDEEE) = 4.

The advantage of the k-max problem is that it is constructively polymodal.
This permits us to compare the 1-max problem, a completely unimodal prob-
lem, with a number of constructively polynomial problems with a very similar
character. Let us start by doing an experiment that baselines the behavior of
graph-based evolutionary algorithms on the 1-max problem.

Experiment 13.4 For the 5 graphs K512, H9, T4,128, P256,3, and C512, us-
ing random selection of the parent, roulette selection of the coparent, and
immediate elite replacement of the parent by the better child, run a graph-
based evolutionary algorithm on the 1-max problem over the binary alphabet
with length 16. Use two-point crossover and single-point mutation. In addi-
tion, run a baseline evolutionary algorithm on the 1-max problem using single
tournament selection with size 4.

For each of the 6 evolutionary algorithms, save time-to-solution (cutting
off algorithms at 1,000,000 mating events) for 100 runs of each algorithm.
Give a 95% confidence interval for the mean time-to-solution for each algo-
rithm. Discuss which graphs are superior or inferior for the 1-max problem
and compare with the single tournament selection baseline.

360 Evolutionary Computation for Modeling and Optimization

The 1-max problem has two distinct evolutionary phases. In the first,
crossover mixes and matches blocks of 1’s and can help quite a lot. In the
second, a superior genotype has taken over, and we have 0’s in some positions
throughout the population, forcing progress to rely on mutation. In this latter,
longer phase, the best thing you can do is to copy the current best structure
as fast as possible. The dynamics of this second phase of the 1-max problem
suggest that more connected graphs should be superior.

Experiment 13.5 Repeat Experiment 13.4 for the 2-max problem and for
the 4-max problem. The fitness function changes to report the largest number
of any one type of character, first over the binary alphabet and then over the
quaternary alphabet. Compare results for 1-max, 2-max, and 4-max.

The Royal Road function (see Section 2.5) is the standard “hard” string
evolver problem. Let’s use it to explore the effects of varying the mutation
rate (which we already know is important) with the effects of changing the
graph used.

Experiment 13.6 Repeat Experiment 13.4 for the classic Royal Road prob-
lem (l = 64 and b = 8) or for l = 36, b = 6, if the run time is too long on
the classic problem. Do 3 groups of 6 collections of 100 runs, using each of
the following mutation operators: one-point mutation, probabilistic mutation
with rate one, and probabilistic mutation with rate two. Compare the effects
of changing graphs with the effects of changing mutation operators.

There is no problem with running Experiments 13.4, 13.5, and 13.6 as
steady-state algorithms. A Tartarus-type problem in which we are sampling
from among many available fitness cases, requires a generational algorithm.
The following experiment thus uses deferred replacement.

Experiment 13.7 Create a generational graph-based evolutionary algorithm
(one using deferred replacement) to evolve string controllers for the Tartarus
problem. We will use variable-length strings and the gene-doubling and gene-
halving operators described in Section 10.1. The initial population and vari-
ation operators are as in Experiment 10.5. Test fitness on 100 random 6 × 6
Tartarus boards with 6 boxes. Use the same graphs that were used in Exper-
iment 13.4. The algorithm will visit each vertex systematically as a parent.
Select the coparent by roulette selection and use absolute replacement.

Baseline the experiment with an evolutionary algorithm using size-4 tour-
nament selection. Perform 100 runs of length 200 generations and compare
average and best results of all 6 sets of runs. If possible, apply knowledge about
what strings are good from Chapter 10 to perform a qualitative assessment of
the algorithm.

Another issue that is worth examining is that of population size.

Graph-Based Evolutionary Algorithms 361

Experiment 13.8 Redo Experiment 13.6 with the following list of graphs:
P2n,3, n = 4, 6, 8, and 10. Run a steady-state algorithm and measure time-
to-solution in mating events. Use the data you already have from n = 8 to
establish a time after which it would be reasonable to give up. Compare across
population sizes and, if time permits, fill in more points to document a trend.

We now turn to the problem of real function optimization with graph-based
algorithms, beginning with the numerical equivalent of the 1-max problem,
the fake bell curve.

Experiment 13.9 For the 5 graphs K512, H9, T4,128, P256,3, and C512, us-
ing roulette selection of the parent, rank selection of the coparent, and elite
replacement of the parent by the better child, run a graph-based evolutionary
algorithm to maximize the function

f(x1, x2, . . . , x8) =
1

1 +
∑8

i=1(x − i)2
.

Use one-point crossover and Gaussian mutation with standard deviation σ =
0.1. Generate the initial population by selecting each coordinate uniformly at
random from the integers 0 to 9. The function given is a shifted version of the
fake bell curve in 8 dimensions.

Run a baseline evolutionary algorithm using single tournament selection
with tournament size 4 as well. For each of the 6 evolutionary algorithms,
save time-to-solution (cutting off algorithms at 1,000,000 mating events) for
100 runs of each algorithm. Take a functional value of 0.999 or more to be a
correct solution. Give a 95% confidence interval for the mean time-to-solution
for each algorithm. Discuss which graphs are superior or inferior and compare
with the single tournament selection baseline.

Even in 8 dimensions, random initialization of 512 structures will yield
some fairly good solutions in the initial population. It would be nice to doc-
ument whether mutational diversity can build up good solutions where none
existed before and then later recombine good pieces from different parts of a
diverse population. We will perform an experiment that attempts to do this
by starting with a uniformly awful population.

Experiment 13.10 Perform Experiment 13.9 again, but this time initializ-
ing all creatures to the point (0, 0, 0, 0, 0, 0, 0, 0). Compare with the previous
experiment. Did the ordering of the graphs’ performances change?

For the next experiment, we will use the function,

f(x, y) =
3.2

1 + (40x − 44)2 + (40y − 44)2
+

3.0
1 + (3x − 5.4)4 + (3y − 5.4)4

,

(13.1)
constructed to have two optima, one very near (1.1, 1.1) and the other very
near (1.8, 1.8). The former is the global optimum, while the latter is broader
and hence much easier to find.

362 Evolutionary Computation for Modeling and Optimization

Experiment 13.11 Using the graphs K32, H5, T4,8, P16,3, and C32, write or
obtain software for a graph-based evolutionary algorithm to maximize Equation
13.1. Use roulette selection of the parent and rank selection of the coparent,
absolutely replacing the parent with the first child. Use exchanging x and y
coordinates as the crossover operator and use crossover 50% of the time. Use
single-point mutation with a Gaussian mutation with variance σ = 0.1 100%
of the time. For each graph, run a steady-state algorithm until a population
member first comes within d = 0.001 of either (1.1, 1.1) or (1.8, 1.8). Discuss
which graphs are better at finding the true optimum at (1.1, 1.1). If this ex-
periment is done by an entire class, compare or pool the results for random
graphs.

Experiment 13.12 Repeat Experiment 13.11, but change the local mating
rule to (i) random selection of the parent and rank selection of the coparent,
and then to (ii) systematic selection of the parent and rank selection of the
coparent. Compare the local mating rules and document their impact (or lack
of impact).

Experiment 13.11 tests the relative ability of graphs to enable evolutionary
search for optima. Function 13.1, graphed in Figure 13.4, has two optima.
The local optimum is broad, flat, and has a large area about it. The global
optimum is much sharper and smaller. Let’s move on to a complex and very
highly polymodal fitness function: the self-avoiding walks from Section 2.6.

Experiment 13.13 Modify the graph-based string evolver to use the coverage
fitness function for walks on a 5 × 5 grid, given in Definition 2.16. Use two-
point crossover and two-point mutation. Compute the number of failures to
find an answer in less than 250,000 mating events for each of the following
graphs: K256, H8, T4,64, T8,32, T16,16, P128,1, P128,3, P128,5, and C256. Give
a 95% confidence interval on the probability of failure for each of the graphs.
Also run a size-4 tournament selection algorithm without a graph as a baseline.
Are there significant differences?

The k-max problem has several optima with large basins of attraction and
no local optima which are not global optima. The coverage fitness for walks
has thousands of global optima and tens of thousands of local optima. The
basins of attraction are quite small. The value of diversity preservation should
be much greater for the coverage fitness function than for the k-max fitness
function. Be sure to address this issue when writing up your experiments.

Problems

Problem 563. Clearly, the optima of the k-max problem are the strings with
all characters the same, and so the problem has k optima. Suppose, for each
optimum, we define the basin of attraction for that optimum to be strings that
go to that optimum under repeated application of helpful mutation (mutating

Graph-Based Evolutionary Algorithms 363

1
1.2

1.4
1.6

1.8
2

2.2
2.4 1

1.2
1.4

1.6
1.8

2
2.2

2.4

0

0.5

1

1.5

2

2.5

3

3.5

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2 1
1.02

1.04
1.06

1.08
1.1

1.12
1.14

1.16
1.18

1.2

0

0.5

1

1.5

2

2.5

3

3.5

Fig. 13.4. Function 13.1 showing both optima and a closeup of the true optimum.

364 Evolutionary Computation for Modeling and Optimization

a character not contributing to fitness into one that does). For k = 2, 5 and
l = 12, 13, compute the size of the basin of attraction for each optimum (they
are all the same) and the number of strings that are not in any basin of
attraction.

Problem 564. The optima of the k-max problem are all global optima; they
all have the same fitness value, and it is the highest possible. Come up with
a simple modification of the k-max problem that makes the optima have
different heights.

Problem 565. Explain why running a graph-based evolutionary algorithm
for Tartarus with evaluation on 100 randomly chosen boards should not be
done as a steady-state algorithm.

Problem 566. Suppose that you have a problem for which you know that
repeated mutation of a single structure is not as good as running an evo-
lutionary algorithm with some population size n > 1. If you are running a
steady-state algorithm and measuring time-to-solution (or some other goal)
in mating events, then prove that there is a population size such that increas-
ing the population beyond that size is not valuable.

Problem 567. In Experiment 13.11, the graphs use a much smaller popula-
tion than in other experiments in the section. Why? Explain in a few sentences.

Problem 568. For Function 13.1, perform the following computations. Place
a 200 × 200 grid on the square area with corners at (0, 0) and (3, 3). For each
grid cell start at a point in the center of the grid cell. Use a gradient follower
with a small step size to go uphill until you reach a point near one of the two
optima. This means that you repeatedly compute the gradient and then move
a small distance in that direction, e.g., 0.003 (1/1000 the side length of the
search grid). The grids that move to a given optimum are in its gradient basin
of attraction. What is the relative size of the gradient basins of attraction of
the two optima? For a discussion of the gradient, see Appendix C.

Problem 569. Explain how to generalize Function 13.1 to n dimensions.

Problem 570. Essay. Would you expect the population diversity of a graph-
based evolutionary algorithm to be greater or smaller than the population
diversity of a standard evolutionary algorithm.

Problem 571. Short Essay. A thought that occurs quite naturally to read-
ers of this book is to evolve graphs based on their ability to help solve a
problem. Discuss this idea with attention to (i) how to represent graphs and
(ii) time complexity of the fitness evaluation for graphs.

Problem 572. Short Essay. Reread Experiments 13.9 and 13.10. Now sup-
pose you are attacking a problem you do not understand with graph-based
algorithms. One danger is that you will place your initial population in a very

Graph-Based Evolutionary Algorithms 365

small portion of the search space. Does Experiment 13.10 give us a tool for
estimating the cost of such misplacement? Answer the question for both string
and real number representations (remember the reach of Gaussian mutation).

Problem 573. Essay. Assume the setup used in Experiment 13.6, but with
far more graphs. Suppose that you order the graphs according to mean time-
to-solution. Changing the mutation operator changes mean time-to-solution.
Must it preserve the order of the graphs? In your essay, try to use the notion
of fitness landscape and the interaction of that fitness landscape with the gene
flow on the graph.

Problem 574. Essay. In this section, we have been testing the effect of
changing graphs on the behavior of a graph-based evolutionary algorithm.
Can graphs themselves be used as probes for that type of problem? If not,
why? If so, how?

Problem 575. For the experiments you have performed in this section, order
the graphs within each experiment by the rule G > H if the performance of G
on the problem is significantly better than the performance of H. Give these
partial orders; if you have performed more than one experiment, comment on
the differences between the orders.

13.3 More Complex Representations

Simple representations with linear chromosomes, such as those used in Section
13.2, have different evolutionary dynamics from more complex representations,
like those used in Chapters 6–10 and Chapter 12. In this section, we will
examine the behavior of some of these systems in the context of GBEAs
(graph-based evolutionary algorithms).

In the remainder of this chapter, we will try to control for degree versus
topology in the graphs we use by using random regular graphs. We used these
graphs in Experiment 13.3. They are described in Appendix D, but we will
briefly describe them again here. The technique for producing random regular
graphs is not a difficult one, and it generalizes to many other classes of random
object generation problems.

The task is to generate a random member of a class of objects. The tech-
nique is to find a random transformation that makes a small modification in
the object (so that the modified object is still in the class), very like a mu-
tation. As with mutations, we need the transformation to have the property
that any object can be turned into any other eventually. We start with any
member of the class and make a very large number of transformations, in ef-
fect randomly walking it through the object configuration space. This results
in a “random” object. Since we want to generate random regular graphs with
the same degree as the ones in our other experiments, we use the graphs from
the other experiments as starting points.

366 Evolutionary Computation for Modeling and Optimization

Fig. 13.5. The edge swap operation. (Solid lines denote present edges; dotted lines
denote absent edges.)

The transformation used to generate random regular graphs is the edge
swap, illustrated in Figure 13.5 and performed in the following manner. Two
edges of the graph are located that have the property that they are the only
two edges with both ends in the set of 4 vertices that constitute their ends.
Those two edges are deleted, and two other edges between the 4 vertices are
added. This transformation preserves the degree of the graph while modifying
its connectivity.

One point should be made about using random regular graphs. There
are an incredible number of different random regular graphs for each degree
and number of vertices, as long as there are at least a few tens of vertices.
This means that the random regular graph generation procedure is sampling
from some distribution on a space of graphs. So what? So, it’s important to
generate the random regular graphs before performing multiple experimental
runs and to remember that you are performing experiments on instances of a
family of graphs. When pooling class results, you may notice large variations
in behavior based on which random graphs were used. There are some really
good and some really bad random regular graphs out there.

Experiment 13.14 Review Experiment 6.4, in which we used a lexical part-
ner to enhance performance of a finite state automaton on a string prediction
task. Redo this experiment as a baseline, and then, using the same fitness
function and representation for finite state automata, perform the experiment
as a graph-based algorithm. Use the following graphs: K120, P60,1, P60,7, T8,15,
C120, and 3 instances of random regular graphs derived from P60,1 and T8,15
using twice as many edge swaps as there are edges in a given graph. Use
random selection for the parent and roulette selection for the coparent, and
use automatic, immediate replacement of the parent with the better of the two
children produced. Comment on the impact of the graphs used. Is there much
variation between graphs of the same degree? Does the use of graphs increase
or decrease the impact of the lexical partner function?

Experiment 13.14 covers a lot of territory. The graphs may enhance the
performance of the lexical partner function or retard it; this effect may not be
uniform across graphs. The choice of graph in a GBEA is a very complex sort

Graph-Based Evolutionary Algorithms 367

of “knob,” more complex than the mutation rate or population size, but still
a parameter of the algorithm that can be tuned. More complex issues, such
as the impact of graphs on coevolution, we defer to the future.

Definition 13.8 A partial order is a binary relation ≤ on a set S with the
following 3 properties:

(i) for all a ∈ S, a ≤ a,
(ii) for all a, b ∈ S, a ≤ b and b ≤ a implies a = b, and
(iii) for all a, b, c ∈ S, a ≤ b and b ≤ c implies a ≤ c.

These 3 properties are called the reflexive, antisymmetric, and transi-
tive properties, respectively. Divisibility is a partial ordering of the positive
integers.

Definition 13.9 The performance partial order of a set of graphs on
a problem for a given GBEA is a partial ordering of graphs in which G ≤
H if the time-to-solution using G is significantly less than H. In this case,
“significantly” implies a statistical test such as disjoint confidence intervals
for time-to-solution.

In theory, crossover is putting pieces together, while mutation is tweaking
existing pieces and, at some rate, generating new pieces. In evolving ordered
structures (Chapter 7), the nature of the pieces is less clear than it is in a
problem with a simple linear gene. Let’s check the impact of GBEAs on a
couple of ordered gene problems.

Experiment 13.15 Modify the software used in Experiment 7.7 to run as
a GBEA and also compare the standard and random key encodings. Use the
same graphs and graph algorithm settings as in Experiment 13.14. For each
representation, give the performance partial order for 95% confidence intervals
on time-to-solution. What is the impact of the graphs on maximizing the order
of permutations?

And now on to the Traveling Salesman problem. This problem has the
potential for segments of a given tour to be “building blocks” that are mixed
and matched. This, in turn, creates room for graphs to usefully restrict infor-
mation flow as good segments are located.

Experiment 13.16 Redo Experiment 7.9 as a GBEA; use only the random
key encoding. Use the same graphs and graph algorithm settings as in Exper-
iment 13.14. If your instructor thinks it’s a good idea, run more cases of the
Traveling Salesman problem from those given in Chapter 7. Give the perfor-
mance partial order on 95% confidence intervals for time-to-solution. What
is the impact of the graphs on the given examples of the Traveling Salesman
problem?

Since graphs restrict information flow, population seeding may interact
with GBEAs to yield novel behavior. Review Algorithms 7.1 and 7.2 in Chap-
ter 7.

368 Evolutionary Computation for Modeling and Optimization

Experiment 13.17 Redo Experiment 13.16 but with population seeding. Do
3 sets of runs. In the first, put a tour generated with Algorithm 7.1 on a vertex
5% of the time. In the second, put a tour generated with Algorithm 7.2 on a
vertex 5% of the time. In the third, use both heuristics, each on 5% of the
vertices. Give the performance partial order on 95% confidence intervals for
time-to-solution. What is the impact of the 3 population seeding methods?

In Chapter 11, we studied a number of representations for evolving logic
functions. Let’s check the impact of adding graphs to the experiments using
a couple of these representations (the direct representation and connection
lists). First, let’s add graphs to the experiment using a direct representation.

Experiment 13.18 Review Experiment 11.5. For the 3-input parity problem
only, redo the experiment as a GBEA, using the graphs and graph algorithm
parameters from Experiment 13.14. Give the performance partial order for
95% confidence intervals on time-to-solution. What impact does the use of
graphs have on this logic function evolution problem?

Now let’s add graphs to the experiment using a connection list represen-
tation. Since this is a substantially different representation, it may behave
differently.

Experiment 13.19 Review Experiment 11.7. For the 3-input parity problem
only, redo the experiment as a GBEA, using the graphs and graph algorithm
parameters from Experiment 13.14. What impact does the use of graphs have
on this logic function evolution problem? Compare the results with those from
Experiment 13.18.

This section draws on material from many previous chapters. Prior to this,
we have studied interactions of the underlying problem we are trying to solve
with the choice of variation operators. In Chapter 3, we argued that these
variation operators create the connectivity between values of the independent
variable, while the fitness function computes the dependent variable: the fit-
ness of a point in the search space. With GBEAs we add another element of
complexity to the system: interaction with the graph-based geography. That
geography controls the spread of information both by the nominal connectivity
of the graph and by the choice of local mating rule.

Given the number of design features available (representation, fitness func-
tion(s), choice of variation operators, rate of application of those operators,
model of evolution, and now choice of graph), a coherent, predictive theory of
behavior for a GBEA system seems distant. Until someone has a clever idea,
we must be guided by rules of thumb and previous experience with similar
experiments. Thus far in this chapter we have simply reprised various exper-
iments from previous chapters to assess the impact of using graphs. We have
not yet explored the effect of the local mating rule.

Graph-Based Evolutionary Algorithms 369

Experiment 13.20 Pick one or more experiments in this section that you
have already performed. Modify the local mating rule to use elite rather than
absolute replacement and perform the experiment(s) again. What is the im-
pact? Does it change the relative impact of the graphs?

Experiment 13.20 tests what happens when a GBEA changes its local mat-
ing rule. Experiment 13.8 tested what happened when we changed population
size while leaving the graph as close to the same as possible.

Experiment 13.21 Pick one or more experiments in this section that you
have already performed. Perform it again using the graphs Tn,m for the fol-
lowing values of n and m: 5, 24; 6, 20; 8, 15; 10, 24; 12, 20; 16, 15; 10, 48; 12, 40;
and 16, 30. What has more impact, shape or population size? Time should
be measured in mating events, so as to fairly compare the amount of effort
expended.

Chapter 5 demonstrated that we could obtain fairly complex behavior from
very simple structures (symbots). Review Experiment 5.8, in which we tested
the effect of various types of walls on symbots trying to capture multiple
sources. In the next experiment, we will test the impact of different graphs on
the ability to adapt to those walls.

Experiment 13.22 Rebuild Experiment 5.8 as a GBEA using random selec-
tion of the parent and roulette selection of the coparent with absolute replace-
ment of the parent by a randomly selected child. Test the original algorithm
against the graph-based algorithm with the graphs C256, T16,16, and H8. Are
different graphs better for different types of walls?

So far, we have not experimented with competing populations on a graph.
Let’s draw on the Sunburn model from Chapter 4 for a foray in this direction.

Experiment 13.23 Implement or obtain software for the following version
of the Sunburn evolutionary simulator. Use a graph topology to control choice
of opponent. Choose a first ship at random and one of its neighbors at random.
Permit these two ship designs to fight. If there is no victor, repeat the random
selection until a victor arises. Now pick a neighbor of the losing ship and one
of its neighbors. Permit these ships to fight. If there is not a victory, then
pick a neighbor of the first ship picked in the ambiguous combat and one of its
neighbors and try again until a victory is achieved. The victors breed to replace
the losers, as before. Notice that the graph is controlling choice of opponent
and, to a lesser degree, choice of mating partner.

Perform 100 standard Sunburn runs and 100 graph-based Sunburn runs for
the graphs C256, T16,16, and H8. Randomly sampling from final populations,
compare opponents drawn from all 6 possible pairs of simulations. Is there any
competitive edge created by constraining the topology of evolution with graphs?

The material covered in this section gives a few hints about the richness of
interactions between graphs and evolutionary computation. Students looking

370 Evolutionary Computation for Modeling and Optimization

for final projects will ideas here. In Experiment 13.17, we introduced yet
another parameter for population seeding, the rate for each heuristic used.
Further exploration of that is not a bad idea. Experiment 13.23 opens a very
small crack in the door to a huge number of experiments on the impact of
graphs on competing populations.

Problems

Problem 576. The graphs used in the experiments thus far have had degree
2, 3, 4, log2(n), and n − 1, where n is the population size. Give constructions
for an infinite family of graphs of degrees 5, 6, and 7.

Problem 577. Suppose that we have a graph on n vertices created by flipping
a coin for each pair of vertices and putting an edge between them if the coin
shows heads. Compute the probabilities, as a function of n, that such a graph
has diameter 1, 2, and more than 2.

Problem 578. Suppose we are generating random regular graphs of degrees 2
and 3 starting with C400 and P200,1, respectively. Experimentally or logically,
estimate the probability that a given random regular graph will be connected.

Problem 579. If we generate a random regular graph, and by accident, it
is not a connected graph, does this cause a problem? Why? Is the answer
different for different problems?

Problem 580. In the definition of partial order, divisibility of the positive
integers was given as an example. Prove that divisibility on the positive in-
tegers is a partial order (by checking properties (i)–(iii)) and also show that
divisibility does not partially order the nonzero integers.

Problem 581. Does the relationship “s is a prefix of t” on strings form a
partial order? Prove your answer.

Problem 582. A total order is a partial order with the added property that
every pair of elements can be compared, e.g., the traditional operation < on
the real numbers. What prevents the performance partial order from being a
total order?

Problem 583. Reread Problem 582 and give 3 examples of total orders, in-
cluding a total order on the set of complex numbers.

Problem 584. Verify that the performance partial order is, in fact, a partial
order. This is done by checking properties (i)–(iii).

Problem 585. For Experiments 13.14–13.19, decide whether it possible to
compute the edge and entropy of the graphs as we did in the neutral graph
behavior experiments in Section 13.1. What is required to be able to make
these computations?

Graph-Based Evolutionary Algorithms 371

Problem 586. Compute the diameter of Tn,m, the n × m torus.

Problem 587. Compute the diameter of Hn, the n-hypercube.

Problem 588. What is the smallest number of edges that can be deleted
from the 5-hypercube to drive the diameter to exactly 6?

Problem 589. The operation simplexification is described in Appendix D.
We can create graphs with degree n by starting with Kn+1 and simplexifying
vertices. For n = 3, 4, 5, determine what population sizes are available, by
starting with a complete graph and repeatedly simplexifying vertices.

Problem 590. Reread Problem 589. Would graphs created by simplexifica-
tion behave differently from other graphs used in this section in a GBEA?

Problem 591. Essay. The list of graphs used in this chapter is modest. Pick
and defend a choice of graph for use with the Traveling Salesman problem. An
experimental defense is time-consuming, but superior to a purely rhetorical
one.

Problem 592. Essay. The list of graphs used in this chapter is modest. Pick
and defend a choice of graph for use with the 3-input parity problem. An
experimental defense is time-consuming, but superior to a purely rhetorical
one.

Problem 593. Essay. A lexical fitness function seeks to smooth the land-
scape of a difficult fitness function by adding a tie-breaker function that points
evolution in helpful directions. A graph-based algorithm breaks up a popula-
tion, preventing an early good gene from taking over. Do these effects interfere,
reinforce, or act independently?

Problem 594. Essay. The ordered sequence of degrees, the number of ver-
tices, and number of edges in the graph are all examples of invariants. Choose
the invariant that you think most affects performance in an experiment you
have performed. Defend your choice.

Problem 595. Essay. The use of crossover is controversial. At one extreme,
people claim that the ability to mix and match building blocks is the key one;
at the other extreme, people claim that crossover is unnecessary and even
counterproductive. Since both sides have experimental evidence in favor of
their assertions, the truth is almost certainly that crossover is only helpful
when there are building blocks to be mixed and matched and is potentially
very helpful then. Question: given what you have learned from the experi-
ments in this chapter, can the behavior of a problem for graphs of different
connectivities be used as a probe for the presence of building blocks? Good
luck; this is a hard question.

372 Evolutionary Computation for Modeling and Optimization

13.4 Genetic Programming on Graphs

The most complex representations we have examined have been various differ-
ent genetic programming representations including parse trees, GP automata,
and ISAc lists. In this section, we will check the impact of graphs on solv-
ing problems using these representations. The simplest genetic programming
problem available is the PORS problem from Chapter 8. Review the PORS
problem and Experiments 8.2–8.4. Let’s check the impact of graphs on the
three classes of PORS trees.

Experiment 13.24 Build or obtain software for a graph-based evolutionary
algorithm to work with the PORS problem. Use random selection of the par-
ent and roulette selection of the coparent, with elite replacement of the parent
with the better of the two children. Use subtree mutation 50% of the time and
subtree crossover 50% of the time, with the 50% chances being independent.
Use the graphs C720, P360,1, P360,17, T4,180, T24,30, H9, modified by simplexi-
fying 26 randomly selected vertices, and K512. Simplexification is described in
Appendix D. Be sure to create these graphs once and save them, so that the
same graph is used in each case.

Do 400 runs per graph for the Efficient Node Use problem on n = 14, 15,
and 16 nodes. Document the impact of the graphs on time-to-solution with
95% confidence intervals. Do any of the graphs change the relative difficulty
of the three cases of the PORS problem?

We have not explored, to any great extent, the impact of local mating rules
on the behavior of the system. Experiment 13.24 uses a very extreme form
of local mating rule that insists on improvement before permitting change
and which refuses to destroy a creature currently being selected with a fitness
bias (the coparent). Let’s check the impact of protecting the coparent in this
fashion.

Experiment 13.25 Modify Experiment 13.24 to use elite replacement of par-
ent and coparent by both children. Of the 4 structures, the best two take the
slots occupied by the parent and coparent. Compare the results to those ob-
tained in Experiment 13.24.

Elitism amounts to enforced hill climbing when used in the context of local
mating rules. Different regions of the graph may be working on different hills.
If a given problem has local optima or other traps, then this hill climbing may
cause problems. On the other hand, the boundary between subpopulations on
distinct hills may supply a source of innovation. Let’s do the experiment.

Experiment 13.26 Modify Experiment 13.24 to use absolute replacement of
parent and coparent by both children. Compare the results to those obtained
in Experiments 13.24 and 13.25. Is the impact comparable on the different
PORS problems?

Graph-Based Evolutionary Algorithms 373

The PORS problem is very simple and highly abstract. Fitting to data,
i.e., using genetic programming to perform symbolic regression, is less simple
and a good deal more abstract. In Experiment 9.5, we found that it is not
difficult to perform symbolic regression to obtain formulas that accurately
interpolate points drawn from the fake bell curve

f(x) =
1

x2 + 1
.

Let’s see whether time-to-solution or the rate of accurate solutions can be
increased with a GBEA.

Experiment 13.27 Rebuild Experiment 9.6, symbolic regression to samples
taken from the fake bell curve, as a GBEA. Use random selection for the
parent and roulette selection for the coparent and absolute replacement of the
parent by the better child. Also, perform baseline studies that use tournament
selection. For each graph, perform tournament selection with tournament size
equal to the graph’s degree plus one. Don’t use normal tournament selection;
rather, replace the second-most-fit member of the tournament with the best
child. This makes the tournament selection as similar as possible to the local
mating rule, so that we are comparing graphs to mixing at the same rate
without the graph topology. Use the graphs C512, P256,7, T16,32, and H9.

Perform 400 runs per graph. Determine the impact both by examining the
number of runs that find a correct solution (squared error less than 10−6 over
the entire training set) and by examining the time-to-solution on those runs
that achieve a correct solution.

The somewhat nonstandard tournament selection used in Experiment
13.27 is meant to create amorphous graph-like structures that have the same
degree but constantly moving edges. This controls for the effect of degree as
opposed to topology in another way than using random regular graphs. It
does not exactly compare normal tournament selection to a GBEA. It’s also
not clear that it’s the “right” control.

Experiment 13.28 Perform Experiment 13.27 again, but this time use stan-
dard tournament selection of the appropriate degree (reuse your graph results).
Compare the results with both the graphs and the nonstandard tournaments
from the previous experiment.

To complete the sweep of the controls for degree versus connectivity in the
graphs, let’s perform the experiment again with random regular graphs.

Experiment 13.29 Perform an extension of Experiment 13.27 as follows.
Pick the best- and worst-performing graphs and generate 5 random regular
graphs of the same degree using twice as many edge swaps as there are edges
in the graphs. Run the GBEA again with these graphs. Does this control for
degree versus topology have a different effect than the one used in Experiment
13.27?

374 Evolutionary Computation for Modeling and Optimization

We have already reprised the neural net 3-input parity problem from Chap-
ter 11 in Section 13.3. Evolving a parity function is one of the standard test
problems in evolutionary computation. Let’s take a look at the problem using
genetic programming techniques.

Experiment 13.30 Rebuild Experiment 11.12 to run as a GBEA. Use two
local mating rules: roulette selection of the parent and coparent, with absolute
replacement of both parent and coparent; random selection of the parent and
rank selection of the coparent with absolute replacement of both parent and
coparent. Use the graphs C720, P360,1, P360,17, T4,180, T24,30, and K720. For
each graph and local mating rule, perform 400 evolutionary runs. Compare the
performance of the different graphs. Were different graphs better for the AND
and parity problems?

Another common target problem for evolutionary computation is the mul-
tiplexing problem. The 2n multiplexing problem takes 2n data inputs and n
encoding inputs. An encoding input is interpreted as a binary integer that
selects one of the data inputs. The output is set to the value of the selected
data input. The truth table for a 4-data-input/2-encoding-input 4-multiplexer
is given in Figure 13.6.

Data Encoding
Inputs Inputs Output
0 1 2 3 low high
0 * * * 0 0 0
1 * * * 0 0 1
* 0 * * 1 0 0
* 1 * * 1 0 1
* * 0 * 0 1 0
* * 1 * 0 1 1
* * * 0 1 1 0
* * * 1 1 1 1

Fig. 13.6. Truth table for the 4-multiplexer. (* entries may take on either value
without affecting the output.)

The truth table given in Figure 13.6 nominally has 64 entries, one for each
of the 26 possible inputs. The use of the symbol * for “either value” com-
presses the table to one with 8 inputs. The number of times you can use a *

Graph-Based Evolutionary Algorithms 375

in this fashion in writing a truth table of minimal length is the degeneracy of
a logic function. On average, logic functions are easier to create via evolution-
ary computation if they have a higher degeneracy. Let’s check this assertion
experimentally.

Experiment 13.31 Modify the software for Experiment 13.30 to work with
the 4-multiplexing function and the 6-parity function. Use whichever local mat-
ing rule worked best for the 3-input parity problem. Which of these two prob-
lems is harder?

Let us now turn to the various grid robot tasks in Chapters 10 and 12.
Experiment 13.7 has already touched on the Tartarus problem and the need
to use generational rather than steady-state GBEAs on these problems. This
requirement for a generational algorithm comes from the need to compare or-
anges to oranges in any problem where sampled fitness is used as a surrogate
for the actual fitness. Recall that in the 6 × 6 Tartarus problem, there are
in excess of 300,000 boards, and we can typically afford no more than a few
hundred boards for each fitness evaluation. This means that rather than com-
puting the true fitness in each generation (the average score over all boards),
we use a sample of the boards to compute an estimated fitness.

Experiment 13.32 Use the GP language from Experiment 10.13, without
the RND terminal, to run a generational GBEA, i.e., one with deferred updat-
ing. Use 100 Tartarus boards rather than 40 for the fitness function, selecting
the 100 boards at random in each generation. For each vertex in the graph,
roulette-select a coparent and create a pair of children using subtree crossover
25% of the time and subtree mutation 50% of the time, independently. Use
absolute replacement. Use 20-node random initial trees and chop trees that
exceed 60 nodes. Run the algorithm on C256, T16,16, and H8, as well as on 2
random regular graphs of degrees 4 and 8.

For each graph, perform 100 runs. Compare the graphs with two statistics:
the time for a run to first exhibit fitness of 3.0 and the mean final fitness after
500 generations. If results are available for Experiment 10.13, also compare
with those results. Compute the performance partial order for this experiment.

As we know, the GP trees with 3 memories were not our best data struc-
tures for Tartarus. Both GP automata and ISAc lists exhibit superior perfor-
mance.

Experiment 13.33 Repeat Experiment 13.32 but use GP automata this
time. Use the GP automata with 8 states and null actions (λ-transitions) of
the same kind as were used in Experiment 10.18. Be sure to use the same ran-
dom regular graphs as in Experiment 13.32. Does the identity of the best graph
change at all? Compute the performance partial order for this experiment and
compare it with the one from Experiment 13.32.

When we have a sampled fitness, as with Tartarus, there is room to ex-
periment with the allocation of fitness trials. The graph topology gives us

376 Evolutionary Computation for Modeling and Optimization

another tool for allocating fitness trials. Recall that the hypercube graph can
be thought of as having a vertex set consisting of all binary words of a given
length. Its edges connect pairs of binary words that differ in one position. The
weight of a vertex is the number of 1’s in its binary word.

Experiment 13.34 Modify the software from Experiment 13.33 as follows.
First, run only on the graph H8. The possible vertex weights are 0, 1, 2,. . . , 8.
For vertices of weight 0, 1, 7, or 8, evaluate fitness on 500 boards. For words
of weight 2 or 6, evaluate fitness on 100 boards. For words of weight 3 or 5,
evaluate fitness on 40 boards. For words of weight 4, evaluate on 20 boards.

Use a fixed set of 500 boards in each generation, giving GP automata that
require fewer evaluations boards from the initial segment of the 500. In a given
evolutionary run of 500 generations, this will result in 20, 480 instances of a
dozer being tested on a board. Also, rerun the unmodified software so that each
dozer on the H9 graph uses 80 fitness evaluations. This results in the exact
same number of fitness evaluations being used.

Perform 100 runs for both methods of allocating fitness. Using a fixed 5000-
board test set, as in Experiment 10.20, make histograms of the 100 best-of-run
dozers from each set of runs. Do the methods have different results? Which
was better?

There is a possibility implicit in the use of the distributed geography of
a GBEA that we have not yet considered. Suppose that we have different
fitness functions in different parts of the graph. If the tasks are related, then
the easier instance of the problem may prime progress on the harder instance.

Experiment 13.35 Modify the software from Experiment 13.33 as follows.
First, run only on the graph H8. Do two sets of runs with 100 Tartarus boards
used for each fitness evaluation in the usual fashion. In one set of runs, use
only the 8 × 8 Tartarus problem with 10 boxes. In the other, use the 8 × 8
10-box Tartarus problem on those vertices with odd weight and the 6× 6 6-box
Tartarus problem on those vertices with even weight. For both sets of runs,
use a fixed 5000-board test set, as in Experiment 10.20, to make histograms
of the 100 best-of-run dozers for the 8 × 8 task from each set of runs. How
different are the histograms?

Let’s shift both the virtual robotics task and the representation in the next
experiment. The Herbivore task was an easier problem when judged by the
rate of early progress in enhancing fitness.

Experiment 13.36 Rebuild the software from Experiment 12.12 to work as
a generational GBEA. Use the same graphs and local mating rule as in Ex-
periment 13.32 and check the impact of the graphs on performance in the
Herbivore task. Compute the performance partial order for this experiment
and compare it with the ones from Experiments 13.32 and 13.33 if they are
available.

Graph-Based Evolutionary Algorithms 377

The North Wall Builder task from Chapter 12 has the advantage that it
has only one fitness case (board) and so runs much faster than Tartarus or
Herbivore. Let’s do a bi-factorial study of graph and board size.

Experiment 13.37 Rebuild the software from Experiment 12.17 to work as
a GBEA. Use the same graphs as in Experiment 13.32, but change the local
mating rule to be random selection of the parent, roulette selection of the
coparent, and elite replacement of the parent by the better of the two children.
Check the impact of the graphs on performance of the North Wall Builder task
for board sizes 5 × 5, 7 × 7, and 9 × 9. Compute the performance partial order
for each board size and compare these orders with one another and with all
available experiments using the same graphs.

We have not experimented much with the impact of graphs on competitive
tasks (other than Sunburn). We leave this topic for the future, but invite you
to design and perform your own experiments. One thing to consider is that it
may be hard to compare two populations of competitive agents meaningfully.

Problems

Problem 596. In the PORS system, the two “subroutines” (+ (Sto T) Rcl)
(multiply by 2) and (+ (Sto T) (+ Rcl Rcl)) or (+ (+ (Sto T) Rcl) Rcl)
(multiply by 3, which has two forms) together with the very similar trees, (+
1 1), (+ (+ 1 1) 1), and (+ 1 (+ 1 1)), which encode the constants 2
and 3, can be used to build up all optimal PORS trees. For the PORS n = 15
Efficient Node Use problem, either compute or experimentally estimate the
probability that a random initial tree will contain a subtree that encodes 3 or
multiplication by 3.

Problem 597. Reread Problem 596 and either compute or experimentally
estimate the probability that a random initial tree will contain a subtree that
encodes 2 or multiplication by 2.

Problem 598. Why do we use large numbers of edge swaps when we generate
random regular graphs? What would the effects of using a small number be?

Problem 599. In Experiment 13.29 we checked for the difference in behav-
ior of algorithms using the standard graphs for this chapter and those using
random graphs with the same degree. How does the diameter of the stan-
dard graphs compare with the diameter of random regular graphs of the same
degree? Why?

Problem 600. In order to generate random regular graphs of degree d with
n vertices, we need a starting graph with the given degree and vertex count.
Give a scheme for creating starting graphs of degree d with n vertices for
as many degrees and vertex sizes as you can. Remember that the number of
vertices of odd degree must be even.

378 Evolutionary Computation for Modeling and Optimization

Problem 601. The notion of degeneracy of a truth table is explained on
page 375. Compute the degeneracy for each of the following families of logic
functions and give the resulting shortest possible truth tables.

(i) n-input OR,
(ii) n-input AND,
(iii) 2n-multiplexing,
(iv) n-bit parity.

Problem 602. Prove that a logic function and its negation have the same
degeneracy.

Problem 603. Prove that the parity function and its negation are the only
logic functions whose truth tables have zero degeneracy.

Problem 604. Carefully verify the assertion in Experiment 13.34 that there
will be 20,480 evaluations of a dozer on a board in each generation.

Problem 605. Reread Experiment 13.34. Come up with compatible methods
of varying the number of fitness trials for (i) C256, (ii) T16,16, (iii) P128,1, and
(iv) P128,7. Make sure that your total fitness evaluations in a generation are
a multiple of the number of vertices, to permit evaluation on a fixed number
of boards as a baseline.

Problem 606. Experiment 13.35 mixed the 8×8 and 6×6 Tartarus problems.
Is there a problem in this experiment with having to compare dozers evaluated
with different fitness functions?

Problem 607. Reread Experiment 13.35. Suppose that instead of dividing
the 8×8 and 6×6 problems by odd- and even-weight vertices, we had divided
the hypercube so that the 6 × 6 fitness function was on the vertices with
most-significant bit “0” and the 8 × 8 fitness function was on the vertices
with most-significant bit “1.” In this case, there would be vertices that had
neighbors evaluated with each of these fitness functions. Give a means of
finding a scaling factor that permits comparison of these two fitness functions
and defend it. Consider: while the 8 × 8 function can return higher values,
initial progress is probably more rapid on the 6 × 6 function.

Problem 608. In some sense, Experiment 13.35 mixes the 8 × 8 and 6 × 6
Tartarus problems as much as possible. Is this good or bad?

Problem 609. Reread Experiment 13.35. Would you expect this sort of fit-
ness mixing to work better or worse on the PORS problem with n = 12 and
n = 15? Assume that trees are chopped to fit their node.

Problem 610. Essay. For the most part, we have used regular graphs as a
way of controlling for one important graph parameter. Is there any reason
to think the performance with graphs that are not regular, but have similar
average degree, would be different? Explain.

Graph-Based Evolutionary Algorithms 379

Problem 611. Essay. The correct answer to the PORS n = 15 Efficient Node
Use problem is EVAL(T)=32. Given the answers you found to Problems 597
and 596, discuss why the cycle is the best graph, of those used, for the PORS
n = 15 Efficient Node Use problem.

Problem 612. Essay. Is the tournament selection used in Experiment 13.27
better or worse than the standard type of tournament selection? For which
problems?

Problem 613. Essay. Create a system for evolving graphs. Give a represen-
tation including data structure and variation operators. Do not worry about
the fitness function.

Problem 614. Essay. A persistent theme in this chapter is the comparison
of graphs to see which graph helps the most on a given problem. Discuss the
practicality of searching for good graphs by using performance of a GBEA as
a fitness function.

Problem 615. Essay. Explain why high degeneracy in a logic function yields
an easier evolutionary search problem.

Problem 616. Essay. Suppose that we use a graph with several thousand
vertices and place 5 Tartarus boards as well as a dozer on each vertex. We
then run a GBEA in which parents are selected at random and coparents are
selected by roulette selection after they are evaluated on the boards sitting
on the parent’s node. Will this scheme find effective dozers? Explain.

Problem 617. Essay. Invent and describe a system for using GBEAs to lo-
cate hard Tartarus boards for 8 × 8 or larger boards.

14

Cellular Encoding

Cellular encoding [31, 32] is a technique for representing an object as a set
of directions for constructing it, rather than as a direct specification. Often,
this kind of representation is easier to work with in an evolutionary algorithm
than a direct coding of the object. There are several examples of cellular
encodings in this chapter. The examples, while they are all cellular encodings,
have little else in common. Because of this, the experiments in this chapter
are organized section by section. The name “cellular encoding” comes from
an analogy between the developmental rules governing construction of the
desired objects and the biology governing construction of complex tissues
from cells. The analogy is at best weak; don’t hope for much inspiration from
it. A more helpful way to think of the cellular encoding process is as a form of
developmental biology for the structure described (as with Sunburn in Chapter
4).

Suppose we have a complex object: a molecule, a finite state automaton, a
neural net, or a parse tree. A sequence of rules or productions that transform
a starting object into an object ready to have its fitness evaluated can be used
as a linear gene.

Instead of having complex crossover operators (which may require repair
operators) for complex objects, we can use standard crossover operators for
linear genes. The behavior of those crossover operators in the search space is
often difficult to understand, but this is also often true of crossover operators
used with direct encodings.

The idea of evolving a set of directions for constructing an object is an
excellent one with vast scope. We will start by building 2-dimensional shapes
using instructions from a linear gene. There are a number of possible fitness
functions for such shapes; we will explore two. In the second section of this
chapter, we will create a cellular encoding for finite state automata and com-
pare it with the direct encodings used in Chapter 6. In the third section, we
will give a cellular encoding method for combinatorial graphs. In the fourth
section, we will give a method for using context free grammars to control the
production of the parse trees used in genetic programming. This permits the

382 Evolutionary Computation for Modeling and Optimization

evolution of simple linear genes rather than parse trees and allows the user to
include domain-specific knowledge in the evolutionary algorithm.

14.1 Shape Evolution

Exp 14.2 Exp 14.1

Exp 14.3 Exp 14.4

Exp 14.5

Exp 14.6

Exp 14.7

1 Cellular polyomino encoding.
2 Polyomino creator.
3 Maximize bounding box.
4 Space-filling, sliding fitness function.
5 Space-filling fitness.
6 Obstructed space-filling fitness.
7 Population seeding.

Fig. 14.1. The topics and dependencies of the experiments in this section.

A polyomino is a shape that can be made by starting with a square and
gluing other squares onto the shape by matching up sides. A production of
a 3-square polyomino is shown in Figure 14.2. A polyomino with n squares
is called an n-omino. Our first cellular encoding is a scheme for encoding
n-ominos.

We will use an array of integers as our encoding for n-ominos. The key
is interpretation of the integers in the array. Divide each integer by 4. The
integer part of the quotient is the number of the square in the n-omino; the
remainder encodes a direction: up, down, left, or right.

Algorithm 14.1 Polyomino Development Algorithm
Input: An array of integers G[] of length k
Output: A labeled n-omino and a number F of failures

Cellular Encoding 383

0 0 1

2

0 1

Fig. 14.2. Start with initial Square 1; add Square 2; then, add Square 3 to make a
3-square polyomino.

Details:
Initialize a (2k + 1) × (2k + 1) array A with zeros;
Place a 1 in the center of the array;
Initialize a list of squares in the n-omino with the first square;
Initialize C=1, the number of squares so far;
Initialize F=0, the failure counter;
For(i= 0; i < k; i + +)

Interpret G[k] (mod 4) as a direction X in (U,L,D,R);
Find square S of index (G[k]/4) (mod C) in the growing structure;
If(square in direction X from S in A is 0)

C ← C+1;
Put C in square in direction X from S in A;

Else F ← F+1;
End For;
Return A,F;

Let’s do a small example. We will use one-byte integers in this example
(0 ≤ x ≤ 255), which limits us to at most 65 squares in the n-omino. This
should suffice for the examples in this section; shifting to two-byte integers
permits the encoding of up to 16,385-ominos, more than we need.

Example 28. Examine the gene G = (126, 40, 172, 207, 15, 16, 142). Interpret
the gene as follows:

Locus Interpretation
126=4*31+2 Direction 2(down) from Square 0(31(mod 1)); add Square 1
40=4*10+0 Direction 0(up)from Square 0(10(mod 2)); add Square 2
172=4*43+0 Direction 0(up)from Square 1(43(mod 3)); wasted
207=4*51+3 Direction 3(left)from Square 0(51(mod 3)); add Square 3
15=4*3+3 Direction 3(left)from Square 3(3(mod 4)); add Square 4
16=4*4+0 Direction 0(up)from Square 4(4(mod 5)); add Square 5
142=4*35+2 Direction 2(down)from Square 5(35(mod 6)); wasted

The result of this interpretation is the 6-omino

384 Evolutionary Computation for Modeling and Optimization

0
1

2
34

5

with F = 2 failures (wasted loci). We label the n-omino to track the order in
which the squares formed. Notice that not all of the 15×15 array A is shown,
in order to save space.

Now that we have an array-based encoding for polyominos, the next step is
to write some fitness functions. Our first fitness function is already available:
the number of failures. A failure means that a gene specified a growth move
in which the polyomino tried to grow where it already had a square. If our
goal is to grow large polyominos, then failures are wasted moves.

Experiment 14.1 Create or obtain software for an evolutionary algorithm
that uses the array encoding for polyominos. Treat the array of integers as a
string-type gene. Initialize the arrays with numbers selected uniformly at ran-
dom in the range 0–255. Use arrays of length 12 with two-point crossover and
single point mutation. The single-point mutation should replace one location
in the array with a new number in the range 0–255. Use a population size of
400 with a steady-state algorithm using single tournament selection of size 7.

Record the number of tournament selections required to obtain a gene that
exhibits zero failures for each of 100 runs of the evolutionary algorithm and
save a 0-failure gene from each run. Report the time-to-solution and the shapes
of the resulting polyominos. Runs that require more than 100,000 tournaments
should be cut off, and the number of such tournaments should also be reported.

Experiment 14.1 suffers from a problem common in evolutionary compu-
tation; it’s hard to tell what the results mean. The only certain thing is that it
is possible to evolve length-12 arrays that code for 13-ominos. One interesting
question is, are these “typical” 13-ominos? It seems intuitive that some shapes
will be better at avoiding failure than others. Let’s develop some measures of
dispersion for polyominos.

Definition 14.1 The bounding box of a polyomino is the smallest rectan-
gle that can contain the polyomino. For the polyomino in Example 28, the
bounding box is a 3 × 3 rectangle. The bounding box size of a polyomino is
the area of the polyomino’s bounding box.

Cellular Encoding 385

Definition 14.2 The emptiness of a polyomino is the number of squares in
its bounding box not occupied by squares of the polyomino. The emptiness of
the polyomino given in Example 28 is 3.

Experiment 14.2 Create or obtain software for a random n-omino creator
that works in the following fashion. Start with a central square, as in the
initialization of Algorithm 14.1. Repeatedly pick a random square in the array
holding the polyomino until you find an empty square adjacent to a square of
the polyomino; add that square to the polyomino. Repeat this square-adding
procedure until the polyomino has n squares.

The random polyominos will serve as our reference set of polyominos.
Generate 100 random 13-ominos. For these 13-ominos and the ones found
in Experiment 14.1, compute the bounding box sizes and emptinesses. If some
runs in Experiment 14.1 did not generate 13-ominos, then perform additional
runs. Compare histograms of the bounding box sizes and emptinesses for the
two groups of shapes. If you know how, perform a test to see whether the
distributions of the two statistics are different.

The bounding box size is a measure of dispersion, but it can also be used
as a fitness function. Remind yourself of the notion of lexical fitness function
from Chapter 5 (page 128).

Experiment 14.3 Modify the software from Experiment 14.1 to maximize
the bounding box size for polyominos. For length-12 genes (size-13 polyomi-
nos), the maximum bounding box has size 49.

Do two collections of 900 runs. In the first, simply use bounding box size
as the fitness. In the second set of runs, use a lexical product of bounding box
size and number of failures in which bounding box size is dominant and being
maximized, and the number of failures is being minimized. In other words, a
polyomino with a larger bounding box size is superior, and ties are broken in
favor of a polyomino with fewer failures.

Compare the time to find an optimal bounding box for the two fitness func-
tions, and explain the results as well as you can. Save the best genes from each
run in this experiment for use in a later experiment.

The shape of polyominos that maximize bounding box size is pretty con-
strained. They appear somewhere along the spectrum from a cross to a Feyn-
man diagram. Our next fitness function will induce a different shape of poly-
omino.

Experiment 14.4 Modify the software from Experiment 14.1 to be a genera-
tional algorithm that works with the following fitness function on a population
of 60 polyominos with genes of length 19. Fitness evaluation requires an empty
200 × 200 array that wraps in both directions.

Repeatedly perform the following steps. First, put the polyominos in the
population into a random order. Taking each in order, generate a random
point in the 200×200 array. If the upper left corner of the current polyomino’s

386 Evolutionary Computation for Modeling and Optimization

bounding box is placed in that location and all squares of the polyomino can
be placed, then place the polyomino there, marking those squares as full and
adding the number of squares in the polyomino to its fitness. If the polyomino
does not fit in the current location, try other locations by scanning first in the
horizontal direction, until either you have tried all locations or a location is
found where the polyomino fits.

Once all the polyominos have had one try, a new random order is gener-
ated. Perform fitness evaluation until at least 75% of the 200 × 200 array is
occupied or until all shapes have had a chance to find a place in the array
and failed. Do 100 runs of 1000 generations length and, comparing expressed
shapes rather than genes, show and explain the most common shapes in each
run. Are some shapes more common than others? Why?

The fitness function used in Experiment 14.4 lets the shapes compete
for space. There are two forces at work here: the need to occupy space and
the need to fit into the remaining space. The former pressure should make
large shapes, while the latter one will make small shapes. Consider how these
pressures balance out when writing up your experiment.

Experiment 14.5 Modify the fitness function from Experiment 14.4. If a
shape does not fit at the randomly chosen location, do not try other locations.
Go until the array is 50% full (rather than 75% full). Are the resulting shapes
different from those found in Experiment 14.4?

Fig. 14.3. A 9 × 9 grid with all squares that have both coordinates congruent to
1(mod 3) initially filled.

Cellular Encoding 387

The shapes obtained in our versions of Experiments 14.4 and 14.5 were
not too different. Let’s see whether we can cause the experiment to produce
a different sort of shape by modifying the fitness function again.

Experiment 14.6 Modify the software from Experiment 14.5 so that there
is a 201 × 201 array used for fitness evaluation in which the squares with both
coordinates congruent to 1(mod 3) start already occupied. Are the resulting
shapes different from those found before?

The outcomes of Experiments 14.4 and 14.5 suggest that compact shapes
are favored. Let’s try initializing Experiment 14.4 with genes that are not at
all compact and see whether we end up with a different sort of solution.

Experiment 14.7 Modify the software from Experiment 14.4 to read in ran-
domly selected genes chosen from those created during Experiment 14.3 instead
of initializing with random genes. Are the resulting shapes any different from
those obtained in Experiment 14.4?

The shape gene is a simple example of cellular encoding, and the exper-
iments in this section are interesting mostly because of their coevolutionary
character. The competitive exclusion game the shapes are playing when com-
peting for space is a fairly complex game. You could generalize this system in
other directions. Suppose, for example, that we scatter shape “seeds” at the
beginning of fitness evaluation and then grow shapes by executing one genetic
locus per time step of the development simulation. The partial shapes would
need to guard space for additional development. This would put an entirely
new dynamic into the shape’s growth.

Problems

Problem 618. Run the Polyomino Development Algorithm on the following
length-7 polyomino genes:

(i) G=(146, 155, 226, 57, 9, 84, 25),
(ii) G=(180, 158, 146, 173, 187, 85, 200),
(iii) G=(83, 251, 97, 241, 48, 92, 217),
(iv) G=(43, 241, 236, 162, 250, 194, 204),
(v) G=(100, 139, 229, 184, 111, 46, 180).

Problem 619. For each of the following polyominos, find a gene of length
12 that will generate that polyomino. The numbers on the squares of the
polyomino give the order in which the squares were added to the polyomino
during development. Your gene must duplicate the order in which the squares
were added.

388 Evolutionary Computation for Modeling and Optimization

0

1

23

45

678

9

10

11

12

0

1

2

3

4

5 6

7

8

9

10

11

0 1 23

4

5

6

7

8

9

10 0

1

2

3

4

5

6

7

8

9

Problem 620. The point of cellular encoding is to specify a complex struc-
ture as a linear sequence of construction rules. Suppose that we instead stored
polyominos in a 2-dimensional array. Create a crossover operator for polyomi-
nos stored in this fashion.

Problem 621. Consider a 2 × 2 square polyomino. Disregarding the gene
and considering only the order in which the squares were added, how many
different representations are there?

Problem 622. Enumerate all length-5 polyomino genes that code for a 2× 2
square polyomino.

Problem 623. Give an example of a gene of length k that creates a polyomino
of size 2 (for every positive integer k).

Problem 624. Prove that the maximum bounding box size for a polyomino
with n squares is smaller than the maximum bounding box size for a poly-
omino with n + 1 squares.

Problem 625. For as many n as you can, compute the maximum bounding
box size for an n-omino.

Problem 626. Reread Experiment 14.4. If a shape fails to find space once,
is there any point in checking to see whether it fits again? Would a flag array
that marks shapes as having failed once speed up fitness evaluation?

Cellular Encoding 389

Problem 627. The encoding given for shapes in this section is one possible
choice. Try to invent an encoding for shapes (or an alternative algorithm for
expressing the shapes) that eliminates wasted moves.

Problem 628. Does Experiment 14.4 need to be generational? If not, how
would you modify it to be steady-state?

Problem 629. In Experiments 14.4–14.6, why leave 25%–50% of the board
unfilled?

Problem 630. Essay. In Experiments 14.4 and 14.5 we are placing shapes
by two different methods and then evaluating them based on their success at
filling space. Which strategy is better: fitting well with yourself or blocking
others?

Problem 631. Essay. Does Experiment 14.4 or Experiment 14.5 favor com-
pact shapes, like rectangles, more?

Problem 632. Essay. In Experiment 14.4, shapes are allowed to search for
a place they will fit. It’s not too hard to come up with complementary shapes
that fit together, e.g., the two shown above. Would you expect populations
of coexisting shapes that fit together but have quite dissimilar genes to arise
often, seldom, or almost never?

Problem 633. Essay. Since different shapes are evaluated competitively in
Experiments 14.4–14.7, the algorithms are clearly coevolutionary rather than
optimizing. If most of the genes in a population code for the same shape, does
the algorithm behave like a converged optimizer?

14.2 Cellular Encoding of Finite State Automata

The evolution of finite state automata was studied in Chapter 6. We evolved
finite state automata to recognize a periodic string of characters and then used
finite state automata as game-playing agents. In this section, we will examine
what happens when we use a cellular encoding for finite state automata. With

390 Evolutionary Computation for Modeling and Optimization

Exp 14.8
Exp 6.4

Exp 14.9 Exp 14.12

Exp 14.11

Exp 14.10

Exp 14.14

Exp 14.13

Exp 14.16

Exp 14.15

Exp 6.5

8 The automaton editor.
9 Evolving finite state automata.
10 Changing rule probabilities.
11 Exploring initialization methods.
12 Prisoner’s Dilemma.
13 Rock Paper Scissors.
14 The law-of-averages player.
15 Comparison of standard and cellular encodings, Prisoner’s Dilemma.
16 The same comparison for Rock Paper Scissors.

Fig. 14.4. The topics and dependencies of the experiments in this section.

polyominos we started with a single square and added additional squares. In
order to “grow” a finite state automaton, we will start with a single-state
finite state automaton and modify it to make a larger automaton. In order to
do this, we will need editing commands. We will work with automata with k
possible inputs and outputs, named 0, 1, . . . , k − 1. When we need a specific
input or output alphabet (like {C, D} for Prisoner’s Dilemma), we will rename
these integer inputs and outputs to match the required alphabet.

0

1
0/0

1/1

...

k−1/k−1

Fig. 14.5. The Echo machine (initial action is zero; last input is its current output).

The starting automaton we will use is the Echo machine shown in Figure
14.5. While editing a finite state automaton, we will keep track of the current

Cellular Encoding 391

state being edited. The current state will be denoted by a double circle in
the state diagram. The current state specifies where editing is to happen, the
position of a virtual editing head. The cellular representation will consist of
a sequence of editing commands that either modify the automaton or move
the current state. Most of the editing commands take a member of the input
alphabet of the automaton as an argument and are applied to or act along
the transition associated with that input. This specifies unambiguous actions,
because there are exactly k transitions out of the current state, one for each
possible input. (The exception, B, is an editing command that modifies the
initial response, no matter which state is the current state.)

Command Effect
B (Begin) Increment the initial action.
Fn (Flip) Increment the response associated with the transition for input

n out of the current state.
Mn (Move) Move the current state to the destination of the transition for

input n out of the current state.
Dn(Duplicate) Create a new state that duplicates the current state as the new

destination of the transition for input n out of the current state.
Pn (Pin) Pin the transition arrow from the current state for input n to the

current state. It will move with the current state until another
pin command is executed.

R (Release) Release the pinned transition arrow if there is one.
In Move the transition for input n out of the current state to point

to the state you would reach if you made two transitions asso-
ciated with n from the current state.

Table 14.1. Commands for editing finite state automata. (Incrementing is always
modulo the number of possible responses.)

The commands we will use to edit finite state automata are given in Table
14.1. They are only one possible set of editing commands for finite state
automata. We chose a small set of commands with little redundancy that
permit the encoding of a wide variety of finite state automata.

The pin command (Pn) requires some additional explanation. This com-
mand chooses one of the transitions out of the state currently being edited and
“pins” it to the current state. That means that if the current state is moved
with an Mn command, then the transition arrow moves with it. This state of
affairs continues until either the transition arrow is specifically released with
an R command, or until another pin command is executed. (The definition
permits only one arrow to be pinned at a time, though it would be possible to
pin one arrow of each type unambiguously if the release command also took
arguments.) If a transition arrow is still pinned when the editing process ends,

392 Evolutionary Computation for Modeling and Optimization

then the arrow is left where it is; it is implicitly released when the current
state ceases to have meaning, because the editing process ends.

The In command is the only command other than the pin command that
can be used to move transition arrows. The command In moves a transition
arrow to the state that the automaton would reach from the current state if
two transitions were made in response to inputs of n. (This edit is difficult to
perform with the pin command for some configurations of automaton.)

We reserve for the Problems the question of completeness of this set of
editing commands. A set of editing commands is complete if any finite state
automaton can be made with those commands. Even with a complete set
of commands, the “random” finite state automata we can generate are very
different from those we obtain by filling in random valid values on blank
automata with a fixed number of states. When filling in a table at random, it
is quite easy to create states that cannot be reached from the initial state. An
automaton created with editing commands is much less likely to have many
isolated states.

Let’s look at an example of several edits applied to the version of the Echo
machine that plays Prisoner’s Dilemma. Let action 0 be cooperate and action
1 be defect. Then Echo becomes Tit-for-Tat.

Example 29. Let’s look at the results of starting with Echo (Tit-for-Tat in Pris-
oner’s Dilemma) and applying the following sequence of editing commands:
D1, M1, P0, F1, F0, or, if we issue the commands using the inputs and outputs
of Prisoner’s Dilemma: DD, MD, PC , FD. FC . The current state is denoted
by a double circle on the state.

Tit-for-Tat is the starting point.

1

C

C/C D/D

DD (duplicate) inserts a copy of 1 as the new destination of 1’s D-transition.

1

C

C/C D/D

C/C
D/D

2

MD (move) moves the active state to state 2.

Cellular Encoding 393

1

C

C/C D/D

C/C
D/D

2

PC (pin) pins the C-transition from the current state to the current state.

1

C

C/C D/D

2

C/C

D/D
FD (flip) increments the response on the D-transition from the current state.

1

C

C/C D/D

2

C/C

D/C
FC (flip) increments the response on the C-transition from the current state.

1

C

C/C D/D

2

D/C

C/D

So, this sequence of editing commands transforms our starting automaton,
Tit-for-Tat, into a version of Pavlov.

Let’s start characterizing the behavior of the system. The following exper-
iment examines the sizes of automata produced by genes of length 20.

Experiment 14.8 Use an input/output alphabet of size 2. This gives us a
total of 12 editing commands. Implement or obtain software for an automaton
editor that builds an automaton from a sequence of editing commands. Gen-
erate 1,000,000 strings of 20 random editing commands and express them as
automata. Compute the number of states in each of these automata and the
fraction that have at least one state not connected to the initial state. Make a

394 Evolutionary Computation for Modeling and Optimization

histogram of the lengths of the self-play strings of the automata. (The self-play
string is defined in Chapter 6, page 158.)

Generate 1,000,000 additional automata and collect the same numbers, but
this time make the two commands D0 and D1 three times as likely as the other
commands. What effect does this have on the statistics collected?

One of the issues that must be dealt with in using this cellular encoding
for finite state automata is that of state number. Review Experiment 6.4. The
number of states used was pretty critical to performance in that experiment.
In the next experiment, we will perform Experiment 6.4 again, attempting to
find the “right” length for the encoding.

Experiment 14.9 Modify the software from Experiment 6.4 to use the cellu-
lar encoding scheme described in this section. Use the string prediction fitness
function alone and the lexical product of string prediction with self-driving
length, with string prediction dominant. Use strings of 20, 40, 60, and 80 edit-
ing commands. Use two-point crossover and one-point mutation that replaces
a randomly selected editing command with a new one selected at random. At-
tempt to match the reference string 111110 using 12 bits.

Report mean and standard deviation of the number of generations to so-
lution. In your write-up, compare the difference between the plain and lexical
fitness functions. What is the effect of changing the length of the strings of
editing commands? Is the impact of the lexical fitness partner different for
different lengths of strings?

In Experiment 14.8, we tried tinkering with the statistics governing the
random generation of editing commands. The relative probability of choosing
various commands can be optimized for any experiment. Which probability
distributions are “good” depends on the choice of problem.

Experiment 14.10 Perform Experiment 14.9 again with the Dn commands
first twice as likely as the others and then three times as likely. Use whichever
fitness function worked best in the previous experiment. Also, choose a set
of probabilities of your own for the editing commands, trying to get better
performance.

The idea of placing a nonuniform distribution on the set of editing com-
mands used in a cellular representation can be generalized a good deal. See
Problem 654 for one such generalization. The effect of increasing the probabil-
ity of the Dn commands is to increase the number of states produced relative
to the length of the string of editing commands. There are other ways we
could control this.

Experiment 14.11 Perform Experiment 14.10 with the following technique
for generating the initial population of strings of editing commands. Use only
40-character strings. Place exactly 7 Dn commands and 33 other commands
in the edit strings in a random order. This will cause all the automata to have

Cellular Encoding 395

8 states. Compare the impact of this initialization method with the results
obtained in Experiment 14.10.

At this point, we will leave the bit-grinding optimization tasks and return
to the world of game theory. The basic Iterated Prisoner’s Dilemma exper-
iment was performed as Experiment 6.5. Let’s revisit a version of this and
compare the standard and cellular encodings.

Experiment 14.12 Rebuild the software from Experiment 6.5 to optionally
use cellular encodings. Also, write a tournament program that permits saved
files of Prisoner’s Dilemma players to play one another. Run the original
software with 8-state automata and also run a cellular encoding with a gene
length of 48 (yielding an average of 8 states). Perform 30 evolutionary runs
for each encoding.

Compare the resulting behaviors in the form of fitness tracks. Save the final
populations as well. For each pair of populations, one evolved with standard
encoding and the other evolved with cellular encoding, play each population
against the other for 150 rounds in a between-population round robin tour-
nament. Record which population obtained the highest total score. Did either
encoding yield substantially superior competitors?

Prisoner’s Dilemma has the property that there are no “best” strategies
in round robin tournaments. There are pretty good strategies, however, and
a population can stay pretty stable for a long time.

You may already be familiar with another game called Rock Paper Scis-
sors. This game is also a simultaneous two-player game, but unlike Prisoner’s
Dilemma, there are three possible moves: rock (R), paper (P), and scissors
(S). Two players choose moves at the same time. If they choose the same
move, then the game is a tie. If the players choose different moves, then the
victor is established by the following rules: rock smashes scissors; scissors cut
paper; paper covers rock. We will turn these results into numbers by awarding
1 point each for a tie, 0 points for a loss, and 3 points for a victory. Table 14.2
enumerates the possible scoring configurations.

Rock Paper Scissors is a game with 3 possible moves, and so we will have
17 editing commands instead of the 12 we had with Prisoner’s Dilemma. We
have compared the standard and cellular encodings of finite state automata
for playing Prisoner’s Dilemma already. Let’s repeat the experiment for Rock
Paper Scissors.

Experiment 14.13 Rebuild the software from Experiment 14.12 to play Rock
Paper Scissors using the scoring system given above. Do agents encoded with
the standard or cellular representation compete more effectively, or is there
little difference? Add the ability to compute the number of states in a finite
state automaton that cannot be reached from the starting state and track the
mean of this statistic in the population over the course of evolution. Does one
representation manage to connect more of its states to the starting state? Is

396 Evolutionary Computation for Modeling and Optimization

Move Score
Player1 Player2 Player1 Player2

R R 1 1
R P 0 3
R S 3 0
P R 3 0
P P 1 1
P S 0 3
S R 0 3
S P 3 0
S S 1 1

Table 14.2. Scoring for Rock Paper Scissors.

the answer to the preceding question different at the beginning and end of the
evolutionary runs?

Now let’s look at a strategy for Rock Paper Scissors that has a fairly good
record for beating human beings.

Definition 14.3 The strategy LOA (law-of-averages) for playing Rock Pa-
per Scissors works as follows. If one move has been made most often by its
opponent, then it makes the move that will beat that move. If there is a tie for
move used most often, then LOA will make the move rock if the tie involves
scissors, and the move paper otherwise.

Experiment 14.14 Rebuild the software from Experiment 14.13 to play Rock
Paper Scissors against the player LOA. In other words, we are now optimiz-
ing finite state automata to beat LOA rather than coevolving them to play one
another. You must write or obtain from your instructor the code for LOA.
Evolve both standard and cellular encodings against LOA playing 120 rounds.
Do 30 runs each for 8- and 16-state finite state automata and cellular encod-
ings of lengths 68 and 136. Which encoding works better? Do more states (or
editing commands) help more?

We have done several comparisons of the standard and cellular encodings of
finite state automata. The most recent test the ability of the two encodings to
adapt to a strategy that cannot be implemented on a finite state automaton
(see Problem 648). The ability of a representation to adapt to a strategy
written using technology unavailable to it is an interesting one, and you can
invent other non-finite-state methods of playing games if you want to try other
variations of Experiment 14.14.

One thing we have not done so far is to test two representations directly in
a competitive environment. In the next two experiments, we will modify the

Cellular Encoding 397

tournament software used to assess the relative merits of strategies evolved
with the standard and cellular encodings into a fitness function. This will
permit a form of direct comparison of the two representations.

Experiment 14.15 Write or obtain software for an evolutionary algorithm
that operates on two distinct populations of finite state automata that encode
Prisoner’s Dilemma strategies. The first should use standard encoding and
have 16 states. Use the variation operators from Experiment 6.5. The second
population should use cellular encoding with editing strings of length 96, two-
point crossover, and two-point mutation that replaces two editing commands
with new ones in a given 96-command editing string.

Evaluate fitness by having each member of one population play each mem-
ber of the other population for 150 rounds of Iterated Prisoner’s Dilemma. As
in Experiment 6.5, pick parents from the top 2

3 of the population by roulette
selection and let them breed to replace the bottom 1

3 of the population. Perform
100 evolutionary runs.

Record the mean fitness and standard deviation of fitness for both popula-
tions in a run separately. Record the number of generations in which the mean
fitness of one population is ahead of the other. Report the total generations
across all populations in which one population outscored the other.

The character of the game may have an impact on the comparison be-
tween representations. We have already demonstrated that Iterated Prisoner’s
Dilemma and Rock Paper Scissors have very different dynamic characters.
Let’s see whether the last experiment changes much if we change the game.

Experiment 14.16 Repeat Experiment 14.15 for Rock Paper Scissors. Com-
pare and contrast.

The material presented in this section opens so many doors that you will
probably have thought of dozens of new projects and experiments while work-
ing through it. We leave the topic for now.

Problems

Problem 634. Is there a single string of editing commands that produces a
given automaton A?

Problem 635. Using the set of editing commands given in Table 14.1, find a
derivation of the strategy Tit-for-Two-Tats. This strategy is defined in Chap-
ter 6.

Problem 636. Using the set of editing commands given in Table 14.1, find a
derivation of the strategy Ripoff. This strategy is defined in Chapter 6.

Problem 637. What is the expected number of states in an automaton cre-
ated by a string of n editing commands if all the commands are equally likely
to be chosen and we are using a k-character input and output alphabet.

398 Evolutionary Computation for Modeling and Optimization

Problem 638. Reread Experiment 14.9. Find a minimum-length string of
editing commands to create an automaton that would receive maximum fitness
in this experiment.

Problem 639. A connection topology for an FSA is a state transition diagram
with the response values blank. Assuming any version of a topology can be
created with the set of editing commands given in Table 14.1, show that the
responses can be filled in any way you want.

Problem 640. Is the representation used for polyominos in Section 14.1 com-
plete? Prove that your answer is correct. Hint: this isn’t a difficult question.

Problem 641. A polyomino is simply connected if it does not have an empty
square surrounded on all sides by full squares. Give an example of a gene for
a polyomino that is not simply connected. Then, write out a cellular encoding
that can create only simply connected polyominos.

Problem 642. Is the set of editing commands given in Table 14.1 complete?
Either prove that it is or find an automaton that cannot be made with the
commands. You may find it helpful to do Problem 639 first.

Problem 643. Essay. The Echo strategy, used as the starting point for edit-
ing finite state automata, turns out to be Tit-for-Tat when used in the context
of Prisoner’s Dilemma. In Iterated Prisoner’s Dilemma, Tit-for-Tat is a pretty
good strategy. In Rock Paper Scissors, is Echo (effectively, rock first, and then
repeat your opponent’s last action) an effective strategy?

Problem 644. Prove that the population average score in a population play-
ing Rock Paper Scissors with the scoring system given in this chapter is in
the range, 1 ≤ average ≤ 1.5. Prove that if a population consists of a single
strategy, then the population gets an average score of exactly 1.

Problem 645. Give a pair of strategies for Rock Paper Scissors that get an
average score of 1.5 if they play one another an even number of times.

Problem 646. Is the population average score for a population equally di-
vided between two strategies that are correct answers to Problem 645 com-
pletely predictable? If so, what is it? If not, explain why not.

Problem 647. Is it possible for a 60-member population playing 120 rounds
of Rock Paper Scissors to achieve the upper bound of 1.5 on population aver-
age fitness? Explain.

Problem 648. Prove that the strategy LOA, given in Definition 14.3, cannot
be implemented with a finite state automaton.

Problem 649. Is the Graduate School Game (defined in Section 6.3) more
like Prisoner’s Dilemma or Rock Paper Scissors?

Cellular Encoding 399

Problem 650. In the single-shot Prisoner’s Dilemma, there is a clear best
strategy: defect. Does Rock Paper Scissors have this property? Prove your
answer.

Problem 651. Essay. The claim is made on page 396 that the strategy LOA
for playing Rock Paper Scissors does well against humans. Verify this fact by
playing with a few friends. What sort of strategies does LOA do well against?

Problem 652. Essay. Either examining the experimental evidence from Ex-
periment 14.14 or working by pure reason, answer the following question. Will
the strategy LOA be one that performs well against finite state automata, or
will it perform poorly?

Problem 653. Essay. The number of states in a finite state automaton is
not explicitly given in cellular encoding. Suppose you want a certain number
of states. You could simply go back to the beginning of the string of edit
commands and keep editing until you had as many states as desired. Your
assignment: figure out what could go wrong. Will this method always generate
as many states as you want? Will the type of automata be different than it
would be if instead you used a very long string of edit commands and stopped
when you had enough states?

Problem 654. Essay. Discuss the following scheme for improving perfor-
mance in Experiments 14.9 and 14.10. Do a number of preliminary runs.
Looking at the genes for FSAs that achieve maximal fitness, tabulate the
empirical probability of seeing each command after each other command in
these genes. Also, compute the probability of seeing each editing command
as the first command in these successful genes. Now generate random initial
genes as follows. The first command is chosen according to the distribution of
first commands you just computed. Generate the rest of the string by getting
the next command from the empirical distribution of next commands you
computed for the current command. Do you think this empirical knowledge
reuse will help enough to make it worth the trouble? What is the cost? Can
this scheme cause worse performance than generating initial populations at
random?

Problem 655. Essay. A most common strategy is one that occupies the
largest part of the population among those strategies present in a given pop-
ulation. If we look at the average time for one most common strategy to
be displaced by another, we have a measure of the volatility of an evolving
system. If you surveyed many populations, would you expect to see higher
volatility in populations evolving to play Prisoner’s Dilemma or Rock Paper
Scissors?

400 Evolutionary Computation for Modeling and Optimization

Exp 14.17

Exp 14.18

Exp 14.19

Exp 14.20 Exp 14.21

Exp 14.22

Exp 14.23

Exp 14.24

17 Evolving combinatorial graphs.
18 Controlling graph size a different way.
19 Maximizing graph diameter.
20 Cyclic use of the gene.
21 Trying a different fitness function.
22 Sampling graph invariants within the representation.
23 Maximizing girth.
24 Population seeding.

Fig. 14.6. The topics and dependencies of the experiments in this section.

14.3 Cellular Encoding of Graphs

In this section, we venture into the realm of combinatorial graph theory to
give a fairly general encoding for 3-connected cubic graphs.

Definition 14.4 A graph is k-connected if there is no set of fewer than k
edges that we could delete and thereby disconnect the graph.

Definition 14.5 A graph is cubic if each vertex is of degree 3.

We will start with a very simple graph and use editing rules to build
up more complex graphs. In some ways, the cellular encoding we will use
for 3-connected cubic graphs is very similar to the one we used for finite
state automata. The transition diagrams of finite state automata are directed
graphs with regular out degree (always exactly k output arrows). In other
ways, the encoding will be quite different; there will be two editing “agents,”
or bots, at work rather than a single current state.

Cellular Encoding 401

21

3

4

Fig. 14.7. The initial configuration for the graph-editing bots.

The starting configuration for our cellular encoding for graphs is shown
in Figure 14.7. The single and double arrows denote the edges that will be
the focus of our editing commands. We will refer to these arrows as graph
bots with the single arrow denoting the first graph bot and the double arrow
denoting the second. During editing, the vertices will be numbered. There are
two sorts of editing commands that will be used in the cellular encoding. The
first group will be used to move the the graph bots; the second will be used
to add vertices and edges to the graph.

The movement commands will use the fact that the vertices are numbered.
The commands R1 and R2 cause the first and second graph bots, respectively,
to reverse their directions. These commands are spoken “reverse one” and
“reverse two.” The command AS1 causes the first graph bot to advance past
the vertex at which it is pointing so that that vertex is now at its tail. There
are two ways to do this, since each vertex has degree 3. AS1 causes the bot
to point to the vertex with the smaller number of the two available. The
command AL1 also advances the first graph bot, but moves it toward the
larger of the two available vertices. The commands AS2 and AL2 have the
same effect as AS1 and AL1 for the second graph bot. These commands are
spoken “advance small one,” “advance large one,” “advance small two,” and
“advance large two,” respectively. The effect of the movement commands on
the starting graph are shown in Figure 14.8. One important point: We never
permit the graph bots to occupy the same edge. If a command causes the two
graph bots to occupy the same edge, then ignore that command.

402 Evolutionary Computation for Modeling and Optimization

21

3

4

21

3

4

R1 R2

21

3

4

21

3

4

AS1 AL1

21

3

4

21

3

4

AS2 AL2

Fig. 14.8. The result of applying each of the editing commands to the initial con-
figuration.

The commands that modify the graph are I1 and I2, spoken “insertion
type one” and “insertion type two.” Both of these commands insert two new
vertices into the middle of the edges with graph bots and join them with a
new edge. The new vertices are given the next two available numbers with
the smaller number given to the vertex inserted into the edge containing the
first graph bot. The two insertion commands are depicted pictorially in Figure
14.9. I1 differs from I2 in the way the graph bots are placed after the insertion.
I1 reverses the direction of the second graph bot; I2 reverses the direction of
the first graph bot. In all cases, the bots are placed so that they are pointing
away from the new vertices.

To prove that the 8 commands given are sufficient to make any 3-connected
cubic graph requires graph theory beyond the scope of this text. In general,
however, any cellular encoding requires the designer to deal with the issue of
completeness or at least the issue “can the encoding I’ve dreamed up find the
objects that solve my problem?” We next give a derivation of the cube using
the set of editing commands just described.

Cellular Encoding 403

Before

n+1n

InsertionI1

n+1n

InsertionI2

Fig. 14.9. A generic positioning of the graph bots and the results of executing the
two insertion commands. (The commands differ only in their placement of the graph
bots after the insertion.)

404 Evolutionary Computation for Modeling and Optimization

Example 30. The sequence of commands AL2, I2, AL1, AS1, I1 yields the
cube. Let’s look at the commands one at a time:
Start:

21

3

4

Apply AL2:

21

3

4

Apply I2:

1

3

4

25

6

Apply AL1:

1

3

4 6

2

5

Apply AS1:

1

3

4 6

2

5

Cellular Encoding 405

Apply I1:

4 6

1

3

5

2

87

The resulting graph is a somewhat bent version of the cube. Redrawn as a
standard cube, we get

1

73

4

2

5

8

6

This derivation leaves the graph bots on the graph at the end. When the graph
is passed on to another routine, e.g., a fitness evaluation, the graph bots are
discarded.

We now have an encoding for graphs as a string of editing commands. We
can use an evolutionary algorithm to evolve graphs by just dusting off a string
evolver over an 8-character alphabet. There is still a very important piece
missing, however: the fitness function.

What do people want in a graph, anyhow? Cast your mind back to the
graphs used in Chapter 13. We used various cubic Petersen graphs that were
quite symmetric and had fairly high diameter, and we used random cubic
graphs, obtained with edge moves, that were not at all symmetric and had
pretty low diameter, given their size. What about graphs with intermediate
diameters? Our first task will be to search for these.

Instead of just using the diameter as a fitness function, we are going to
break up the notion of diameter into smaller pieces with a few additional
definitions. Read Section D.3 in Appendix D on distances in graphs.

Definition 14.6 The eccentricity of a vertex in a connected graph is the
largest distance between it and any other vertex in the graph. For a vertex v,
this quantity is denoted by Ecc(v).

The diameter of a graph is simply the maximum eccentricity of any of
its vertices. To get a graph with an intermediate diameter, we will minimize
the sum of the squared deviations of the eccentricities of all of the graph’s
vertices from the desired diameter. This will push the graph toward the desired
diameter.

406 Evolutionary Computation for Modeling and Optimization

Definition 14.7 The eccentricity deviation fitness function for eccen-
tricity E for a graph G with vertex set V (G) is defined to be

EDE(G) =
∑

v∈V (G)

(E − Ecc(v))2.

Notice that this fitness function is to be minimized.

When we were working with cellular encodings of finite state automata,
we found that controlling the number of states in the automaton required a
bit of care. In contrast to the standard encoding, the number of states was
not directly specified as a parameter of the experiment. It was, however, one
more than the number of Dn commands. Since the insertion commands for
graph editing insert two vertices, the number of vertices in a graph is four
plus twice the number of I commands. If we generate genes at random, we
will not have good control over the graph size.

In order to get graphs of a specific size, we will execute edit commands
until the graph is the desired size. This means that the genes need to be long
enough to have enough insertion commands. On average, one command in four
is an edit. We will test two methods of getting graphs that are big enough.

Experiment 14.17 Implement or obtain software for a string evolver over
the alphabet of graph-editing commands defined in this section. Use genes of
length 130 with two-point crossover and three-point mutation. When creating
a graph from a string of editing commands, continue editing until either there
are 256 vertices in the graph or you reach the end of the edit string. Use lexical
fitness, in which fitness is the number of vertices in the graph with ties broken
by the function

ED12(G),

given in Definition 14.7. Evolve populations of 200 graphs using a steady-state
algorithm with size-7 single tournament selection.

Report the mean and deviation of both fitness functions and the best value
of

ED12(G)

from each run. Permit evolution to continue for 500 generations. Also, save
the diameter of the most fit graph in each run. Report a histogram of the
diameters of the most fit graphs in each run. How fast do the genes converge
to size-256 graphs? Was the process efficient at minimizing E12(G)?

This is a new way of using a lexical fitness function. Instead of putting
the fitness of most interest as the dominant partner, Experiment 14.17 puts a
detail that has to be gotten right as the dominant partner. This forces a suffi-
cient number of insertion commands into the genes. Once this has happened,
we can get down to the business of trying to match a mean eccentricity of 12.
Now let’s try another approach to the size-control problem.

Cellular Encoding 407

Experiment 14.18 Repeat Experiment 14.17 using a different method for
managing the size of the graphs. Instead of lexical fitness with size of the
graph dominant, use only the fitness function ED12(G). Use genes of length
60 cycling through until the graph is of sufficient size. Explicitly check each
gene to make sure it has at least one insertion command and award it a fitness
of zero if it does not. (This is unlikely to happen in the initial population but
may arise under evolution.)

Sampling from a region of eccentricity space that is difficult to reach with
the explicit constructions and random algorithms given in Appendix D elicits
graphs that might be interesting to use in the kind of experiments given in
Chapter 13. The reason for thinking such graphs might behave differently is
that they have one parameter, average eccentricity, that is different.

Looking at the diameters of the various cubic graphs we used in Chapter
13, we also see that the large-diameter cubic graphs were all generalized Pe-
tersen graphs and hence highly symmetric. The random graphs are all at the
very low end of the diameter distribution. An evolved population of graphs
created with our editing commands is unlikely to contain a highly symmet-
ric graph. Let’s see how it can do at sampling the extremes of the diameter
distribution.

Experiment 14.19 Modify the software from Experiment 14.18 to maximize
the diameter of graphs. Use the diameter as the fitness function. Use genes
of length 60. Since vertices are needed to build diameter, no lexical products
will be needed to encourage the production of diameter. Run 10 populations
for 5000 generations and save a best gene from generation 50, 100, 500, and
5000 in each run.

Examine the genes and report the fraction of insertion commands in the
best genes from each epoch. Also, save and graph the mean and variance of
population fitness, the best fitness, the mean and variance of the vertex set sizes
for the graphs, and the fraction of insertion commands in each generation.

It may be that the only imperative of evolution in the preceding experiment
is to have all insertion commands. Let’s perform a second experiment that
speaks to this issue.

Experiment 14.20 Repeat Experiment 14.19 with genes of length 30 and
cycle through them twice. Compare with the results of Experiment 14.19.

The last two experiments attempted to make high-diameter graphs. Such
graphs are “long” and may resemble sausages when drawn. We will now try
to do the opposite. Since having few vertices always yields very low diameter,
we will write a more complex fitness function that encourages many vertices
and low diameter (compactness).

Definition 14.8 For a graph G with vertex set V (G), let

408 Evolutionary Computation for Modeling and Optimization

CP(G) =
|V (G)|∑

v∈V (G) Ecc(v)
.

This function is called the large compact graph function. It divides the
number of vertices by the sum of their eccentricities. This function is to be
maximized.

Experiment 14.21 Repeat Experiment 14.19 with the large compact graph
function as the fitness function. Compare the resulting statistics and explain.
Did the fitness function in fact encourage large compact graphs?

So far, we have used the graph-editing representation to sample the space
of cubic graphs for rare diameters and eccentricities. The resulting graphs
are amorphous and probably not of any great interest to graph theorists.
They may have application to the kind of work done in Chapter 13. These
problems were mostly intended to help us to understand and work with the
graph-editing system. At this point, we will go on to a much more difficult
mathematical problem.

Definition 14.9 The girth of a graph is the length of the shortest closed
cycle in the graph. The girth at v, for a vertex v of a graph, is the length of
the shortest closed cycle of which that vertex is a member. If v is in no cycle,
then the girth at v is infinite.

Look at the graphs used in Problem 659. These graphs have girth 4, and
the girth at every vertex is 4. The Petersen graph P5,2 has girth 5.

Definition 14.10 A (3, n)-cage is a cubic graph with girth n and the small-
est possible number of vertices. Examples of some of the known cages are given
in Figure 14.10.

The (3, n)-cages are also called the cubic cages or even just the cages,
because the notion was first defined for cubic graphs. The cubic cages form
an interesting example of a phenomenon that is widespread in mathematics:
small examples are not representative. The cages shown in Figure 14.10 are
unique and symmetric. Unique means that they are the only cubic graphs with
their girth and size of vertex set. In this case, symmetric means that there is
a way to permute the vertices that takes edges to edges such that any vertex
can be taken to any other. The (3, 7)-cage is unique, but not symmetric. No
other cage is symmetric in this sense. There are 18 different (3, 9)-cages, 3
different (3, 10)-cages, one known (3, 11)-cage, and a unique (3, 12)-cage. The
(3, 13)-cage(s) is (are) not known.

Starting with beautiful, unique, symmetric graphs, the family of cages
rapidly degenerates into fairly ugly graphs that are not unique. The ugli-
ness means that cages will, in the future, probably mostly be worked on by
stochastic search algorithms (though success here is not guaranteed at all).
The current lower bound on the size of a (3, 13)-cage is 202 vertices, a number

Cellular Encoding 409

that Brendan McKay and Wendy Myrvold computed by a cleverly written
exhaustion of all possibilities. The current best-known girth-13 cubic graph
has 272 vertices and is given by an algebraic construction found by Norman
Biggs.

K4 K3,3 Petersen Graph

Heawood Graph Tutte-Coxeter Graph

Fig. 14.10. The (3, n)-cages for n = 3, 4, 5, 6, and 8.

As before, the sticky wicket is writing a fitness function. The girth of a
graph is the minimum of the girths at each of its vertices. Girth, however,
would make a shockingly inefficient fitness function. At a given number of
vertices, graphs of a smaller girth are far more common than those of a higher
girth. At 30 vertices, it is possible to get girth 8, for example, only by the
discovery of a unique and highly symmetric graph. Before we decide on a
fitness function, let’s perform a sampling experiment to see how much trouble
we are in.

Experiment 14.22 Write or obtain software for an algorithm that starts
with the initial graph configuration from Figure 14.7 and executes editing com-
mands, sampled uniformly at random, until the graph has 30 vertices. Generate
100,000 graphs in this fashion and make a histogram of their mean girth at
each vertex and their girth. Report, also, the ratio of each girth to the most
common girth. Were any graphs of girth 8 found?

410 Evolutionary Computation for Modeling and Optimization

Experiment 14.22 should have verified the assertion about rarity of high-
girth graphs and the problem with using girth directly as a fitness function.
The mean girth at vertices is a much smoother statistic and will form the
basis for herding graphs toward higher girth in the course of evolution.

Experiment 14.23 Write or obtain software for a steady-state evolutionary
algorithm that operates on a population of k graph-edit strings of length n
generated uniformly at random. Use size-7 tournament selection, two-point
crossover, and three-point mutation. Use the lexical product of girth and mean
girth at each vertex, with girth being the dominant fitness function. Save and
graph the mean and variance of both fitness functions and the maximum girth
in each generation. Try all possible pairs of n and k, for k = 100, 500, 1000
and n = 30, 60, 90. For the length-30 strings, run through the strings once,
twice, or three times. What girths do you obtain?

In the past, we have tried various schemes for initializing populations to
give evolution a boost. Combining Experiments 14.22 and 14.23 gives us a
means of doing this.

Experiment 14.24 Repeat Experiment 14.23, initializing each run with the
following procedure. Generate 100,000 genes. Test the fitness of each graph.
As each graph is tested, save its gene only if it is in the top k of the graphs
tested so far. Compare the results with those of Experiment 14.23.

This section gives only a small taste of what could be done with cellular
encodings of graphs. It treats one possible encoding for an interesting but
limited class of graphs. There are many other problems possible. It would be
possible, for example, to have a “current vertex” editor like the ones used for
finite state automata in Section 14.2. The editing commands might involve
insertion of whole new subgraphs in place of the current vertex. They could
also include commands to swap edges as in Chapter 13 (page 366).

Problems

Problem 656. Find a derivation, using the editing commands given in this
section, for the Petersen graph. Use the standard starting point, as in Example
30.

Cellular Encoding 411

Problem 657. Find a sequence of editing commands that transforms K4 into
K3,3 into the Petersen graph into the Heawood graph. (Extra Credit: find a
sequence of commands that transforms the Petersen graph into the Tutte–
Coxeter graph.)

Problem 658. Give a minimal derivation for a graph with girth 4 using the
starting graph and editing commands given in this section.

Problem 659. The cube, derived in Example 30, is also called the 4-prism.
Above are the 5-prism, the 6-prism, and the 7-prism. Find a sequence of
editing commands, including a segment repeated some number of times, that
can create the n-prism for any n. Say how many times the repeated fragment
must be repeated to get the n-prism.

Problem 660. Define the graph IG(n) to be the result of applying the edit
command I1 to the initial configuration n times. Draw IG(0), IG(1), IG(2),
and IG(3).

Problem 661. Make a copy of the graph above and label each vertex with
its eccentricity.

Problem 662. Make a copy of the graph above and label each vertex with
the girth at that vertex.

412 Evolutionary Computation for Modeling and Optimization

Problem 663. Prove that the set of editing commands for cubic graphs given
in this section always produces a 3-connected graph. Do this by showing that
the commands cannot produce a graph that can be disconnected by deleting
one edge or by deleting any two edges.

A B

C

D

E F

A B

E F

Problem 664. Suppose that we add the above deletion command D1 to our
editing commands. Assume that A < B (so as to make the direction of the
arrow unambiguous). Also assume, if you want, that there is a corresponding
command D2 involving the second graph bot. Prove that the language can now
create disconnected graphs and graphs that are 1-connected or 2-connected
but not 3-connected.

Problem 665. What restrictions do we need to place on the use of the dele-
tion command(s) defined in Problem 664 if we want to avoid graphs with
edges from a vertex to itself or multiple edges?

Problem 666. Reread Experiment 14.18. Compute the probability of any
genes appearing in the initial population that have no insertion commands.

Problem 667. Design a short sequence of editing commands that if repeated
will create a large-diameter graph. Estimate or (better yet) compute exactly
the ratio of the diameter of the graph to the number of repetitions of your
sequence of editing rules.

Problem 668. Prove that if we delete one of the insertion commands from
the language, we can still make all of the same graphs.

Problem 669. Write or obtain software for expressing graph-edit genes. Take
100,000 samples obtained by running through random 120-character genes un-
til a graph with 100 vertices is constructed. Make a histogram of the diameter
and mean eccentricity of the graphs.

Cellular Encoding 413

Problem 670. The edge swap operation used to generate random regular
graphs in Chapter 13 is described in Appendix D (on page 549 in the definition
of random regular graph). What restrictions would have to be placed on the
positioning of the graph bots to permit adding a command that performed
such an edge swap on the edges where the bots are? Assume that the new
edges connect the former heads of the graph bots and the former tails of the
graph bots, leaving the heads of the graph bots pointing toward the same
vertex.

Problem 671. Give and defend a different representation for evolving graphs.
It may be cellular or direct. If possible, make it more general than the repre-
sentation given in this section.

Problem 672. Essay. In Chapter 10, we developed a GP automata repre-
sentation for discrete robots performing the Tartarus task. Suppose that we
were to put GP automata in charge of our graph bots. List and defend a set
of input terminals for the deciders that would be good for the task used in
Experiment 14.17.

Problem 673. Essay. In Chapter 10, we developed a GP automata repre-
sentation for discrete robots performing the Tartarus task. Suppose that we
were to put GP automata in charge of our graph bots. List and defend a set
of input terminals for the deciders that would be good for the task used in
Experiment 14.23.

Problem 674. Essay. In Chapter 12, we developed ISAc lists for discrete
robots performing a variety of discrete robotics tasks. Suppose that we were
to put ISAc lists in charge of our graph bots. List and defend a set of data
vector entries that would be good for the task used in Experiment 14.17.

Problem 675. Essay. In Chapter 12, we developed ISAc lists for discrete
robots performing a variety of discrete robotics tasks. Suppose that we were
to put ISAc lists in charge of our graph bots. List and defend a set of data
vector entries that would be good for the task used in Experiment 14.23.

Problem 676. Essay. Is the diameter or the average eccentricity a better
measure of how dispersed or spread out a graph is, assuming that we are
using the graph to control mating as in Chapter 13?

Problem 677. Essay. Generalize the editing method given in this section for
cubic graphs to regular graphs of degree 4. Give details.

14.4 Context Free Grammar Genetic Programming

One of the problems with genetic programming is the disruptiveness of subtree
crossover. Another problem is controlling the size of the parse trees created.

414 Evolutionary Computation for Modeling and Optimization

Exp 14.25 Exp 14.30

Exp 14.33

Exp 14.32

Exp 14.31

Exp 14.36

Exp 10.18

Exp 14.35

Exp 14.34

Exp 14.27

Exp 14.28

Exp 14.26

Exp 14.29

25 Context free grammar for PORS.
26 Variations on PORS experiment.
27 Excluding STO-STO.
28 Population seeding.
29 Adding a do-nothing rule.
30 The plus-times-half genetic programming problem.
31 PTH with context free grammar.
32 Exploring new grammars.
33 Exploring more new grammars.
34 Boolean parse trees.
35 The 3-parity problem.
36 Tartarus.

Fig. 14.11. The topics and dependencies of the experiments in this section.

In this section, we will use a cellular representation to take a shot at both
problems by changing our representation for parse trees. We will do this by
creating context free grammars that control the growth of parse trees. The
grammar will form a cellular encoding for the parse trees. Grammar rules will
be used the way editing commands were used for finite state automata and
graphs in earlier sections of this chapter.

In addition to neatening crossover and controlling size, using grammatical
representations for specifying parse trees solves the data typing problem. Us-
ing the old method, we could use multiple types of data in a parse tree only
by encoding them in the data type of the tree. In Chapter 9, for example,
the ITE operation took 3 real-number arguments, but the first was used as if
it were a Boolean argument by equating negative with false. Since grammars
can restrict what arguments are passed to operations, they can do automatic

Cellular Encoding 415

data type checking. There will be no need to write complex verification or
repair operators that verify subtree crossover obeys data typing rules.

The use of grammars also permits us to restrict the class of parse trees
examined by embedding expert knowledge into the grammar. For example,
the grammar can exclude redundant combinations of operators, such as store
a number in a memory and then store the exact same number in the same
memory again. Both data typing and expert knowledge are embedded in the
algorithm at design time rather than run time. So, beyond the overhead for
managing the the context free grammar system, there is close to zero runtime
cost for them. Cool, huh?

A context free grammar contains a collection of nonterminal symbols, a
collection of terminal symbols, and a set of production rules. (This is a different
use of the word “terminal” from the one we used in previous chapters on
genetic programming. To avoid confusion, in this chapter, we will refer to the
terminals of parse trees as “leaves.”) In a context free grammar, a nonterminal
symbol is one that can still be modified; a terminal symbol is one that the
grammar cannot modify again. A sequence of production rules is called a
production. A production starts with a distinguished nonterminal symbol, the
starting nonterminal. It then applies a series of production rules. A production
rule replaces a single nonterminal symbol with a finite string of terminal and
nonterminal symbols. By the end of a production, all nonterminal symbols
are resolved. Let’s do an example.

Example 31. Recall the PORS language from Chapter 8. Here is a context free
grammar for the PORS language:

Nonterminals: S
Starting nonterminal: S
Terminals: +, 1, Rcl, Sto

Production Rules:
Rule 1: S → (+ S S)
Rule 2: S → (Sto S)
Rule 3: S → Rcl
Rule 4: S → 1

Starting with a single S let’s see what parse tree we get if we apply the
sequence of rules 121443.

Start: S
Apply 1: (+ S S)
Apply 2: (+ (Sto S) S)
Apply 1: (+ (Sto (+ S S)) S)
Apply 4: (+ (Sto (+ 1 S)) S)
Apply 4: (+ (Sto (+ 1 1)) S)
Apply 3: (+ (Sto (+ 1 1)) Rcl)

416 Evolutionary Computation for Modeling and Optimization

The result is a correct solution to the Efficient Node Use problem for 6 nodes.

There are two things that you will have noticed in Example 31. First,
there are sometimes multiple nonterminals to which a given production rule
could have been applied. When applying productions in a cellular encoding,
we must give a rule for which nonterminal to use when multiple nonterminals
are available. In the example, we used the leftmost available nonterminal.
Second, there is the problem of unresolved nonterminals. If we are generating
random nonterminals, it is not hard to imagine getting to the end of a list of
production rules before resolving them all. In order to use a string of context
free grammar products as a cellular encoding, we must deal with this issue.

Definition 14.11 The cauterization rules are a set of rules, one for each
nonterminal in a context free grammar, that replace a nonterminal with a
string of terminal symbols. These rules are used to finish a production when
an evolved list of production rules is used and leaves nonterminals behind.

A third issue that may be less obvious is that of rules that cannot be
applied. If there is a production rule that cannot be applied, e.g., for want of
an appropriate nonterminal symbol, then simply skip the rule.

We are now ready to formally state how to use context free grammars as
a cellular representation for parse trees.

Definition 14.12 A cellular representation for parse trees is a context
free grammar together with a set of cauterization rules and rules for choosing
which nonterminal will be chosen when multiple nonterminals are available.
The representation is a string of production rules that the evolutionary algo-
rithm operates on as a standard string gene.

Let’s perform some experiments.

Experiment 14.25 Build or obtain software for a steady-state evolutionary
algorithm for the PORS n-node Efficient Node Use problem using a context
free grammar cellular encoding for the parse trees. Use strings of 2n produc-
tion rules from the 4-rule grammar given in Example 31. The creatures being
evolved are thus strings over the alphabet {1, 2, 3, 4}.

Let the algorithm be steady-state and use tournament selection of size 11
on a population of 400 productions. Use two-point crossover and single-point
mutation. When executing a production, do not execute production rules 1 and
2 if they drive the total number of nodes above n (count all symbols, +, 1, Rcl,
Sto, and S, as nodes) If the tree still has nonterminal symbols after the entire
string of production rules has been traversed, use rule 4 as the cauterization
rule. When multiple nonterminals are available, use the leftmost one.

Perform 100 runs recording mean and standard deviation of fitness as well
as time-to-solution for 30 runs for n = 12, 13, and 14. Cut off runs that take
more than 1,000,000 mating events to finish. Also, save the final populations
of productions in each run for later use.

Cellular Encoding 417

Experiment 14.25 is our first try at context free grammar genetic program-
ming. We used the simplest nontrivial genetic programming problem we have
studied. Let’s check the effect of tinkering with a few of the parameters of the
system. Review the definition of nonaligned crossover, Definition 7.21.

Experiment 14.26 Repeat Experiment 14.25 with 3 variations. In the first,
expand the rightmost nonterminal, rather than the leftmost. In the second,
replace one-point mutation with two-point mutation. In the third, make one-
fourth of all crossover nonaligned. Document the impact of each of these vari-
ations.

In the introduction to this section, we claimed that we can use the grammar
to cheaply embed expert knowledge into our system. Let’s give an example of
this process. The tree (Sto (Sto T)), where T is a tree, wastes a node. Let’s
build a grammar that prevents this waste.

Definition 14.13 No Sto-Sto grammar

Nonterminals: S,T
Starting Nonterminal: S
Terminals: +, 1, Rcl, Sto

Production Rules:
Rule 1: S → (+ S S)
Rule 2: S → (Sto T)
Rule 3: S → Rcl
Rule 4: S → 1
Rule 5: T → (+ S S)

Using the No Sto-Sto grammar will be a little trickier, because the use of
a T forces the use of 3 nodes.

Experiment 14.27 For the No Sto-Sto grammar, perform the variation of
Experiment 14.25 that worked best. Do not let the number of symbols other
than T plus 3 times the number of T symbols exceed the number of nodes per-
mitted. For T, use the cauterization rule T→(+ 1 1). Compare your results
with the other PORS Efficient Node Use experiments you have performed.

Let’s see how well population seeding works to generalize the result. It is
time to use the productions we saved in Experiment 14.25.

Experiment 14.28 Repeat Experiment 14.25 using the saved populations
from Experiment 14.25 as the starting populations. Instead of n = 12, 13,
and 14, do runs for n = 15, 16, and 17. Run 9 experiments, using each of the
3 types of populations saved (for n = 12, 13, and 14) to initialize the runs.

Before you perform the runs, predict which initialization will help the most
and least with each kind of run (n = 15, 16, and 17). Predict whether random

418 Evolutionary Computation for Modeling and Optimization

initialization would be superior for each of the 9 sets of runs. Compare your
predictions with your experimental results and explain the reasoning that led
you to make those predictions.

This embedding of expert knowledge and evolved knowledge can be carried
further, but additional development of killer PORS grammars and initializing
populations is left for the Problems.

Let’s take a look at the effect of a kind of rule analogous to biological
introns. An intron is a sequence of genetic code that does not produce protein.
In spite of “doing nothing,” introns can affect (and in fact enable) crossover.

Experiment 14.29 Repeat Experiment 14.26 using the best variation, but
with a fifth production rule that does nothing. Perform 2 sets of runs that
include the fifth rule. Make the strings of production rules 25% longer.

We will now shift to a new problem: a maximum problem with two oper-
ations and a single numerical constant.

Definition 14.14 A maximum problem is one in which the computer is
asked to produce the largest possible result with a fixed set of operations and
constants subject to some resource limitation.

The PORS Efficient Node Use problem is a type of maximum problem in
which the resource limitation was total nodes. Limiting parse trees by their
total nodes is not traditional in genetic programming as it was originally
defined by John Koza and John Rice. Instead, the depth of the tree from
the root node is limited. The following maximum problem is a standard one
for depth-limited genetic programming. We will start by building a standard
depth-limited genetic programming system.

Experiment 14.30 The plus-times-half (PTH) maximum problem uses the
operations + and * and the numerical constant one-half (0.5). As with the
PORS Efficient Node Use problem, the fitness of a parse tree is the result
of evaluating it with the value to be maximized. Create or obtain software
for a steady-state evolutionary algorithm that operates on PTH parse trees of
maximum depth k, with the root node considered to be depth zero. Use size-7
single tournament selection. During reproduction, use subtree crossover 50%
of the time. When subtree crossover creates a tree that exceeds the depth limit,
prune it by deleting nodes that are too deep and transforming those nodes
at depth k to leaves. For each tree, use a mutation operator that selects an
internal node of the tree uniformly at random (if it has one) and changes its
operation type. Run 50 populations until they achieve the maximum possible
value for k = 4 (16) and for k = 5 (256). Cut a given run off if it has not
achieved the maximum possible value in 1,000,000 mating events.

With a standard baseline experiment in place, we can now try some ex-
periments for the PTH problem with context free grammars. The following
experiments demonstrate the way knowledge can be embedded in grammars.

Cellular Encoding 419

Definition 14.15 Basic PTH Grammar

Nonterminals: S
Starting Nonterminal: S
Terminals: +, *, 0.5

Production Rules:
Rule 1: S → (* S S)
Rule 2: S → (+ S S)
Rule 3: S → 0.5

Experiment 14.31 Repeat Experiment 14.30 with a context free grammar
encoding using the basic PTH grammar. Expand the leftmost nonterminal
first and use the obvious cauterization rule: rule 3 from the grammar. Do
not execute any production that will make the tree violate its depth limit.
Use two-point crossover and two-point mutation on your strings of production
rules. Use strings of length 40 for k = 4 and strings of length 80 for k = 5. In
addition to reporting the same statistics as those from Experiment 14.30 and
comparing to those results, examine the genes in the final population. Explain
why the system that exhibited superior performance did so.

Let’s see whether we can get better results using a more effective grammar.

Definition 14.16 Second PTH Grammar

Nonterminals: S,T
Starting Nonterminal: S
Terminals: +, *, 0.5

Production Rules:
Rule 1: S → (* S S)
Rule 2: S → (+ T T)
Rule 3: T → (+ T T)
Rule 4: T → 0.5

Experiment 14.32 Repeat Experiment 14.31 with the second PTH gram-
mar. Report the same statistics and compare. What was the impact of the new
grammar? Cauterize all nonterminals remaining at the end of a production to
0.5.

It is possible to build even more special knowledge into the grammar.

Definition 14.17 Third PTH Grammar

Nonterminals: S, T, U

420 Evolutionary Computation for Modeling and Optimization

Starting Nonterminal: S
Terminals: +, *, 0.5

Production Rules:
Rule 1: S → (* S S)
Rule 2: S → (+ T T)
Rule 2: T → (+ U U)
Rule 3: U → 0.5

Experiment 14.33 Repeat Experiment 14.32 with the third PTH grammar.
Report the same statistics and compare. What was the impact of the new
grammar? Cauterize all nonterminals remaining at the end of a production to
0.5.

The three grammars for the PTH problem contain knowledge about the
solutions to those problems. This is a less-than-subtle demonstration of how
to cook a problem to come out the way you want. We now turn to a grammar
for Boolean parse trees and look to see whether we can extract generalizable
knowledge from the system.

Definition 14.18 Boolean Parse Tree Grammar

Nonterminals: S
Starting Nonterminal: S
Terminals: AND, OR, NAND, NOR, NOT, T, F, Xi(i = 1, . . . , n)

Production Rules:
Rule 1: S → (AND S S)
Rule 2: S → (OR S S)
Rule 3: S → (NAND S S)
Rule 4: S → (NOR S S)
Rule 5: S → (NOT S)
Rule 6: S → T
Rule 7: S → F
Rule 8: S → X1
...
Rule 7+n: S → Xn

The Boolean parse tree grammar works on n-input variables and so has
a number of rules that vary with n. First, let’s repeat a familiar experiment
and see how well the system performs.

Experiment 14.34 Create or obtain software for a steady-state evolutionary
algorithm that uses a context free grammar genetic programming representa-
tion for Boolean parse trees based on the Boolean parse tree grammar given

Cellular Encoding 421

above. Attempt to solve the odd parity problem: solutions should return true if
there are an odd number of true inputs and false otherwise. Use a population of
400 productions of length 15 with two variables. Notice that your productions
will be over a 9-letter alphabet. Cauterize by changing the first nonterminal to
X1, the second to X2, and so on, cyclically. Fitness is the number of correct
predictions of the parity of two binary variables for all possible combinations
of Boolean values those variables can have. Use size-7 single tournament se-
lection. Record time-to-solution for 100 runs and save the final population of
productions from each run.

The next step is to see whether productions that solve the 2-parity problem
can help solve higher-order-parity problems.

Experiment 14.35 Repeat Experiment 14.35 for the 3-parity problem with
length 30 productions over the Boolean parse tree grammar. Perform one set
of runs with random initialization and a second set in which you replace a ran-
dom substring of length 15 in each initial string with one of the saved strings
from Experiment 14.34. Load all the strings from all the final populations
and select at random among the entire set of strings when initializing. Report
times-to-solution and document the impact of the nonstandard initialization
method.

We now want to move on to demonstrate explicit data typing with context
free grammar genetic programming. In the grammars used so far, there is
something like data typing: e.g., look at the roles of U and T in the third
PTH grammar. When we used GP automata for the Tartarus problem, the
deciders were created with genetic programming. The decider’s job was to
reduce a large set of possible patterns to a single bit (the parity of an integer)
that could drive transitions of the finite state portion of the GP automata.
What we will do next is create a grammar for the deciders with the types B
(Boolean) and E (sensor expression).

Definition 14.19 Tartarus Decider Grammar

Nonterminals: S, B, E
Starting Nonterminal: S
Terminals: UM, UR, MR, LR, LM, LL, LM, UL, ==, !=, 0, 1, 2

Production Rules:
Rule 1: S → (AND B B)
Rule 2: S → (OR B B)
Rule 3: S → (NAND B B)
Rule 4: S → (NOR B B)
Rule 5: S → (NOT B)
Rule 6: B → T
Rule 7: B → F

422 Evolutionary Computation for Modeling and Optimization

Rule 8: B → (== E E)
Rule 9: B → (!= E E)
Rule 10: E → UM
Rule 11: E → UR
...
Rule 17: E → UL
Rule 18: E → 0
Rule 19: E → 1
Rule 20: E → 2

Experiment 14.36 Rebuild Experiment 10.18 to use a cellular parse tree
encoding with the above grammar for its deciders. Change “if even” and “if
odd” to “if false” and “if true.” For cauterization rules, use S→(== UM
1), B→ T, and E→UM. Use a string of 20 production rules for each decider.
Compare the results with those obtained in Experiment 10.18.

Problems

Problem 678. Give a string of context free grammar productions to yield an
optimal tree for the Efficient Node Use problem for all n given in Figure 8.6.

Problem 679. The No Sto-Sto grammar encodes a fact we know about the
PORS Efficient Node Use problem: a store following a store is a bad idea.
Write a context free grammar that encodes trees for which all leaves of the
parse tree executed before the first store are 1’s and all leaves after the first
store executed are recalls.

Problem 680. Using the four-rule grammar for PORS given in Example 31,
do the following:

(i) Express the production S=1212121443333.
(ii) Express the production T=1212144133133.
(iii) Perform two-point crossover on the productions after the third and before

the ninth character, coloring the production rules to track their origin in
S and T. Express the resulting strings, coloring the nodes generated by
productions from S and T.

Problem 681. Give the exact value of the correct solution to the PTH prob-
lem with depth-k trees. Prove that your answer is correct.

Problem 682. Suppose that instead of limiting by depth, we limited PTH
by total nodes. First, show that the number of nodes in the tree is odd. Next,
show that if f(n) is the maximum value obtainable with n nodes, then

f(n + 2) = max(f(n) + 0.5, f(k) ∗ f(m)),

Cellular Encoding 423

where m and k are odd, and n + 1 = m + k. Using this fact, compute the
value of f(n) for all odd 1 ≤ n ≤ 25.

Problem 683. Explicitly state in English the knowledge about solutions to
the PTH problem embedded in the second and the third PTH grammars given
in this section.

Problem 684. Is it possible to write a grammar such that if all the nonter-
minals are resolved, it must give an optimal solution to the PTH problem?

Problem 685. Essay. One problem we have in using genetic programming
with real-valued functions is that of incorporating real constants. In the stan-
dard (parse tree) representation, we use ephemeral constants: constants gener-
ated on the spot. Describe a scheme for incorporating real constants in one or
more production rules to use context free grammars with real-valued genetic
programming.

Problem 686. Suppose we are using context free grammar genetic program-
ming and that we have a mutation that sorts the production rules in the gene
into increasing order. If this mutation were mixed in with the standard one
at some relatively low rate, would it help?

Problem 687. Would you expect nonaligned crossover (see Definition 7.21)
to help or hinder if used at a moderate-to-low rate in the PTH problem?

Problem 688. Could one profitably store the leaves in parse trees for the
PTH problem as nil pointers?

Problem 689. Suppose, in Experiment 14.25, we permit only 1’s and 2’s in
the production rules and simply allow the cauterization rule to fill in the
leaves. What change would this make in the experiment?

Problem 690. Suppose we added a new terminal, 0.4, and a fourth rule,
S→0.4, to the basic grammar for the PTH problem. What would the maxi-
mum value for depths 4 and 5 now be? Would the problem become harder or
easier to solve?

Problem 691. Give a cellular representation for parse trees yielding rational
functions with operations +, -, *, /, randomly generated ephemeral con-
stants, and a variable x. (Recall that a rational function is a ratio of two
polynomials.)

Problem 692. Essay. Considering the various grammars used for the PTH
problem, address the following question: Do the grammars presented later
in the section make the search space larger or smaller? Defend your view
carefully.

Problem 693. Essay. Design and defend a better grammar for deciders for
Tartarus than the one given in Definition 14.4.

15

Application to Bioinformatics

This chapter gives examples of applications of evolutionary computation to
bioinformatics. The four sections all solve completely separate problems, and
so again, the experiments are organized section by section. We will start with
an application requiring only the very simple sort of evolutionary computa-
tion from Chapter 2. The fitness function will align binary strings with a type
of genetic parasite called a transposon. The next application will evolve finite
state automata to try to improve the design of polymerase chain reaction
(PCR) primers. The third example will use evolutionary computation to lo-
cate error-correcting codes for DNA, useful in bar codes for genetic libraries.
The technique involves using an evolutionary algorithm to control a greedy al-
gorithm, a technique called a greedy closure evolutionary algorithm. The final
application is a tool for visualizing DNA that uses a finite state automaton
combined with a fractal technique related to iterated function systems.

15.1 Alignment of Transposon Insertion Sequences

A transposon is a form of genetic parasite. A genetic parasite is a sequence (or
string) of DNA bases that copies itself at the expense of its host. It appears
multiple times, possibly on different chromosomes, in an organism’s genome.

In order to discuss transposons, we need a bit of molecular biology. De-
oxyribonucleic acid (DNA) is the primary information storage molecule used
by living organisms. DNA is very stable, forming the famous double helix in
which complementary pairs of DNA sequences bind in a double spiral. This
stability means that manipulating DNA requires a good deal of biochemical
effort. Because there is a trade-off, in biochemical terms, between stability
and usability, DNA is transcribed into a less stable but more usable form:
ribonucleic acid (RNA). RNA is then sent to a subcellular unit called a ri-
bosome to be converted into protein. Proteins are the workhorse molecules of
life, performing much of the active biochemistry. The central dogma of molec-

426 Evolutionary Computation for Modeling and Optimization

Exp 15.1

Exp 15.2

Exp 15.3

Exp 15.4

Exp 15.5

1 DNA alignment with an evolutionary algorithm.
2 Exploring the mutation rate.
3 Exploring population and tournament size.
4 Motif finding with an evolutionary algorithm.
5 Excluding complex motifs with latitude control.

Fig. 15.1. The topics and dependencies of the experiments in this section.

ular biology is that the information in DNA follows the path given in Figure
15.2.

DNA RNA Protein
Fig. 15.2. The central dogma of molecular biology.

The complementary binding of DNA bases does not only lend stability
to the DNA molecule; it also enables the process of copying the information.
There are four DNA bases: C, G, A, and T. The bases C and G bind to
each other, as do the bases A and T. When DNA is copied to make RNA,
the RNA that is made is the complement, with C copied as G, G copied as
C, A copied as T, and T copied as A.

There are three kinds of transposons. Type I transposons are segments of
DNA that cause the cell to transcribe RNA from them. This RNA is then
transformed back into DNA by an enzyme called reverse transcriptase and
integrated back into the genome. These transposons are thought to prefer spe-
cific positions to reintegrate their copies into the genome. Type II transposons
simply copy themselves from DNA directly to DNA. Type III transposons are
similar to type II, save that they are on average much shorter and use a dif-
ferent copy mechanism. Almost any text on molecular biology, e.g.,Genes VII
by Benjamin Lewin [41], contains a full description of the state of knowledge
about transposons and their intriguing relationship with viruses.

Application to Bioinformatics 427

In this section, we will be working with the problem of identifying the
sequence that type I transposons use to integrate back into the genome. The
data set available on the webpage associated with this text (click on data
and then Chapter 15) was gathered by finding the point at which a particular
transposon integrated into the genome. This is done by comparing a gene with
no transposons to the same gene with transposons. Where the genes differ is
a transposon site.

The problem is that while we know where the transposon integrated, we
do not know into which strand of DNA it integrated. If there is a particular
sequence of DNA bases required for integration, it appears on one strand, and
its complement appears on the other. This means that if we want to compare
the insertion sites, we must first decide into which strand the transposon
integrated.

This is where the evolutionary computation system comes into play. It is
used to decide whether to use a DNA sequence as found or to use its reversed
complement. This is a binary problem, so the binary string evolvers we learned
about in Chapter 2 will be useful.

We use the reverse complement instead of just the complement, because
DNA strands have opposite orientations on opposite strands. This means that
if the transposon integrated on the opposite strand, we should not only com-
plement the DNA, but reverse it (turn it end-for-end).

Example 32. Reverse complementation. The DNA sequence
CGATTACTGTG

has reverse complementary sequence
CACAGTAATCG.

Not only do we apply the swaps C⇔G and A⇔T, but we also rewrite the
sequence in reversed order.

Suppose that we have a sequence containing several hundred examples
of transposon insertion sites. We delete the regions of the sequence without
transposon sites and line up the regions with insertion sites so that the sites
coincide. We then need to specify an orientation for each insertion site se-
quence, either forward or reverse-complement. This specification will be what
we evolve. A binary string gene of length N can specify the orientation of a
set of N sequences. For a data set with N sequences, we thus need a binary
string evolver that operates on length-N strings. It remains to construct a
fitness function.

In this case, we presume that there is a conserved motif at the point
of transposon insertion. A motif is a set of characters, possibly with some
wildcards or multibase possibilities. So,

C, G, A or T, anything, C, C

is an example of a motif that includes 8 sequences: CGACCC, CGTCCC,
CGAGCC, CGTGCC, CGAACC, CGTACC, CGATCC, and
CGTTCC. There may also be some other properties, like an above-average

428 Evolutionary Computation for Modeling and Optimization

fraction of A’s and T’s. Because of this, there is reason to believe that when
the sequences are placed in their correct alignment, there will be a decrease
in the total “randomness” of the base composition of the alignment.

Definition 15.1 For a collection C of DNA sequences, define PX , X ∈ {C,
G, A, T}, to be the fraction of the bases that are X.

01234567890123456789012345678
._________._________.________
CACCGCACCGCACTGCATCGGTCGCCAGC
ACCCGCATCGGTCGCCAGCCGAGCCGAGC
CACCGCATCGGTCGCCAGCCGAGCCGAGC
CACTGCATCGGTCGCCAGCCGAGCCGAGC
GCTCGACACACGGGCAGGCAGGCACACCG

Fig. 15.3. A gapless alignment of 5 DNA sequences.

Definition 15.2 A gapless alignment of a set of sequences of DNA bases
consists in placing the sequences of DNA on a single coordinate system so that
corresponding bases are clearly designated. An example of such an alignment
appears in Figure 15.3. (Gapped alignments will be discussed in Section 15.3.)

The transposon insertion data have to be trimmed to make the DNA
sequences the same length. This means that the orientation, either forward,
or reversed and complemented, is the only thing that can change about the
way a sequence fits into an alignment. We now need a fitness function that will
compute the “nonrandomness” of a given selection of orientations of sequences
within an alignment.

Definition 15.3 Assume that we have a gapless alignment of N DNA se-
quences, all of the same length M . View the alignment as a matrix of DNA
bases with N rows and M columns. Let Xi be the fraction of bases in column i
of the matrix of type X, for X ∈ {C, G, A, T}. Then, the nonrandomness
of an alignment is

M∑
i=1

(Xi − PX)2.

The nonrandomness function is to be maximized. Lining up the motif at
the point of insertion will yield less randomness. Notice that we are assuming
that the DNA sequences are essentially random away from the transposon
insertion motif. We are now ready to perform an experiment.

Application to Bioinformatics 429

Experiment 15.1 Write or obtain software for a steady-state evolutionary
algorithm using single tournament selection with tournament size 7 that op-
erates on binary genes of length N . Download transposon insertion sequences
from the website associated with this book; N is the number of these sequences.
Use two-point crossover and probabilistic mutation with probability 1

N . Use a
population of 400 binary strings for 400,000 mating events. Use the nonran-
domness fitness function. Run the algorithm 100 times and save the resulting
alignments. If an alignment specifies the reverse complement of the first se-
quence, reverse-complement every sequence in the alignment before saving it
(this puts alignments that are the same except for reverse-complement status
into the same orientation for comparison). How often do you get the same
alignment? Are alignments that appear often the most fit, or are the most fit
alignments rare?

This experiment produces alignments and gives us a baseline notion of an
acceptable fitness. With the baseline fitness in hand, let’s perform a param-
eter sensitivity study for various algorithm parameters. We will start with
mutation rate.

Experiment 15.2 Modify the software from Experiment 15.1 as follows.
Take the most common fitness you got in Experiment 15.1 and assume that
any alignment with this fitness is “‘correct.” This lets us compute a time-to-
solution. Now repeat the previous experiment, but for mutation rates 1

2N , 1
N ,

3
2N , and 2

N . Report the impact on time-to-solution and the number of runs
that fail to find a solution in 500,000 mating events.

Now let’s look at the effects of varying population size and tournament
size.

Experiment 15.3 Repeat Experiment 15.2 using the best mutation rate from
Experiment 15.2. Use all possible pairs of population sizes 100, 200, 400, and
800 and tournament sizes 4, 7, and 15. Report the impact on time-to-solution
and the number of runs that fail to find a solution in 500,000 mating events.

Now that we have a way of aligning the transposon insertion sites, we need
a way of finding the motif. A motif is a sequence of DNA bases with wildcard
characters. A motif could thus be thought of as a string over a 15-character
alphabet consisting of the nonempty subsets of {C, G, A, T}. We will encode
this alphabet by letting C=8, G=4, A=2, and T=1 and by representing each
subset with the sum of the numbers of its members. Thus, the number 9 is a
partial wildcard that matches the letters C and T. We can use a string evolver
to search for this encoding of a motif. As always, we need a fitness function.

Definition 15.4 A kth-order Markov model of a collection of DNA se-
quences is an assignment to each DNA sequence of length k an empirical
probability that the next base will be C, G, A, or T. Such a model is built
from a collection of target DNA sequences in the following manner. For each

430 Evolutionary Computation for Modeling and Optimization

length-k subsequence S appearing in the target DNA, the number of times the
next base is a C, G, A, or T is tabulated. Then, the probabilities are computed
by dividing these empirical counts by the number of occurrences of the subse-
quence S. For subsequences that do not appear, the first-order probabilities of
each DNA base are used.

Example 33. Let’s take the target DNA sequence

AAGCTTGCAGTTTAGGGCCCCTGATACGAAAGAAGGGAGGTCCGACAGCCTGGGGCCGAC
TCTAGAGAACGGGACCCCGTTCCATAGGGTGGTCCGGAGCCCATGTAGCCGCTCAGCCAG
GTCCTGTACCGTGGGCCTACATGCTCCACCACCCCGTGACGGGAACTTAGTATCTAGAGT
TATAAGTCCTGCGGGTCCGACAACCTCGGGACCGGAGCTAGAGAACGGACATTAGTCTCC
TGGGGTGGTCCGGAGCCCGTACAGCCGCTCAGCCTAGTCCCGTACCATGGTCCTGCACGC
TCCACCGCCCTGTGACAAGTGTCCTAGTATCTAGAACCGCGACCCAAGGGGGTCCGGACA
AGCAACTTGGCCACCCGGACTAAAACCTGCAGGTCCCTAGCATGTATCAAAGGGCGACTA
ATGTCAGACGGAGAACCCTATGAGGTGTACTACTAACGCTTCCTAGCTAAAAGTTGTGTA
CAGATCCAGATCTCGGCGAGTTTGCCTCCCGAGGATTGTTGACAACCTTTTCAGAAACGC
TGGTATCCAACCTCAACACATCAAGCCTGCATCCGAGGCGGGGGGCCAGGTACTAAGGAG
AAGTCAACAACATCGCACATAGCAGGAACAGGCGTTACACAGATAAGTATTAAATACTGC
TTAGAAGGCATTATTTAATTCTTTACAAAAACAGGGGAAGGCTTGGGGCCGGTTCCAAAG
AACGGATGCCCGTCCCATAGGGTGGTCCGGAGCCTATGTGGCCGGTTAGCCTGGTTCCGT
ACCCAAAATCCTGCACACTCCACCGCTCTGTGGTGGGTGTCCTAGTATTTAAAACTAAAG

To build a second order (k = 2) Markov model of the DNA sequence, we
need to tabulate how many times a C, G, A, or T appears after each of the
possible 2-character sequences. This is the work computers were meant to do,
and they have, yielding the following tabulation:

Sequence NC NG NA NT

CC 18 25 16 23
CG 9 17 9 8
CA 11 16 15 12
CT 12 14 19 8
GC 20 6 10 12
GG 13 26 17 20
GA 14 14 13 6
GT 17 13 14 10
AC 17 9 20 11
AG 16 19 16 13
AA 19 17 17 4
AT 10 8 7 7
TC 27 3 8 7
TG 10 14 5 13
TA 13 18 11 10
TT 6 7 12 7

Application to Bioinformatics 431

Dividing through by the number of times each 2-character sequence occurs
with another base following it yields the second-order Markov model for the
target above.

Markov model k = 2
Sequence PC PG PA PT

CC 0.220 0.305 0.195 0.280
CG 0.209 0.395 0.209 0.186
CA 0.204 0.296 0.278 0.222
CT 0.226 0.264 0.358 0.151
GC 0.417 0.125 0.208 0.250
GG 0.171 0.342 0.224 0.263
GA 0.298 0.298 0.277 0.128
GT 0.315 0.241 0.259 0.185
AC 0.298 0.158 0.351 0.193
AG 0.250 0.297 0.250 0.203
AA 0.333 0.298 0.298 0.070
AT 0.312 0.250 0.219 0.219
TC 0.600 0.067 0.178 0.156
TG 0.238 0.333 0.119 0.310
TA 0.250 0.346 0.212 0.192
TT 0.188 0.219 0.375 0.219

For each 2-character sequence, we have the probability that it will be followed
by each of the 4 possible DNA bases.

What use is a kth-order Markov model? While there are a number of
cool applications, we will use these Markov models to baseline the degree
to which a motif is “surprising.” In order to do this, we will use the Markov
model to generate sequences “like” the sequence we are searching. A kth-order
Markov model of a given set of target DNA sequences can be used to find more
sequences with the same kth-order statistics. Let’s look at the algorithm for
doing this.

Algorithm 15.1 Moving Window Markov Generation Algorithm

Input: A kth-order Markov model and a number m
Output: A string of length m
Details: Initialize the algorithm as follows. Select at random a sequence of
k characters that appeared in the target DNA sequence used to generate the
original Markov model. This is our initial window. Using the empirical dis-
tribution for that window, select a next base. Add this base to the end of the
window and shift the window over, discarding the first character. Repeat this
procedure m times, returning the characters generated.

432 Evolutionary Computation for Modeling and Optimization

Algorithm 15.1 can be used to generate any amount of synthetic DNA
sequences with the same kth-order base statistics as the original target DNA
used to create the Markov model. This now puts us in a position to define a
fitness function for motifs.

Definition 15.5 Suppose we have a set of target DNA sequences, e.g., the
set of aligned transposon insertion sequences generated in Experiments 15.1–
15.3. The count for a motif is the number of times a sequence matching the
motif appears in the target DNA sequences.

Definition 15.6 Suppose we have a set of target DNA sequences, e.g., the set
of aligned transposon insertion sequences generated in Experiments 15.1–15.3.
The synthetic count for a motif is the number of times a sequence matching
the motif appears in a stretch of synthetic DNA, generated using Algorithm
15.1 with a Markov chain created from the target DNA or an appropriate set
of reference DNA.

Definition 15.7 The p-fitness of a motif is the probability that the count of a
motif will exceed its synthetic count. The pN -fitness of a motif is the estimate
of the p-fitness obtained using N samples of synthetic DNA. Compute the pN -
fitness of a motif as follows. Obtain target and reference DNA (they may or
may not be the same). Pick k and generate a kth-order Markov model from
the reference DNA. Compute the count of the motif in the target. Pick N and
compute the synthetic count of the motif in N sequences of the same length as
the target sequence generated with the Markov chain derived from the reference
DNA. The fraction of instances in which the synthetic count was at least the
count is the pN -fitness.

The pN -fitness of a motif is to be minimized; the harder it is for the
synthetic count to exceed the count of a motif, the more surprising a motif is.
Notice that the p-fitness is a probability and so not only selects good motifs,
but gives a form of certificate for their statistical significance. It is important
to remember that this p-fitness is relative to the choice of reference DNA.
The transposon insertion studies used in this chapter study insertion into a
particular gene and are published in a paper by C. Dietrich et al [16]. A good
set of reference DNA is thus the sequence of that gene, available on the website
for this book. Let’s go find some motifs.

Experiment 15.4 Write or obtain software for a steady-state evolutionary
algorithm using single tournament selection with tournament size 7 that oper-
ates on string genes over the motif alphabet described in this section. Down-
load the glu18 gene sequence from the website for this text for use as reference
DNA. Build a 5th-order (k = 5) Markov model from the glu18 code and use
it to implement the pN -fitness function (N = 2000) for motifs in aligned
sets of transposon insertion sites from Experiments 15.1–15.3. Use two-point

Application to Bioinformatics 433

crossover and single-point mutation in the motif searcher. Use a population
of motifs of length 8 for 100,000 mating events with a population size of 400.
Perform 100 runs. Sort the best final motifs found in each population by their
fitnesses. Report the number of times each motif was found. Are there cases
in which the sequences specified by one motif were a subset of the sequences
specified by another?

If this experiment worked for you as it did for us, you have discovered
a problem with this technique for finding motifs: what a human thinks of
as a motif is a bit more restrictive than what the system finds. The system
described in Experiment 15.4 managed to find several motifs with high fitness
values, but appearing in the target sequence only once each. This means that
our motif searcher can assemble a motif from rare strings that has a high p-
fitness but is not of all that much interest. A possible solution to this problem
is to insist numerically that the motifs be more like what people think of as
motifs.

Definition 15.8 A character in the motif alphabet stands for one or more
possible matches. The latitude of a character in the motif alphabet is the
number of characters it stands for minus one. The latitude of a motif is the
sum of the latitudes of its characters.

Experiment 15.5 Repeat Experiment 15.4. Modify the fitness function so
that any motif with a latitude in excess of d is awarded a fitness of 1.0 (the
worst possible). Perform 100 runs for d = 5, 6, 7. Contrast the results with the
results of Experiment 15.4.

It would be possible to perform additional experiments with the motif
searcher (you are urged to apply the searcher to other data sets), but instead
we will move on to an application of evolutionary algorithms to a problem in
computational molecular biology. If you are interested in further information
on motif searchers, you should read [45] and look at the Gibbs sampler, a
standard motif location tool [30].

Problems

Problem 694. Give a 20-base DNA sequence that is its own reverse comple-
ment.

Problem 695. The nonrandomness fitness function compensates for first-
order deviation from uniform randomness in the DNA used by computing
the fractions PX of each type X of DNA base. Consider pairs of adjacent
DNA bases. These will show up in certain proportions in a random DNA
sample. Write a function that compensates for this second-order randomness.

Problem 696. Explain in a sentence or two why the function given in Defi-
nition 15.3 measures nonrandomness.

434 Evolutionary Computation for Modeling and Optimization

Problem 697. Give a motif, of the sort used in this section, that matches as
few sequences as possible, but also matches each of the following:

AAGCTCGAC CACGGGCAG CGGGCAGGC GGGGCAGGC
ACACAGGGG CACTCCGCC CTACCAAAG GTCGCCAGC
ACCGGATAT CACTGCATC CTCCGTCTA GTCGCCAGC
AGCCGAGCC CCACCGGAT CTGTCGATA GTCGCCAGC
CACAGGGGC CCCCAAATC CTGTGTCGA GTGCGGTGC
CACCCGCAT CCCTCATCC GAGTAGAGC TCCTAGAAT
CACCGCACC CCGCACCGC GCTGCGCGC TCCTGATGG
CACCGCATC CGGCTCGGC GGAGAGAGC TTCACTGTA

Problem 698. Construct and defend a better fitness function for motifs than
the p-fitness.

Problem 699. Give an efficient algorithm for checking the count of a motif
in a sequence of DNA.

Problem 700. Essay. Explain why the order of the Markov model used in
Experiments 15.4 and 15.5 must be shorter than the length of the motifs being
evolved to get reasonable results.

Problem 701. Essay. Based on Experiments 15.1–15.3, make a case that the
nonrandomness fitness function on the data set used is unimodal or polymodal.

Problem 702. Essay. Why is maximizing the nonrandomness fitness func-
tion the correct choice?

Problem 703. Essay. With transposon data, we have a simple method of
locating where the transposon inserted itself: there is a transposon sequence
where before there was none. This gives us an absolute reference point for
our alignment and so leaves us to worry only about orientation. Describe a
representation for gapless alignment where we suspect a conserved motif but
do not know exactly where, laterally in the DNA sequence, that alignment is.

Problem 704. Essay. Taking the minimal description of transposable ele-
ments (transposons) given in this section, outline a way to incorporate struc-
tures like transposable elements into an evolutionary computation system. If
you are going to base your idea on natural transposons, be sure to research the
three transposon types and state clearly from which one(s) you are drawing
inspiration.

15.2 PCR Primer Design

Polymerase chain reaction (PCR) is a method of amplifying (making lots of
copies of) DNA sequences. DNA is normally double-stranded. When you heat

Application to Bioinformatics 435

Exp 15.12

Exp 15.11Exp 15.10

Exp 15.9

Exp 15.8

Exp 15.7

Exp 15.6

6 Evolving finite state primer predictors.
7 Balanced training data and lexical fitness.
8 Alternative fitness.
9 Hybridization.
10 Documenting the impact of hybridization.
11 Exploring the number of states in the predictor.
12 The impact of hybridization with optimized state number.

Fig. 15.4. The topics and dependencies of the experiments in this section.

the DNA, it comes apart, like a zipper, at a temperature determined by the
fraction of GC bonds (GC pairs bind more tightly than AT pairs). Once
they are apart, an enzyme called DNA-polymerase can grab individual bases
out of solution and use them to build partial double strands. As the DNA
cools, it re-anneals as well as being duplicated by the polymerase. A single
PCR cycle heats and then cools the DNA with some of it being duplicated by
the polymerase.

Primers are carefully chosen short segments that re-anneal earlier, on av-
erage, than the whole strands of DNA. If we start with a sample of DNA, add
the correct pair of primers, a supply of DNA bases, and the right polymerase
enzyme, then we will get exponential amplification (roughly doubling in each
cycle of the reaction) of the DNA between the two primers. (The primers land
on opposite strands of DNA.) A diagram of this process is given in Figure 15.5.

The length of each new strand is controlled by time and temperature.
Typically, you let the strands grow, on average, beyond the annealing point for
the complementary primers. Since the primers are on opposite strands, they
amplify in opposite directions and only the DNA between them undergoes
exponential growth. Primers are of length 17 to 23, typically, and the amplified
DNA is a few hundred to several thousand bases. Evolutionary computation
can help pick good primers.

436 Evolutionary Computation for Modeling and Optimization

CCAGTGTTACTAGGCTACTACTGCGACTACG
|||||||||||||||||||||||||||||||
GGTCACAATGATCCGATGATGACGCTGATGC

CCAGTG==>>
||||||
CCAGTGTTACTAGGCTACTACTGCGACTACG

GGTCACAATGATCCGATGATGACGCTGATGC
||||||

<==TGATGC

Fig. 15.5. Double-stranded DNA and single-stranded DNA undergoing replication.

Existing primer-picking tools make sure that the DNA biophysics of a pair
of primers is correct. These tools match the melting temperature of the right
and left primer, make sure that the primer does not anneal with itself or its
partner, and check for other problems that can ruin a PCR reaction. (There
are potential problems specific to the organism for which the primers are being
designed.)

A problem many current primer-picking tools do not address is the prob-
lem of duplicate sequences. Given the size of genomes, 20-character DNA
sequences (e.g., typical primers) should be unique. If genomes were generated
at random, such sequences would be unique. However, many biological pro-
cesses duplicate sequences within a genome. Transposons, discussed in Section
15.1, are an example of a source of duplicate sequences. What effect does this
have on a PCR reaction?

If both members of a primer pair are inside a duplicated sequence in an or-
ganism, then they will amplify both copies. If the duplicates are identical, this
isn’t a problem for the PCR reaction (it may be one for the biologist). Often,
though, duplicated sequences have diverged, and so many different sequences
are amplified. These amplifications happen at slightly different exponential
rates and diverge from each another exponentially. In practice, primer pairs
in a duplicated sequence are unusable.

Another problem is created when one member of a primer pair is part
of a duplicated sequence. If the number of copies of this sequence is small,
then the exponential amplification of the paired sequence permits things to
work properly. Some transposons have a ridiculous number of copies, and
in this case, one-half of the primer pair anneals in so many places that the
amplification of the region flanked by the primer pair goes nowhere. So what
do we do?

The technique that follows was developed in the context of a large se-
quencing project in corn. Tens of thousands of primers were designed and
tested. The results of these tests can be used to create a fitness function for

Application to Bioinformatics 437

evolved predictors that guess which primers will or will not work. (This data
is available on the website associated with this book.)

The basic idea is this. Use primer-picking software to generate multiple
primers for a given sequence target. Performance predictors, trained on past
results, examine these primers and rate them. The more highly rated primers
will have a better chance of working if the predictors are correctly generalizing
about the sequence features that make primers work or fail. We also save a
set of primers with known performance on which to test our predictors; this
is called cross validation.

We need to chose a representation for our primer performance predictors.
In this case, a finite state automaton is a natural choice, since it can process
strings of characters and embed its opinion of them in its state space. Figure
15.6 shows a finite state automaton specialized for use on DNA. The automa-
ton shown is a Moore automaton with states labeled with the automaton’s
output.

? ?

?

+

−

C,G

A,T

C,G
A,T

C,G

A
G

C,T

A,T

C,G

A,T

Fig. 15.6. A finite state automaton that can be driven by DNA and used as a
performance predictor. (The input alphabet is C, G, A ,T, and the output alphabet
is +, −,?, interpreted as “good,” “bad,” and “don’t know.”)

In order to train finite state automata to predict PCR performance, we
need a fitness function. The data for training are in the format shown in
Figure 15.7 and are available on the text website. We will divide the data into

438 Evolutionary Computation for Modeling and Optimization

randomly selected training and cross-validation sets, with 1
5 of the sequences

(selected uniformly at random) in the cross-validation set. Primers in the
training set are marked with a 0, 1, or 2; those marked with 0 are considered
“good”; the others are considered “bad.” The fitness function will select for
automata that end in a + state on a “good” primer and a − state on a “bad”
primer. (Note: we are treating primers that don’t amplify their targets and
those that amplify multiple targets as “bad.”)

Definition 15.9 The raw prediction fitness of a finite state automaton
is computed as follows. Initialize the fitness to zero. Run each primer in the
training set through the finite state automaton. If it ends in a + state for
a good primer or a − state for a bad primer, add 1 to the fitness. If the
automaton ends in a ? state, add nothing to the fitness. Otherwise, subtract
1 from the fitness.

...
2 CTCCACTATAGCTGCCGTCG
2 TACAGGGACATCTGGATGGG
0 CTGCAGTACATCTACCACCACC
0 TGCAGAGCTTCGAGCACC
0 CGATCAGCATGTTCATTTGC
1 CAAGGAGGGAGTGATTCAGC
1 AAGAACAGCACTCAATCGGG
1 CAAGGAGGGAGTGATTCAGC
...

Fig. 15.7. Format for primer training data. (Numerical codes are 0 = primer works;
1 = primer amplifies multiple targets; 2 = primer does not amplify.)

Experiment 15.6 Write or obtain software for evolving Moore automata
with transitions driven by the DNA alphabet and state labels +, −, ?. Divide
randomly the available primer data from the text website into training (4

5)
and cross-validation (1

5) data. Treat the states of the automaton as indivisible
objects with the string of states forming the basis of the crossover operator.
Perform two-point crossover. Use three-point mutation. Each single-point mu-
tation should change a transition destination, state label, or the initial state.
Set the probabilities so that all arrows and labels in a given automaton have the
same chance of being affected. Evolve a population of 400 primer predictors for
100,000 mating events using a steady-state algorithm with size-7 tournament
selection. Let the predictors have 32 states. Run 30 populations.

Report both the fitness tracks and a cross-validated final fitness for each
run. This latter is the best fitness found when assessing the fitness of the entire
final population on the cross-validation data. Also, report how often the most
fit automaton according to cross validation is also the most fit according to

Application to Bioinformatics 439

the fitness on the training data. Report the density of each of the three state
types (+, −, ?) in each population. What do these densities suggest? Be sure
to save the best predictor from each run for later use.

The results of this experiment suggest a couple of modifications. Leaving
the automata the option of saying “I don’t know” gives the system flexibility,
but is it happening too often? Also, since there is a finite number of examples
of good and bad primers in the training set, there is a possibility of falling
into a useless local optimum: the predictor could predict that all primers were
of whatever type is most common. To avoid these pitfalls, let’s improve the
experiment.

Experiment 15.7 Take the available primer data and divide them into good
and bad primers. Randomly select, from whichever sort are more common, a
number of examples equal to the number that are less common and then discard
the excess of the more common type. This set of training data is now balanced;
we won’t get solutions which just guess whatever is most common. Modify
the evolutionary algorithm from Experiment 15.6 to add a lexical fitness: the
number of ? results, to be minimized. Rerun Experiment 15.6 both with and
without the lexical fitness. Discuss the effect of balancing the training data and
the impact of using the lexical fitness.

At this point, we will redesign the fitness function. Insisting that the pre-
dictor get the fitness right at its final state is somewhat brittle. Perhaps there
are automata that are on the right track, but get the final answer wrong.

Definition 15.10 The incremental reward fitness function is computed
in almost the same manner as the raw prediction fitness function. The dif-
ference is that the fitness is scored at each state transition. This yields more
finely grained fitness information. As a good primer runs through the predic-
tor, 1 is added for each + state and 1 is subtracted for each − state with ?
still yielding a reward of 0. The opposite is done for bad primers.

Experiment 15.8 Using the nonlexical version of the software, repeat Ex-
periment 15.7 with the incremental reward fitness function in place of the raw
fitness function. Document the impact. Examine your best predictor: are there
lots of ?’s near the initial state?

Now we can try applying some other techniques from earlier chapters.
Since there are many patterns in the training data (distinct possible sources
of fitness), it follows that different runs will find different patterns. How do
we combine patterns from distinct evolutionary runs?

Definition 15.11 The practice of hybridization consists in initializing an
evolutionary algorithm with superior genes from multiple populations that have
already been evolved.

440 Evolutionary Computation for Modeling and Optimization

Note that hybridization is a type of population seeding. Be careful; the
term hybridization can also refer to using an algorithm that combines evo-
lutionary and nonevolutionary techniques. A “hybrid optimizer” might, for
example, use a hill climbing optimizer to evaluate the fitness of a gene in
an evolutionary algorithm. This would permit the evolutionary algorithm to
search the landscape for good hills and then use the hill climber to climb
them. This sort of division of labor, while beyond the scope of this text, often
pays big dividends.

Experiment 15.9 Repeat Experiment 15.8, incorporating the 30 best-of-run
automata saved during Experiment 15.8 into the initial population (in addition
to random predictors). Does this affect the results?

There is a problem with hybridization as performed in Experiment 15.9: it
does not control for the effect of unmodified added evolution on the original
populations. The 30 hybridized automata evolved through 200,000 mating
events, while the others evolved through only 100,000. The next experiment
will take far longer to run, but should yield a more meaningful test of the
utility of hybridization.

Experiment 15.10 Repeat Experiment 15.8 with the following modifications.
Set the experiment to run for 100,000 mating events, but save the best-of-run
automata (according to the cross-validation data) at mating event 50,000. Now
initialize a new set of 30 runs with these best-of-run automata included in the
initial population and run them for 50,000 mating events. We have two sets
of runs, both run for 100,000 mating events, but with the second set benefiting
from hybridization. In addition to reporting the other performance measures,
discuss the impact of hybridization.

The number of states used is a measure of the amount of information a
finite state automaton can store. The experiments performed thus far yield
a baseline for performance. Let’s check the sensitivity of the system to the
number of states.

Experiment 15.11 Repeat Experiment 15.10 but with 48 and 64 states.
What impact does this change have on the baseline and hybridized runs?

For our last experiment, let’s check the sensitivity to mutation rate.

Experiment 15.12 Repeat Experiment 15.11 using only the number of states
that performed best. Use 1-, 5-, and 7-point mutation and compare with the
3-point mutation used in Experiment 15.11. What impact does this change
have on the baseline and hybridized runs?

This section is a modest introduction to using machine learning to im-
prove primer design. The technique of hybridization is a potentially valuable
one. The incremental reward fitness function is an example of a redesign of a
fitness function that makes the hill climbing functionality of an evolutionary

Application to Bioinformatics 441

algorithm more effective. There are a number of other possible technologies
for this sort of machine learning: Markov modeling of good and bad primers,
for example. There are also other EC techniques we could use, such as graph-
based algorithms. We now leave primers for a much stranger application, DNA
bar codes, with a new type of fitness function.

Problems

Problem 705. Is a predictor that has a ? on all its states in a local optimum
or a big flat space with uphill paths at its edge? Defend your conclusions.

Problem 706. Would a real function optimizer benefit from hybridization?
Explain.

Problem 707. Prove that there is a finite state automaton that can achieve
maximal raw prediction fitness on the training data. Assume that no primer
appears in the training set twice.

Problem 708. Explain why it is impossible to receive a reward on every state
transition when computing incremental reward fitness, no matter what finite
state automaton you use.

Problem 709. The system developed in this section runs primers through
the finite state automaton one at a time. Come up with a fitness function
that scores finite state automata on pairs of primers that are used together.

Problem 710. Is 32 states a reasonable number for the task in this section?
Your answer should involve mathematics, probably counting arguments.

Problem 711. Essay. One of the advantages of GP automata is that deciders
compress the bandwidth of the environment. Specify and defend a decider
language that uses inputs of 3- or 5-base windows (instead of a single base at
a time as the finite state automata do), permitting GP automata to evaluate
primers.

Problem 712. Essay. Primers work or fail in pairs. That means that a
primer with a bad score might have gotten a better one if it had been paired
with a different partner. Given this, can we still hope to get useful results
from the primer prediction system given in this chapter? Is it important that
we are picking the best from among multiple primers when we use the system
to select new primers?

Problem 713. Essay. Address the following statement. The finite state au-
tomaton whose existence was proved in Problem 707 would not perform well
on the cross-validation set.

Problem 714. Essay. Would hybridization help more with the grid-robot
tasks in Chapters 10 and 12 or with playing Iterated Prisoner’s Dilemma?

442 Evolutionary Computation for Modeling and Optimization

Problem 715. Essay. In Chapter 10, several representations are used for
Tartarus controllers: strings, parse trees, and GP automata. Rank them by
the relative benefit you think they would get from hybridization.

Problem 716. Essay. One of the more controversial ideas in evolutionary
computation is whether there are building blocks that can be brought together
by crossover. The reason for the controversy is mostly failure to think on the
part of various vociferous proponents and opponents of the idea. The “truth”
is that some problems have neat easy-to-assemble building blocks, and others
don’t. Your topic: can the degree to which hybridization improves performance
be used as an objective probe for the presence of building blocks?

15.3 DNA Bar Codes

Exp 15.13

Exp 15.14

Exp 15.15

Exp 15.16

Exp 15.18

Exp 15.17

13 Conway’s lexicode algorithm.
14 Greedy fitness.
15 Greedy closure evolutionary algorithms.
16 Alternative crossover.
17 Exploring seed size.
18 Exploring population size.

Fig. 15.8. The topics and dependencies of the experiments in this section.

Our goal in this section is to find an algorithm for creating error-correcting
codes for DNA libraries. These codes can be used to identify the source that

Application to Bioinformatics 443

contributed that DNA as part of a sequencing project. We will take some long
detours and, along the way, invent a new type of evolutionary algorithm.

The DNA bar codes that we study in this text are short sequences of
DNA used to mark genetic constructs so that they can be identified later.
They should not be confused with another sort of naturally occurring DNA
bar code that is used to identify animals. All animals tested so far have the
gene cytochrome oxidase C. So far this gene is different, at the DNA sequence
level, in every animal that has been tested. This means that this gene can be
used to “bar code” animals. That is, it can be used as a unique identifier like
the VIN number on an automobile or serial number on a DVD player. This
quick identification of an animal with a small kit, usable by biologists in the
field or customs agents, is both useful and convenient. It is also an example of
convergent terminology. Both the DNA error correcting tags developed in this
section and the unique genetic sequences found in animals are well described
by the name “DNA bar code.” Context should suffice to separate these two
meanings of the term.

Greedy algorithms are familiar to people who study programming or dis-
crete math. (We defined them in Chapter 7, on page 185.) A few, like the
algorithms for finding a minimal-weight spanning tree, can be proven to yield
optimal results. Other problems, like graph coloring and the Traveling Sales-
man problem, admit a plethora of greedy algorithms, all of which yield sub-
optimal results. While it would seem that the control of greedy algorithms is
a natural target for evolutionary computation, relatively few methods have
been devised. There are several possible approaches. The approach explored
in this section seeks to deflect the behavior of a greedy algorithm by giving
it a small hint. The hint is the target of our evolutionary computation, and
we call the technique used to evolve good hints a greedy closure evolutionary
algorithm.

Definition 15.12 A greedy closure evolutionary algorithm is an evolution-
ary algorithm that uses a representation consisting of partial structures called
seeds. The seeds are completed (closed) with a greedy algorithm. The quality
of the complete structure, as finished by the greedy algorithm, is the fitness of
the seed.

The structures created from the seeds during evaluation of the fitness
function will be said to have grown from those seeds. In order to understand
the bioinformatic application in this section, DNA bar codes, we will need
both a small amount of additional molecular biology and some basic theory
of error-correcting codes. We begin with the error-correcting codes.

Error-Correcting Codes

An error-correcting code is a collection of strings to be sent over a possibly
noisy communications channel. While any collection of strings is technically a

444 Evolutionary Computation for Modeling and Optimization

code, the science of error-correcting codes seeks to create codes that permit us
to correct some of the errors that occur during transmission. Thus, a complete
error correction system contains not only the code but a decoding algorithm.
Let’s look at an example.

Example 34. Imagine a pair of neighbors one of whom is selling a car and the
other of whom is contemplating purchasing the car. The neighbors live across
a ravine from one another and must cross an arroyo to reach one another.
The person selling the car has told the buyer that she must decide whether
the price is acceptable by 5:00 p.m. Otherwise, the car goes to another buyer,
who is offering a higher price but is not a friend and neighbor. At 3:50 p.m.,
a huge storm blows up and wipes out the bridge and the phone lines (and the
cell tower for you high-tech types). The potential buyer must get a yes or a
no to the seller. The neighbors walk out into the backyards of their houses
and try to talk over the sound of the flood waters. The seller realizes that it is
almost impossible to hear and yells something three times. What can happen?

Well, “yes” and “no” don’t sound that similar, but with raging flood wa-
ters, there is a chance of mishearing what was said. Let’s assume that there
is a probability α of mishearing the result. Then, we get a simple binomial
distribution (see Appendix B) which tabulates this way:

Answers
misheard Probability α = 0.1 α = 0.2

0 (1 − α)3 0.729 0.512
1 3α(1 − α)2 0.243 0.384
2 3α2(1 − α) 0.027 0.096
3 α3 0.001 0.008

A code requires a decoding algorithm. In this case, we will take a majority
vote on the answers heard. What does this do to the probability of error?
Well, for α = 0.1, the chance of error drops from 0.1 (with only one yell) to
0.028 for majority vote over three yells. This is about a 3.5-fold decrease in
the chance of error. When α = 0.2, the improvement is from 0.2 to 0.104,
about a 1.9-fold improvement. Let’s plot this “fold improvement:”

FoldImprovement(α) =
α

α3 + 3α2(1 − α)
=

1
3α2 − 2α3 .

Application to Bioinformatics 445

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

x/(x*x*x+3*(1-x)*x*x)
1

When α is small, fold improvement in the chance of understanding correctly
with three yells is huge, with a vertical asymptote at zero. The technique
ceases to help at α = 0.5 (as one would expect). The behavior for α > 0.5 is
weird, but no one would use a communications channel with more that a 50%
chance of miscommunication.

The code used in the example is called the odd-length repetition code of
length 3. When working with error-correcting codes, the usual thing is to send
bits; flipping a bit constitutes an error. If we repeat each bit an odd number
of times, then the received bits can be decoded with a simple majority vote.
This means that any communications channel that has the chance of flipping
a bit α < 0.5 can be used with any desired degree of accuracy. The more times
you repeat the bit, the more likely you are to decode the bit correctly. What
is the price? Repeating the bit uses up a lot of bandwidth.

A repetition code of length 2n + 1 can decode n errors, but it is not very
efficient. A code is a collection of strings, or code words. The code words of
the length-3 repetition code are {000, 111}. Any code has a set of code words,
and they are the words that are sent down the communications channel. The
received words are the ones we try to correct. If we receive a code word, we
assume that there were no errors. If we receive a word that is not a code word,
then we try to find the code word closest to the received word. In this case,
the notion of closest used is the Hamming metric, which defines the distance
between two words to be the number of positions in which they disagree.

If we take the rate at which we can send bits on the channel times α, we get
the fundamental rate of the channel. Claude Shannon proved that you can use
a channel at any rate below its fundamental rate with any positive probability
of error; i.e., you can get the error probability down to any level you like above
zero. Shannon’s theorem does not tell you how to construct the code; it only
proves that the code exists. Most of the current research on error-correcting

446 Evolutionary Computation for Modeling and Optimization

110

111

101

010

000

001

011

100

Fig. 15.9. A 3-cube formed by joining the words of length 3 over the binary alphabet
with edges connecting words at Hamming distance 1.

codes amounts to finding constructions for codes that Shannon proved must
exist decades ago.

At this point we change viewpoint a little to get a geometric understanding
of error-correcting codes. The code words in the yelling-over-the-flood exam-
ple, 000 and 111, are at opposite corners of the 3-hypercube shown in Figure
15.9. If we take the binary words of length n and join those that have Ham-
ming distance 1, then we get an n-hypercube. This is the underlying space
for standard error-correcting codes. Code words are, geometrically, vertices in
the hypercube.

A ball is a collection of vertices at distance r or less from a distinguished
vertex called the center. The number r is the radius of the sphere. Hamming
balls are sets of vertices of a hypercube at Hamming distance r or less from a
distinguished vertex called the center. If each word of a code is in a Hamming
ball of radius r that is disjoint from the ball of radius r around any other
code word, then any set of r errors during transmission leaves the received
word closer to the transmitted word than to any other code word. This means
that a code that is a set of centers of disjoint Hamming balls of radius r can
decode up to r errors.

We call a Hamming ball of radius r an r-ball. A collection of centers of
disjoint r-balls is called a sphere packing of radius r. The problem of find-
ing good error-correcting codes is identical to that of packing spheres into
a hypercube. A good introduction to error-correcting codes is [47]. A book

Application to Bioinformatics 447

that puts codes into an interesting context and continues on into interesting
fundamental mathematics is [56].

This view of code words as sphere centers will be fundamental to under-
standing the algorithm that produces DNA bar codes. Another useful fact is
left for you to prove in the Problems. We call the smallest distance between
any two code words the minimum distance of the code. If the minimum dis-
tance between any two words in a code is 2r + 1, then the code is a packing
of radius-r spheres. We now know enough coding theory to continue on to the
molecular biology portion of this section.

Edit Distance

DNA sequencers make errors. If those errors were always substitutions of one
DNA base for another, we could correct them with a version of the binary
error-correcting codes, upgraded to use the 4-letter DNA alphabet. Unfortu-
nately, sequencing errors include finding bases that are not there (insertions)
and losing bases that are there (deletions). These errors are called, collectively,
indels. Our first task is to find a distance measure that can be used to count
errors in the same way that the Hamming distance was used to count bit flips.

Definition 15.13 The edit distance between two strings is the minimum
number of single-character insertions, deletions, and substitutions needed to
transform one string into the other.

From this point on we will denote the Hamming distance between two
strings x and y by dH(x, y) and the edit distance by dE(x, y). It is easy to
compute Hamming distance, both algorithmically and by eyeball. In order to
compute the edit distance, a more complex algorithm is required.

Algorithm 15.2 Edit Distance

Input: Two L-character strings a, b
Output: The edit distance dE(a, b)
Details:

int dEdit(char a[L],char b[L]){//edit distance

int i,j,q,r,s,M[L+1][L+1];

for(i=0;i<=L;i++){//initialize matrix
M[i][0]=-i;
M[0][i]=-i;

}
//fill in the dynamic programming matrix
for(i=1;i<=L;i++)for(j=1;j<=L;j++){
q=M[i-1][j-1];

448 Evolutionary Computation for Modeling and Optimization

if(a[i-1]!=b[j-1])q--;
r=M[i-1][j]-1;
s=M[i][j-1]-1;
if(s>q)q=s;
if(r>q)q=r;
M[i][j]=q;

}

return(-M[L][L]); //the lower right corner is -(edit distance)

}

The edit distance algorithm is a modification of a dynamic programming
algorithm used to perform sequence alignment. If you are interested in the
connections between sequence alignment and the computation of edit distance,
read [33]. The edit and Hamming distances have a one-sided relationship. In
the Problems, you will prove that Hamming distance is an upper bound on
edit distance. We now do an example to show that the separation between
Hamming and edit distance can be almost the length of the strings.

Example 35. Notice that

dH(CACACACACA, ACACACACAC) = 10,

while

dE(CACACACACA, ACACACACAC) = 2.

To see that the edit distance is two, delete the last character and insert it
as the first.

Conway’s Lexicode Algorithm

We will use Conway’s lexicode algorithm as the greedy algorithm in our greedy
closure evolutionary algorithm. It is a greedy algorithm that permits us to
build error-correcting codes. A good discussion of its use for standard (binary
Hamming) codes appears in [15].

Algorithm 15.3 Conway’s Lexicode Algorithm

Input: A minimum distance d, an alphabet A, and a word length n
Output: A code C with minimum distance d over An

Details:

Application to Bioinformatics 449

Place the list of all words of length n over A in lexicographical (alphabetical)
order. Initialize an empty set C of words. Scanning the ordered collection of
words, select a word and place it in C if it is at distance d or more from each
word placed in C so far.

Conway’s lexicode algorithm is a greedy algorithm that creates a code that
is constructively of minimum distance d. As long as the space of words can be
alphabetized, the algorithm produces a code, no matter what notion of dis-
tance is used. This turns out to be critical for finding error-correcting codes
for the edit metric. The standard constructions for error-correcting codes rel-
ative to the Hamming metric don’t seem to have versions over the edit metric.
Briefly, the edit metric is far messier than the Hamming metric. Let’s do an
example.

Example 36. Suppose we run Conway’s algorithm on the edit metric space for
5-letter DNA words. Then the resulting set of words at pairwise edit distance
at least 3 is

AAAAA AACCC AAGGG
AATTT ACACG ACCAT
ACGTA ACTGC AGAGT
AGGAC ATATC ATTAG
CAACT CAGTC CATGA
CCCCA CCGAG CGCGC
CGTTG CTAGG CTCTT
CTTCC GAAGC GATCG
GCATT GCTAA GGCAG
GGGCT GTGGA TAATG
TAGCA TCCTC TCGGT
TGACC TGTAT TTCAA

DNA Bar Codes, At Last

We now have all the parts needed to create a greedy closure evolutionary
algorithm to locate error-correcting codes for the edit metric over the DNA
alphabet. We still lack, however, a motive for doing so. As we noted in Section
15.1, some organisms have a great deal of repeated sequences. The human
genome project fragmented human DNA in several different ways, sequenced
the fragments, and then fitted overlapping fragments together like a puzzle.
In an organism like corn, with far more repeated sequences than humans, the
step of fitting the puzzle together isn’t possible. The repetitive nature of the
sequences makes too many of the puzzle pieces look the same.

A related problem is that of locating the genes in an organism. A gene is a
stretch of DNA that makes a protein. Most DNA is not part of a gene, rather
it is “junk” DNA. Junk DNA may in fact be junk, or it may be a transposon

450 Evolutionary Computation for Modeling and Optimization

sequence, or it may play a regulatory role. In any case, most applications
of genomics need to know where the genes are. Genes can be located by
sequencing their mRNA transcripts. While genes may be hard for humans
to spot, an organism “knows” where its genes are; it can transcribe them.
An expressed sequence tag (EST) is exactly an mRNA transcript. A complex
biochemical process can be used to intercept transcribed genes, transform
the mRNA into complementary DNA (cDNA). This cDNA is then placed
in constructs in E. coli (a kind of bacteria). A collection of E. coli–carrying
cDNA is called a genetic library. Which ESTs are present in a given bacteria
is random, and, so, an EST sequencing project is a random sampling of the
transcribed genes. The bacteria can be grown, increasing the amount of the
cDNA. Primer annealing sites in the constructs placed in the E. coli permit
selective amplification of the cDNA, providing enough DNA for sequencing.
So what is the problem?

Most genes are not transcribed all the time. Heat shock genes in plants
require the plants to be subjected to heat stress before they are transcribed.
Genes that confer resistance to a parasite are typically transcribed only when
the parasite is present. Genes used in development of a young organism cease
being transcribed in the adult. There are thousands of genes in a given organ-
ism that are transcribed only in some weird circumstance.

In preparing a genetic library, samples are taken from as many organismal
states as possible. An EST sequencing project in corn, for example, will use
libraries prepared from different tissues, developmental stages, and different
stress states (such as drought or disease). For economic reasons, these libraries
are pooled before sequencing. A DNA bar code is a short sequence of DNA
incorporated into the genetic construct placed in the E. coli. This bar code
is used much the way bar codes are used in grocery stores: to identify the
product. Each tissue, developmental stage, and stress type is assigned its
own bar code. When a pooled library is sequenced, the bar codes allow the
researchers to figure out which states stimulate which genes. If the bar codes
happen to be drawn from an edit metric error-correcting code, then sequencing
errors that hit the bar code might not prevent identification of the bar code.
With this motivation, let’s move on to the algorithm for finding sets of bar
codes.

The primary attribute of a code, after its length and minimum distance,
is its size. A large code is one that packs more spheres into the same string
space. All codes found by the lexicode algorithm (Algorithm 15.3) have the
property that they cannot accept any more words. However, they might not
be as large as possible. Our evolutionary algorithm searches for larger codes
within a fixed word length and minimum distance.

Experiment 15.13 Implement Conway’s lexicode algorithm for the edit met-
ric over the DNA alphabet. Run the algorithm for the following parameter sets:
length 5, distance 3; length 6, distance 3; length 8 distance 5. Verify both the
sizes (from Table 15.1) and the membership in the (5, 3) case (from Example

Application to Bioinformatics 451

Code Minimum
Sizes Distance

Length 3 4 5 6 7 8 9
3 4 - - - - - -
4 12 4 - - - - -
5 36 8 4 - - - -
6 96 20 4 4 - - -
7 311 57 14 4 4 - -
8 1025 164 34 12 4 4 -
9 3451 481 90 25 10 4 4

10 * 1463 242 57 17 9 4
11 * * 668 133 38 13 4

* denotes big.
- denotes empty.

Table 15.1. Size of DNA edit-metric lexicodes found with the unmodified lexicode
algorithm.

36). Record the running time of the algorithm in all three cases. Now modify
the algorithm to first check the Hamming distance. Since Hamming distance
exceeds edit distance, if a word is too close to a word already in the code in
the Hamming sense, then it is too close in the edit sense. This can be done in
two ways: either (i) scan for Hamming rejection against all words in the code
first, then scan for edit rejection, or (ii) check Hamming and then edit rejec-
tion of a potential new word against each word in the code. Try both possible
modifications and report the impact on runtime.

Our evolutionary algorithm will search for a length-n minimum-distance
d code. The structure we will evolve (our seed) is a set of 3 words at mutual
distance d. Instead of starting Conway’s algorithm with an empty code C, we
will use a seed as the starting point. Let us now define our fitness function.

Definition 15.14 The greedy closure fitness with Conway’s algo-
rithm, or greedy fitness for short, is computed as follows. Initialize the
code in Conway’s algorithm with a set S of words already at mutual distance
d. Run the algorithm. The fitness of S is the size of the resulting code.

A fact we have not yet established is that the size of codes produced by
Conway’s algorithm can vary when different seeds are used. A simple sampling
experiment can settle this question.

Experiment 15.14 Using the fastest version of the lexicode algorithm found
in Experiment 15.13, implement the greedy fitness function. Evaluate this
function on 20,000 sets of three words of length 6 with a minimum distance
of 3 generated at random over the DNA alphabet. To get such sets of words:
generate a first word; generate a second repeatedly until it is edit distance 3

452 Evolutionary Computation for Modeling and Optimization

or more from the first word; generate a third word repeatedly until its edit
distance from the first and second words is at least 3. Plot a histogram show-
ing the number of codes of each size found. Compare your results with Figure
15.10.

The result of the lexicode algorithm without a seed, 96, is slightly better
than the mode code size of 95 for length-6 distance-3 codes in our version of
the sampling experiment. The best, 103, contained just over 7% more words.
Since longer bar codes are expensive in terms of biochemical success in creating
libraries, squeezing in a few more bar codes at a given length is worth the
trouble. From a mathematical perspective, getting some idea as to how large
the codes can be is itself interesting. In any case, we see that using seeds does
change the behavior of Conway’s algorithm, and so using seeds can “control”
the algorithm. But how?

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 1030

1005

2010

3015

4021

Fig. 15.10. A histogram showing the distribution of sizes of length 6, distance 3
edit-metric codes on the DNA alphabet located in 20,000 random samples of 3-word
seeds. (The largest code located by sampling has 103 code words.)

A code with minimum distance d is made of words that are at least distance
d apart in the string space from which the code is drawn. When we select a
word to be in the code, we exclude all words within distance less than d of
the selected word. By selecting a few words at the beginning, we exclude a
large number of other words from consideration. This means that the control
that using seeds has over the behavior of the lexicode algorithm is pretty
substantial, but also quite unpredictable. A word chosen to be in the seed
excludes a word the algorithm would otherwise have chosen. This in turn
causes other words to be chosen, and a domino effect cascades through the
code. Not only does the choice of seed change the size of the code, but it also
changes the membership of the code far more than one might suppose given
the size of the seed.

Application to Bioinformatics 453

Since understanding the impact of seed choice on code size is difficult,
choosing seeds is a sensible task for an evolutionary algorithm. An evolution-
ary algorithm does not require understanding to function. We have a repre-
sentation, the 3-word seed, and we have a fitness function, the greedy fitness
of seeds. We still need variation operators.

Definition 15.15 For two seeds, uniform exclusive crossover is per-
formed as follows. If two seeds have words in common, then we leave one
copy in each seed. The words not in common are pooled and then randomly
assigned during crossover. Uniform exclusive crossover is similar to uniform
crossover for string genes but (i) it does not have positions the way a string
does and (ii) it does not permit duplication of words by crossover.

Definition 15.16 We define seed point mutation to consist in changing
one character in one uniformly selected word within a seed to a new character
selected uniformly at random.

Definition 15.17 We define seed word mutation to consist in changing
one word in a seed to a new word selected uniformly at random.

A seed is a collection of words, so far three words, that obey the minimum-
distance rule for the code the size of which we are trying to maximize. All three
of the variation operators defined above have the potential to create seeds that
violate this minimum-distance rule. To fix this, we extend the fitness function
to award a fitness of zero to any seed that violates the minimum-distance
criterion. We are ready to construct the first evolutionary algorithm.

Experiment 15.15 Write or obtain code for the following steady-state evo-
lutionary algorithm. Use size-7 tournament selection. Operate on a population
of 200 seeds containing three words each of length n = 6 and minimum dis-
tance d = 3. Generate the initial population at random with code words at
least distance 3 from each other. Use the greedy fitness function. Use uniform
exclusive crossover 50% of the time and no crossover in the remainder of the
mating events. Optionally, use seed point mutation or seed word mutation.
Perform 100 runs using both mutation operators on each new seed and also
100 runs using one or the other mutation operator with equal probability.

Save the maximum and population average fitness of those population
members that do not have fitness zero. Also, save the number of zero-fitness
seeds. Give histograms of the best final fitness for both sets of runs using dif-
ferent mixes of mutation operators. Does the appearance of a new best fitness
have a subsequent impact on average fitness or the number of zero-fitness in-
dividuals? Which type of mutation turned in the best performance?

The above is our first implementation of a greedy closure evolutionary
algorithm. In the Problems we explore other possible targets for this sort of
algorithm. As a tool for locating bar codes, it avoids the problem of finding

454 Evolutionary Computation for Modeling and Optimization

an encoding that stores an entire code. Selecting roughly 100 code words from
46 length-6 DNA words is a daunting problem, especially since the minimum-
distance constraint creates a vast degree of interdependence among the words.
The greedy closure algorithm we used fails badly to make a global search of
the space of codes; instead, it searches some subset of those codes with great
efficiency. It is also a completely new type of evolutionary algorithm, and so
the “knobs,” or operational parameters, will need to be explored.

Experiment 15.16 Repeat Experiment 15.15, using the mutation opera-
tor(s) that turned in the best performance, but modify the crossover probability
and perform runs with 0%, 25%, 75%, and 100% chances of doing crossover.
What is the impact?

Another critical parameter is seed size.

Experiment 15.17 Repeat Experiment 15.16, using the crossover rate that
turned in the best performance. Change the algorithm so that it uses seeds of
size 1, 2, and 4. What is the impact of varying seed size?

Let us also check the impact of population size and sharpness of selection.

Experiment 15.18 Repeat Experiment 15.17, using the seed size that turned
in the best performance. Survey all possible combinations of population sizes
100, 200, and 400, and tournament sizes 4, 7, and 15. What is the impact?

The structure of these experiments is not a sound one. Experiments 15.15–
15.18 assume that once we have found an optimum for one parameter relative
to the algorithm’s current settings, it remains optimal. If we knew that there
was no interaction between, say, the mutation operator(s) and the tournament
size, then we would not have a problem. A complete factorial study, however,
would take an inordinate amount of time. You may want to do a final project
that is either a sparse factorial study or fills in parts of an ongoing one.

This section barely scratches the surface of both edit-metric error-correcting
codes (note that decoding is left as an exercise) and of the application of greedy
closure evolutionary algorithms. Other applications are suggested in the Prob-
lems. A natural thought is to attempt to apply the setup in this chapter to
standard (binary Hamming) error-correcting codes. The author has done so
and failed to improve on the known best codes for a given length and mini-
mum distance. Given that the mathematical theory is far more beautiful for
standard codes, it is not surprising that a messy technique like evolutionary
algorithms cannot outperform it. Nevertheless, please contact the author if
you manage a breakthrough.

Problems

Problem 717. Reread Example 34. Compute a general formula for the fold
improvement caused by using a length-(2n + 1) repetition code in the proba-

Application to Bioinformatics 455

bility of misunderstanding a single-bit message when the probability of mis-
understanding each individual bit is α. Plot the function for 2n + 1 = 5 in a
manner like that in the example for 2n + 1 = 3.

Problem 718. Prove that if a collection C of code words has the property
that for any u, v ∈ C, the Hamming distance from u to v is at least 2r + 1,
then the Hamming ball of radius r around any code word in C contains no
other code word in C.

Problem 719. Suppose that we have a matrix Mk whose columns are every
binary word of length k, except the all-zero word, in counting order. The
matrix M3 is shown below.

M3 =

⎡
⎣0 0 0 1 1 1 1

0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎤
⎦

Let HCk be the set of words that are the null space of the matrix, i.e., binary
vectors x of length 2k − 1 such that Mk ∗ x = 0. For example, since

⎡
⎣0 0 0 1 1 1 1

0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎤
⎦ ∗

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
1
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[
0 0 0

]
,

we see that x = (1, 0, 0, 1, 1, 0, 0) is in HC3. Prove that HCk is a code with
minimum Hamming distance 3 between any two words.

Problem 720. Enumerate (list the members of) HC3, defined in Problem
719.

Problem 721. Let dH(x, y) be the Hamming distance between two strings x
and y, and let dE(x, y) be the edit distance. Prove that

dE(x, y) < dH(x, y).

Problem 722. Compute the edit distance and show a minimal sequence of
edits for all pairs of the following words: {ACGTA, GCTAA, AAGGG}.

Problem 723. Review Section 7.4. Outline a greedy closure algorithm for
finding Costas arrays.

Problem 724. Outline a greedy closure algorithm for the Traveling Salesman
problem. Is the Traveling Salesman problem a natural target or a poor one?

456 Evolutionary Computation for Modeling and Optimization

Problem 725. Prove that a code found with Conway’s algorithm, using a
seed or not, is maximal in the sense that no larger code with the same length
and minimum distance contains it.

Problem 726. Using the edit distance lexicode algorithm, give a decoding
algorithm for edit metric lexicodes. Assume that you are using DNA bar codes
of length n and minimum distance d = 2r + 1. Given a received (sequenced)
word, you should return either a member of the code C or an error message
(if the received word is not closer to one code word than another).

Problem 727. Essay. A direct encoding of an error-correcting code would
require a gene that picks out the members of the code from the space of words.
Is such a direct encoding practical for the type of code located in Experiment
15.15?

Problem 728. Essay. Is Conway’s algorithm specific to the Hamming or
edit metric or can it be used with any notion of distance? With what kinds
of notions of distance can it be used?

15.4 Visualizing DNA

In this section, we will make a substantial departure from applied bioinfor-
matics and enter the realm of speculative bioinformatics. In the course of this,
we will create a data-driven, evolvable fractal visualization tool. The starting
point is a fairly well-known type of fractal algorithm called a chaos game.

Chaos Game Fractals

A chaos game is characterized as the process of generating a fractal by ac-
cumulating the positions of a moving point. This moving point is repeatedly
displaced toward one of a fixed set of points, e.g., the vertices of an equilateral
triangle. Figure 15.12 shows the Sierpiński triangle. It is generated by a chaos
game in which a moving point is displaced, in each iteration, halfway from its
present position toward a randomly selected vertex of a triangle. Figure 15.12
is plotted over 100,000 iterations of this process.

Algorithm 15.4 Simple chaos game

Input: A set of fixed points in the real plane
Output: A set of points in the real plane
Details:

Application to Bioinformatics 457

Exp 5.19

Exp 5.20

Exp 5.21

Exp 5.22

Exp 5.23

Exp 5.24

Exp 5.25

19 Iterated function systems.
20 Change fitness functions.
21 An alternative mutation operator.
22 Chaos automata.
23 Using different data.
24 Exploring the fitness functions.
25 Exploring the fitness functions.

Fig. 15.11. The topics and dependencies of the experiments in this section.

A point, called the moving point, is initialized to the position of one of
the fixed points. An updating of the moving point’s position is performed by

Fig. 15.12. The Sierpiński triangle generated by a 3-cornered chaos game.

458 Evolutionary Computation for Modeling and Optimization

choosing one of the fixed points uniformly at random and then averaging the
current position of the moving point with that of the fixed point. The moving
point is moved halfway to the chosen fixed point.

A series of updatings is made to burn in the moving point. This process
permits the moving point to enter, up to the resolution of plotting, the fractal
that is characteristic of the chaos game. Typically, a few hundred updatings are
more than enough to burn in the moving point. During the burn-in, the chaos
game just updates the moving point’s position. In the post-burn-in period, the
moving point is plotted.

The character of the fractal resulting from a chaos game is controlled by
the number of fixed points being used and the order in which those points
are chosen to specify the direction of motion for the moving point. This latter
point is key. The Sierpiński triangle is generated by using the vertices of a
regular triangle, with the next point chosen uniformly at random. If instead,
we choose points with some degree of nonuniformity, then the resulting fractal
is a subset of the fractal obtained by driving with uniform random data.

If the 4 points at the vertices of a square are used as the fixed points, the
chaos game produces a dense subset of the square. If the fractal is visualized,
the square simply fills in. This represents an opportunity for the visualization
of DNA or RNA data in a manner discussed in [35] and [18]. If we assign
each corner of the square to one of the 4 DNA bases, then deviations from
uniformity of the nucleic acid sequence will appear as gaps in the square filled
in by the fractal process.

Figure 15.13, for example, demonstrates the results if we drive a chaos
game on the square with sequence data from an HIV virus. As each base,
C, G, A, T, is handed to the fractal process, the moving point is moved
halfway from its current position to the corner of the square associated with
the base. The averaging or halfway moves subdivide the square by sequence
data, as shown in the left part of Figure 15.13. The resulting gaps indicate
subsequences that do not appear in the HIV genome. In this case, many of
the gaps can be attributed to the HIV virus’s lack of methylization sites.

Interpretation of chaos game fractals such as those shown in Figure 15.13
requires a good deal of biological knowledge. The lack of methylization sites is
obvious in Figure 15.13 only if you know the sequences for methylization sites
and can picture where they are on the chaos game’s square. This problem
becomes more acute when an attempt is made to use these techniques to
derive visual representations of protein sequences. Proteins are built out of 20
building blocks, called amino acids, rather than the 4 bases of DNA or RNA.
In [52], both placing the 20 amino acids in a circle and extending the fractal
into a third dimension are attempted. As one would expect, the interpretation
difficulties grow.

A number of biological issues can be used to inform the choices made in
designing a biological representation for a fractal. The map from nucleic acid
to protein reads DNA in triplets, producing 64 codons. These codons are in

Application to Bioinformatics 459

C G

AT

TC

TT TA

C G

A

TGG

Fig. 15.13. The diagram in the left half of this figure shows how sequence data
subdivide the square in a 4-cornered chaos game. Such a chaos game, driven by HIV
sequence data, is displayed in the right half of the figure.

turn taken by a many-to-one map (the genetic code) onto the 20 amino acids
as well as a stop codon. This stop codon indicates the end of transcription of
a given sequence of DNA. The many-to-one map that forms the genetic code
is the same in almost all organisms. The choice of which of several possible
codons to use to specify a given amino acid, however, has a substantially
organism-specific character. These biological considerations will factor into
the design of evolvable fractals. Our next step is to generalize the chaos game.

Iterated Function Systems

Chaos games are a particular type of iterated function system [10]. In an it-
erated function system (IFS), a number of maps from the Cartesian plane to
itself are chosen. These maps are then called in a random order, according to
some distribution, to move a point in a manner similar to the chaos game.
A dynamical system is a process that moves a point in space. The iterated
function systems we use in this section are a stochastic (as opposed to deter-
ministic) dynamical system; they move points in a random fashion constrained
by the particular choice of contraction maps. A dynamical system breaks the
space its points are in into two categories. The first category are points that
the dynamical system will never reach again even if it hits them once. The
second category are those that the dynamical system visits over and over with
some positive probability. The second category of points is called the attrac-
tor (or attractors) of the dynamical system. Iterated function systems have
a single attractor; some dynamical systems have several. Interested students
should check out a text on dynamical systems, many of which are available
in a typical college library. The attractor of an iterated function system is a
fractal. [10] describes the properties of the fractal attractors of iterated func-

460 Evolutionary Computation for Modeling and Optimization

tion systems in some detail. In order to get a well-behaved fractal, the maps
in the iterated function system must have the following property.

Definition 15.18 Let d(p, q) be the distance in the Cartesian plane between
points p and q. A function f : R

2 → R
2 from the plane to itself is called a

contraction map if for any pair of points p, q,

d(p, q) > d(f(p), f(q)).

An iterated function system made entirely of contraction maps has a bounded
fractal attractor. A rich class of maps that are guaranteed to be contraction
maps is that of similitudes.

Definition 15.19 A similitude is a map that performs a rigid rotation of
the plane, displaces the plane by a fixed amount, and then contracts the plane
toward the origin by a fixed scaling factor. The derivation of a new point
(xnew, ynew) from an old point (x, y) with a similitude that uses rotation t,
displacement (∆x, ∆y), and scaling factor 0 < s < 1 is given by

xnew = s · (x · cos(t) − y · sin(t) + ∆x), (15.1)
ynew = s · (x · sin(t) + y · cos(t) + ∆y). (15.2)

To see that a similitude must always reduce the distance between two points,
note that rotation and displacement are isometries (they do not change dis-
tances between points). This means that any change is due to the scaling
factor, which necessarily causes a reduction in the distance between pairs of
points. Let’s look at a couple of iterated function system fractals.

Example 37. An iterated function system is a collection of contraction maps
together with a distribution with which those maps will be applied to the
moving point. In Figure 15.14 are a pair of fractal attractors for iterated
function systems built with the 8 similitudes shown in Table 15.2. These
similitudes are called uniformly at random.
The similitudes in this example were generated at random. The rotation fac-
tors are in the range 0 ≤ θ ≤ 2π radians. The displacements are selected
uniformly at random to move the origin to a point with −1 < x, y < 1. The
scaling factor is chosen uniformly at random in the range 0 < s < 1.

15.5 Evolvable Fractals

Our goal is to use a data-driven fractal, generalizing the 4-cornered chaos
game, to provide a visual representation of sequence data. It would be nice if
this fractal representation could work smoothly with DNA, protein, and codon
data. These sequences, while derived from one another, have varying amounts
of information and are important in different parts of cells operation. The

Application to Bioinformatics 461

Fig. 15.14. The fractal attractors for the iterated function systems given in Example
37.

462 Evolutionary Computation for Modeling and Optimization

First IFS Second IFS
Map Rotation Displacement Scaling Map Rotation Displacement Scaling
M1 4.747 (0.430, 0.814) 0.454 M1 2.898 (-0.960, 0.253) 0.135
M2 1.755 (−0.828, 0.134) 0.526 M2 3.621 (0.155, 0.425) 0.532
M3 3.623 (0.156, 0.656) 0.313 M3 5.072 (0.348,−0.129) 0.288
M4 0.207 (−0.362, 0.716) 0.428 M4 3.428 (−0.411,−0.613) 0.181
M5 2.417 (−0.783, 0.132) 0.263 M5 4.962 (−0.569, 0.203) 0.126
M6 1.742 (−0.620, 0.710) 0.668 M6 4.858 (−0.388,−0.651) 0.489
M7 0.757 (0.444, 0.984) 0.023 M7 5.953 (−0.362, 0.758) 0.517
M8 4.110 (−0.633,−0.484) 0.394 M8 1.700 (−0.696, 0.876) 0.429

Table 15.2. Similitudes, rotations, displacements, and scalings used to generate the
iterated function systems in Example 37.

raw DNA data contains the most information and the least interpretation.
The segregation of the DNA data into codon triplets has more interpretation
(and requires us to work on DNA that is transcribed as opposed to other
DNA). The choice of DNA triplet used to code for a given amino acid can
be exploited, for example, to vary the thermal stability of the DNA (more
G and C bases yield a higher melting temperature), and so the codon data
contains information that disappears when the codons are translated into
amino acids. The amino acid sequence contains information focused on the
enzymatic mission of the protein. This sequence specifies the protein’s fold
and function without the codon usage information muddying the waters.

Given all this, we design an iterated function system fractal that evolves
the contraction maps used in the system as well as the choice of which con-
traction map is triggered by what biological feature. For our first series of ex-
periments, we will operate on DNA codon data, rich in information but with
some interpretation. Our test problem is reading frame detection, a standard
and much-studied property of DNA. Reading frame refers to the three pos-
sible choices of groupings of a sequence of DNA into triplets for translation
into amino acids. Figure 15.15 shows the translation into the three possible
reading frames of a snippet of DNA. Only the first reading frame contains the
ATG codon for the amino acid Methionine (which also serves as the “start”
codon for translation), and the amino acid TAG (one of the three possible
“stop” codons).

The correct reading frame for a piece of DNA, if it codes for a protein, is
typically the frame that is free of stop codons. Empirical verification shows
that frame-shifted transcribed DNA is quite likely to contain stop codons,
which is also likely on probabilistic grounds for random models of DNA. We
remind you that random models of DNA must be used with caution; biological
DNA is produced by a process containing a selection filter, and therefore
contains substantial nonrandom structure. Figure 15.13 serves as an example
of such nonrandom structure.

Application to Bioinformatics 463

ATG GGC GGT GAC AAC TAG
Met Gly Gly Asp Asn Stp

A TGG GCG GTG ACA ACT AG
. Trp Ala Val Thr Ala ..

AU GGG CGG TGA CAA CTA G
.. Gly Arg Gly Gln Val .

Fig. 15.15. A piece of DNA translated in all 3 possible reading frames. (Amino
acids are given by their 3-letter codes, which may be found in [50].)

A Fractal Representation

The data structure we use to hold the evolvable fractal has two parts: a list
of similitudes and an index of DNA triplets into that list of similitudes. This
permits smooth use of the fractal on DNA, DNA triplets, or amino acids by
simply modifying the way the DNA or amino acids are interpreted by the
indexing function. A diagram of the data structure is given in Figure 15.16.
Each similitude is defined by 4 real parameters in the manner described in
Definition 15.19. The index list is simply a sequence of 64 integers that specify,
for each of the 64 possible DNA codon triplets, which similitude to apply when
that triplet is encountered.

Interpretation Contains
First similitude t1 (∆x1, ∆y1) s1

Second similitude t2 (∆x2, ∆y2) s2

· · ·
Last similitude tn (∆xn, ∆yn) sn

Index i1, i2, . . . , i64

Fig. 15.16. The data structure that serves as the gene for an evolvable DNA-driven
fractal. (In this work, we use n = 8 similitudes, and so 0 ≤ ij ≤ 7.)

In order to derive a fractal from DNA, the DNA is segregated into triplets
with a specific reading frame. These triplets are then used, via the index
portion of the gene, to choose a similitude to apply to the moving point. The
IFS is driven by incoming DNA triplets.

This representation permits evolution to choose both the shape of the
maximal fractal (the one we would see if we drove the process with data chosen
uniformly at random) and which DNA codon triplets are associated with the
use of each similitude. Any contraction map has a unique fixed point. The

464 Evolutionary Computation for Modeling and Optimization

fixed points of the 8 similitudes we use play the same role that the 4 corners
of the square did in the chaos game shown in Figure 15.13.

We need variation operators. The crossover operator performs a one-point
crossover on the list of 8 similitudes, treating the similitudes as indivisible
objects, and also performs two-point crossover on the list of indices. We will
used two mutation operators. The first, termed a similitude mutation, modifies
a similitude selected uniformly at random. It picks one of the 4 parameters
that define the similitude, uniformly at random, and adds a number selected
uniformly in the interval [−0.1, 0.1] to that parameter. The scaling parameter
is kept in the range [0, 1] by reflecting the value at the boundaries so that
numbers s > 1 are replaced by 2−s and values s < 0 are replaced by −s. The
other parameters are permitted to move outside of their initial range. The
second mutation operator, called an index mutation, acts on the index list by
picking the index of a uniformly chosen DNA triple and replacing it with a
new index selected uniformly at random.

Aside from a fitness function, we now have all the machinery required to
evolve fractals. For our first experiment, we will attempt to tell whether DNA
is in the correct reading frame. The website associated with this text has a file
of in-frame and out-of-frame DNA available. We will drive the IFS alternately
with these two sorts of data and attempt to get the IFS to plot points in
different parts of the plane when the IFS is being driven by distinct types of
data.

Definition 15.20 The separation fitness of a moving-point process P , e.g.,
an IFS, being driven by two or more types of data is defined as follows. Com-
pute the mean position (xi, yi) when the IFS is being driven by data type i.
The fitness is

SF (P) =
∑
i�=j

√
(xi − xj)2 + (yi − yj)2,

.

Experiment 15.19 Write or obtain code for evolving iterated function sys-
tems with the representation given in Figure 15.16. Use the crossover operator.
The evolutionary algorithm should be generational, operating on a population
of 200 IFS structures with size-8 single tournament selection. In each tour-
nament, perform a similitude mutation on one of the new structures and an
index mutation on the other.

To perform fitness evaluation, initialize the moving point to (0, 0) and then
drive the IFS with 500 bases of in-frame data and 500 bases of out-of-frame
data before collecting any fitness information; this is a burn-in as was used in
the chaos game. After burn-in, compute the mean position of the moving point
for each type of data while alternating between the two types of data using 100
to 400 triplets of each data type. Select the length, 100 to 400, uniformly at
random. The mean position data for each of the two data types may be used
to compute the separation fitness.

Application to Bioinformatics 465

Perform 30 runs of 500 generations. Report the fitness tracks and esti-
mate the average number of generations needed to reach the approximate final
fitness. If you have skill with graphics, also plot the fractals for the most fit
IFSs using different colors for points plotted while the IFS is being driven by
different data types. Report the most fit IFS genes.

Experiment 15.19 should contain some examples that show that there is
a very cheap way for the system to generate additional fitness. If we take an
IFS of the type used in Experiment 15.19 and simply enlarge the whole thing,
the separation fitness scales with the picture. This suggests that we may well
want to compensate for scaling.

Definition 15.21 The diameter of a moving-point process is the maximum
distance between any two plotted points generated by the moving-point process.
For an IFS, the diameter should be computed only after the IFS has been
burned in.

Definition 15.22 The normalized separation fitness of a moving-point
process P , e.g., an IFS, being driven by two or more types of data is the
separation fitness divided by the diameter of the moving-point process.

Experiment 15.20 Repeat Experiment 15.19 using the normalized separa-
tion fitness instead of the separation fitness. Also, reduce the number of gen-
erations to 120% of the average solution time you estimated in Experiment
15.19. Comment on the qualitative differences of the resulting fractals.

There is a second potential problem with our current experimental setup.
This problem is not a gratuitous source of fitness as was the scaling issue. This
issue is an aesthetic one. A very small scaling factor moves the moving point
quite rapidly. Using tiny scaling factors in well-separated regions results in
high fitness and good separation of the data, but not in a good visualization.

Experiment 15.21 Repeat Experiment 15.20, but modify both initialization
and similitude mutation so that scaling factors are never smaller than a. Per-
form runs for a = 0.5 and a = 0.8. What impact does this modification have
on the fitness tracks and on the pictures generated by the most fit IFS?

Chaos Automata

The IFS representation we have developed has a problem that it shares with
the chaos game: it is forgetful. The influence of a given DNA base on the
position of the moving point is diminished with each successive execution
of a similitude. To address this problem we introduce a new representation
called chaos automata. Chaos automata differ from standard iterated function
systems in that they retain internal state information. This gives them the
ability to associate events that are not nearby in the sequence data.

466 Evolutionary Computation for Modeling and Optimization

The internal memory also grants the fractals generated a partial exemp-
tion from self-similarity. The IFS fractals generated thus far have parts that
look like other parts. When driven by multiple types of input data, a chaos
automaton can “remember” what type of data it is processing and use distinct
shapes for distinct data. Two more-or-less similar sequences separated by a
unique marker could, for example, produce very different chaos-automata-
based fractals by having the finite state transitions recognize the marker and
then use different contraction maps on the remaining data.

Starting State:6

Transitions: Similitudes:
If C G A T Rotation Displacement Contraction
--
0) 3 2 3 3 : R:0.678 D:(1.318, 0.606) S:0.905
1) 5 3 5 3 : R:1.999 D:(0.972, 0.613) S:0.565
2) 7 7 2 3 : R:0.521 D:(1.164, 0.887) S:0.620
3) 3 0 0 3 : R:5.996 D:(0.869, 0.917) S:0.805
4) 0 0 0 5 : R:1.233 D:(0.780,-0.431) S:0.610
5) 5 5 5 7 : R:1.007 D:(-0.213, 0.706) S:0.623
6) 3 7 3 4 : R:3.509 D:(0.787, 0.767) S:0.573
7) 1 5 5 2 : R:0.317 D:(0.591, 0.991) S:0.570

Fig. 15.17. A chaos automaton evolved to visually separate two classes of DNA.
(The automaton starts in state 6 and makes state transitions depending on inputs
from the alphabet {C, G, A, T}. As the automaton enters a given state, it applies
the similitude defined by a rotation (R), displacement (D), and shrinkage (S).)

Chaos automata are modified finite state automata. An example of a chaos
automaton, evolved to be driven with DNA data, is shown in Figure 15.17.
Each state of the chaos automaton has an associated similitude, applied when
the automaton enters that state. The finite state automaton supplies the mem-
ory, and the similitudes supply the contraction maps. A chaos automaton is an
IFS with memory. Note that we have made the, somewhat arbitrary, choice of
associating similitudes with states rather than transitions. We thus are using
“Moore” automata rather than “Mealy” automata. Algorithm 15.5 specifies
how to use a chaos automaton as a moving-point process.

Algorithm 15.5 Using a chaos automaton

Input: A chaos automaton
Output: A sequence of points in the plane
Details:

Set state to initial state.
Set moving point (x,y) to (0,0).

Application to Bioinformatics 467

Repeat
Apply the similitude on the current state to (x,y).
Process point (x,y).
Update the state according to input with the transition rule.

Until (out of input).

In order to use an evolutionary algorithm to evolve chaos automata, we
need variation operators. We will use a two-point crossover operator operating
on the string of states (each state treated as an indivisible object with the
integer identifying the initial state attached to the first state). There are three
kinds of things that could be changed with a mutation operator. Primitive
mutation operators are defined for each of these things and then used in turn
to define a master mutation operator that calls the primitive mutations with
a fixed probability schedule. The first primitive mutation acts on the initial
state, picking a new initial state uniformly at random. The second primitive
mutation acts on transitions to a next state. It selects one such transition
uniformly at random and then selects a new next state uniformly at random.
The third primitive mutation applies a similitude mutation to a similitude
selected uniformly at random. The master mutation mutates the initial state
10% of the time, a transition 50% of the time, and a similitude 40% of the time.
For our first experiment, we will test our ability to evolve chaos automata to
solve the reading frame problem.

Experiment 15.22 Modify the software from Experiment 15.21, including
the lower bound on the scaling factor for similitudes, to use chaos automata.
What impact did this have on fitness?

Let’s now test chaos automata on a new problem. In a biological gene, there
are regions called exons that contain the triplets that code for amino acids.
There are also regions between the exons, called introns, that are spliced out
of the mRNA before it is translated into protein by ribosomes. We will use
chaos automata to attempt to visually distinguish intron and exon data.

Experiment 15.23 Repeat Experiment 15.22 but replace the in-frame and
out-of-frame DNA with intron and exon sequences downloaded from the web-
site for this text. Report the fitness tracks. Do the chaos automata manage
to separate the two classes of data visually? Report the diameter of the best
fractal found in each run as well as the fitness data.

Now, let’s tinker with the fitness function. We begin by developing some
terminology. To efficiently describe new fitness functions, we employ the fol-
lowing device: the moving point, used to generate fractals from chaos au-
tomata driven by data, is referred to as if its coordinates were a pair of ran-
dom variables. Thus (X, Y) is an ordered pair of random variables that gives
the position of the moving point of the chaos game. In working to separate

468 Evolutionary Computation for Modeling and Optimization

several types of data {d1, d2, . . . , dn}, the points described by (X, Y) are parti-
tioned into {(Xd1 , Yd1), (Xd2 , Yd2), . . . , (Xdn , Ydn)}, which are the positions of
the moving points of a chaos automaton driven by data of types d1, d2, . . . , dn,
respectively. For any random variable R, we use µ(R) and σ2(R) for the sam-
ple mean and variance of R. Using this new notation, we can rebuild the
separation fitness function of a moving-point process P , with d1 and d2 being
the in-frame and out-of-frame data:

SF (P) =
√

(µ(Xd1) − µ(Xd2))2 + (µ(Yd1) − µ(Yd2))2 (15.3)

The problem of having fractals made of sparse sets of points is only par-
tially addressed by placing a lower bound on the scaling factor within the
similitudes. Our next function will encourage dispersion of the points in the
fractal while continuing to reward separation by multiplying the separation
by the standard deviation of the position of the moving point.

Definition 15.23 The dispersed separation fitness for a moving-point
process P is given by

F3 = σ(Xd1)σ(Yd1)σ(Xd2)σ(Yd2)SF (P).

Experiment 15.24 Repeat Experiment 15.23 with dispersed separation fit-
ness in place of separation fitness. In addition to the information recorded
previously, track the diameter of the resulting fractals over the course of evo-
lution. Compare this with the diameters recorded in Experiment 15.23. Also,
check to see whether the fractals visually separate the data.

If your version of Experiment 15.24 worked the way ours did, then you
got some huge fractals. The dispersed separation fitness function overrewards
dispersion. This too can be fixed.

Definition 15.24 The bounded dispersed separation fitness for a moving-
point process P is given by

F4 = tan−1(σ(Xd1)σ(Yd1)σ(Xd2)σ(Yd2))SF (P).

Experiment 15.25 Repeat Experiment 15.24 using bounded dispersed sep-
aration fitness in place of dispersed separation fitness. Did the new fitness
function help the dispersion problem? As before, report whether the fractals
visually separate the data.

We have not made a study of the sensitivity of the evolution of chaos
automata to variation of the algorithm parameters. This is not the result of
laziness (though the length of this chapter might justify some laziness), but
rather because of a lack of a standard. The meaning of the fitness values for
chaos automata is quite unclear. While the fitness functions used here did
manage to visually separate data during testing, higher fitness values did not
(in our opinion) yield better pictures. The very fact that the metric of picture

Application to Bioinformatics 469

quality is “our opinion” demonstrates that we do not have a good objective
fitness measure of the quality of visualizations of DNA. If you are interested
in chaos automata, read [4] and [5]. You are invited to think up possible
applications for chaos automata. Some are suggested in the Problems.

Problems

Problem 729. The dyadic rationals are those of the form

q =
∞∑

i=−n

xi2−i.

Run a chaos game on the square with corners (0, 0), (0, 1), (1, 1), and (1, 0).
Prove that the x and y coordinates of the moving point are always dyadic
rationals.

Problem 730. Is the process “move halfway from your current position to
the point (x, y)” a similitude? Prove your answer by showing that it is not or
by identifying the rotation, displacement, and contraction.

Problem 731. When the chaos game on a square is driven by uniform ran-
dom data, it fills in the square. Suppose that instead of moving halfway toward
the corners of the square, we move 40% of the way. Will the square still fill
in? If not, what does the resulting fractal look like?

Problem 732. Consider the following modification of the chaos game on a
square. Number the corners 0, 1, 2, 3 in the clockwise direction. Instead of
letting the moving point average toward any corner picked uniformly at ran-
dom, permit it to move only toward a corner other than the next one (mod
4) in the ordering. What does the resulting fractal look like?

Problem 733. Prove that chaos games are iterated function systems.

Problem 734. For the 8 similitudes associated with the first IFS in Example
37, compute the fixed point of each similitude to 4 significant figures. Plot
these fixed points and compare with the corresponding fractal.

Problem 735. For the 8 similitudes associated with the second IFS in Ex-
ample 37, compute the fixed point of each similitude to 4 significant figures.
Plot these fixed points and compare with the corresponding fractal.

470 Evolutionary Computation for Modeling and Optimization

Problem 736. What variation of the chaos game on the square produced the
above fractal?

Problem 737. Prove that a contraction map has a unique fixed point.

Problem 738. True or false? The composition of two contraction maps is a
contraction map. Prove your answer.

Problem 739. Suppose that the HIV-driven chaos game in Figure 15.13 is of
size 512×512 pixels. How many DNA bases must pass though the IFS after a
given base b to completely erase the influence of b on which pixel is plotted?

Problem 740. When evolutionary algorithms are used for real function opti-
mization, the number of independent real variables is called the dimension of
the problem. What is the dimension of the representation used in Experiment
15.19?

Problem 741. When evolutionary algorithms are used for real function opti-
mization, the number of independent real variables is called the dimension of
the problem. What is the dimension of the representation used in Experiment
15.22?

Problem 742. What problems would be caused by computing the diameter
of an IFS without burning it in first?

Problem 743. Assume that we are working with k different types of data
and have k disjoint circles in the plane. Create a fitness function that rewards
a moving-point process for being inside circle i when plotting data type i.

Application to Bioinformatics 471

Problem 744. Suppose that instead of contracting toward the origin by a
scaling factor s in a similitude, we had distinct scaling factors sx and sy

that were applied to the x and y coordinates of a point. Would the resulting
modified similitude still be a contraction map? Prove your answer.

Problem 745. Essay. Create a parse tree language for genetic programming
that always gives a contraction map from the real line to itself.

Problem 746. Essay. Would two chaos automata that achieved similar fit-
ness values on the same data using the bounded dispersed separation fitness
produce similar pictures?

Problem 747. Essay. Suppose we had a data set consisting of spam and
normal e-mail. Outline a way to create a fractal from the character data in
the e-mail. Assume that you are working from the body of the e-mail, not the
headers, and that the number of recipients of an e-mail has somehow been
concealed.

Problem 748. Essay. When trying to understand the behavior of evolution-
ary algorithms, we have used the metaphor of a fitness landscape. Describe,
as best you can, the fitness landscape in Experiment 15.19.

Problem 749. Essay. When trying to understand the behavior of evolution-
ary algorithms, we have used the metaphor of a fitness landscape. Describe,
as best you can, the fitness landscape in Experiment 15.22.

Problem 750. Essay. Suppose that we have a black and white picture. Con-
struct a fitness function that will encourage the type of fractal used in Exper-
iment 15.19 to match the picture.

Problem 751. Essay. Define chaos GP automata and describe a problem for
which they might be useful.

Glossary

This glossary includes terms used in the text and terms that connect the
text to the broader literature. Since evolutionary computation is a new and
rapidly evolving field , it is necessarily incomplete. Because good ideas are
often rediscovered, you may run across different terms for some of the concepts
in this glossary; in some cases arbitrary choices were made; in many other cases
we were simply unaware of the other terms. Please send us any suggestions
or additions you may have for future editions of the glossary.

adjacency matrix A square matrix all of whose entries are zero or one that
gives the connectivity of a combinatorial graph. For an undirected graph, the
matrix is symmetric; for a directed graph, asymmetry gives the direction of
the edges.

Always Cooperate A strategy for playing Prisoner’s Dilemma. The player
always cooperates.

Always Defect A strategy for playing Prisoner’s Dilemma. The player always
defects.

argument An argument of a function is one of its input values. The argument
of a node in a parse tree is one of the subtrees that provides input to it or the
root node of such a subtree.

artificial life In the context of this book, artificial life is any algorithmic
simulation of life or any algorithm that owes its inspiration to a living system.

artificial neural net A simple simulation of a system of connected neu-
rons inspired by biological networks of neurons. Artificial neural nets are pro-
grammed by adjusting connection strength between various artificial neurons.
If these connections contain closed, directed loops then the artificial neural
net is recurrent, otherwise it is feed-forward.

474 Evolutionary Computation for Modeling and Optimization

atomic A synonym for indivisible. In an EC context we call the smallest
elements of a chromosome that cannot be cut by whatever crossover operators
are being used the atomic elements of the representation of that chromosome.
Varying which elements are atomic can substantially change the behavior of
a system.

attractor See basin of attraction. A basin of attraction is called an attractor.

automatically defined function A genetic programming term denoting a
distinct parse tree that can be called from the “main” parse tree. A given
genetic programming system may use no ADFs, one, or several. The ADF is
analogous to a subroutine or procedure in standard programming and, prop-
erly used, yields the benefits of encapsulation and reuse that subroutines do.

basin of attraction A feature of a dynamical system. A dynamical system
moves points in a space. A basin of attraction is a set of points that have the
property that once a point being moved has entered the basin it is difficult
or impossible for it to escape. In evolutionary computation, the set of points
that will reach a given optima if pure hill climbing is performed are said to
be the basin of attraction for that optima.

Bernoulli trial A random experiment with two possible outcomes. The stan-
dard example is flipping a coin.

bijection A function that is one-to-one and onto. Bijections preserve cardi-
nality and hence are useful in enumeration.

binary variation operator (also called a crossover operator) A system for
taking two parents and generating children each of which incorporates ele-
ments of each parent. Examples include one- and two-point string crossover
and subtree crossover from genetic programming.

binomial coefficient An entry in Pascal’s triangle; the coefficient of xk in
the binomial expansion of (1 + x)n. The binomial coefficient

(
n
k

)
counts the

number of different ways that k objects can be chosen from n objects. See
Appendix B.

binomial probability model, theorem The binomial probability model
is used to understand sums of multiple Bernoulli trials. The binomial theo-
rem is a closely related algebraic result that also gives the form of powers of
binomials. Both these results are discussed in Appendix B.

biodiversity The total diversity of an ecosystem. As in real-world biological
ecosystems, biodiversity or population diversity is an important quantity in
evolutionary computation. Since evolutionary computation systems typically
use very small, highly inbred populations tracking the biodiversity of a pop-
ulation is one way of telling whether it has become stuck (or has converged).

Glossary 475

bioinformatics The application of information science to biological data.
Typically, bioinformatics uses algorithmic and statistical methods to pull use-
ful information out of large sets of biological data.

biology Life and living things or the sciences that study life and living things.
Evolutionary computation has a nontrivial intersection with theoretical biol-
ogy.

bloat A type of growth of structure size in an evolving population of variable-
sized structures. To be bloat, the increase in structure size has to be unneeded
from a perspective of fitness. Rather than contributing to fitness, bloat is
caused by a secondary selection for being able to pass on a quality. The bloated
material gives protection against disruption by crossover, mutation, or other
variation operators. Bloat is best known to occur in genetic programming.

Boolean Two-valued, usually the logical values true and false.

burn in This is the process of running a dynamical model for some number
of steps before using it. Such models are often initialized at random to an
impossible state. Running the model often moves its state variables into the
realm of the possible. An iterated function system is an example of a system
that may require burn in.

cardinality A high-tech word for size. For finite sets, the cardinality of a set
is simply the number of elements in the set.

Catalan Nnumbers The Catalan numbers count the number of binary trees
with n leaves. They have the closed form

Cn =
1
n

(
2n − 2
n − 1

)

cellular encoding The process of using directions about how to build a
structure as the chromosome type in a an evolving population instead of a
direct specification of the parameters of the structure itself. Cellular encod-
ings are indirect, and come in many varieties. Cellular encoding is a type of
representation.

chaos automata Finite state machines with a similitude (simple contraction
map) associated with each state. Chaos automata are typically data-driven
and act to map data onto chaotic dynamics. Chaos automata are typically
used to visualize data. The name is derived from the so-called chaos game.

chaos game A very simple discrete stochastic dynamical system used to
generate a fractal, the Sierpiński triangle. Three points in the plane, usually
the vertices of an equilateral triangle, are fixed. A moving point is initially
placed at one of the fixed points chosen at random. The moving point is
then repeatedly moved halfway to one of the fixed points chosen uniformly

476 Evolutionary Computation for Modeling and Optimization

at random. The position of the moving point is plotted. An example of a
Sierpiński triangle is shown in Figure 15.12.

chopping A variation operator used on parse trees to control their size. When
a parse tree exceeds an external size limit, the chop operator is used to reduce
its size. An argument of the root node of the tree is chosen at random, and
the subtree rooted at that argument becomes the entire tree. Chopping is
repeated until a tree does not exceed the external size limit.

chromosome The data structure used to store each member of the evolv-
ing population. The string evolver uses a string chromosome; simple genetic
programming uses a parse tree chromosome.

coevolution A special type of evolution in which the fitness of an individ-
ual is not measured purely by the fitness function, but also depends on the
other members of the population. The most natural place for coevolution to
arise is in evolutionary algorithms in which fitness is assessed by competi-
tion between population members. Niche specialization and other techniques
that take population structure (e.g., crowding) into account as well as the
normal figure-of-merit from the fitness function are also coevolutionary. (In
biology, coevolution is the tendency of interacting populations to adapt to one
another.)

coparent In an evolutionary algorithm using crossover, the participants in a
given instance of crossover are called parents. When the parent selection is
not symmetric, as in graph based evolutionary algorithms, the second parent
is referred to as the coparent.

combinatorial graph A collection of points, called vertices, and specification
of pairs of those vertices joined by edges. Appendix D defines combinatorial
graphs and gives some of their properties.

complete set of operations A set of operations on a space is said to be
complete if concatenation of its members can generate any operation on that
space. For Boolean logic, for example, AND and NOT form a complete set of
operations.

computational fluid dynamics (CFD) The body of techniques used to
compute, model, and numerically simulate the behavior of fluids or gasses.
While nice differential equations (the Naiver–Stokes equations) can be written
to describe fluid dynamics, these equations are unsolvable for a number of real-
world problems. This in turn forces the use of large numerical simulations in
the solution of fluid dynamics problems.

connection topology (In this text, this term refers to artificial neural nets.)
The choice of which neurons in the network will be connected. The strength
of the connections is not part of the connection topology.

Glossary 477

context free grammar A collection of rules and symbols used to specify
a context free language. The rules expand only single symbols and hence
are context free. The language of a grammar is the set of all strings that
can be obtained by applying the rules a finite number of times in a manner
that removes all so called nonterminal symbols. See Section 14.4 for a more
complete definition.

contingent evolution The notion that evolution is unrepeatable. The bi-
ological version of contingent evolution was first advanced by Stephen Jay
Gould. It hypothesizes that if we could somehow rerun the experiment of “life
on earth,” we would get very different results each time. Evolutionary compu-
tation tends to support this view in that many EC experiments have a large
number of possible outcomes, and restarting a simulation with a different
random number seed is likely to produce a different outcome. Unlike biol-
ogy, however, EC experiments are repeatable: be sure to record your random
number seeds.

contraction map A map from a metric space to itself that has the property
that for any pair of points those points in the image under the map are
closer together than the points themselves were. Contraction maps are used
in iterated function systems to generate fractals. An interesting fact about
contraction maps is that they have a single fixed point.

connection weights Numbers associated with the connections between neu-
rons in a neural net. Adjusting these weights is the primary method of pro-
gramming a neural net.

Conway’s lexicode algorithm Named after its inventor, John Conway, a
method of picking out a set of points at guaranteed minimum mutual dis-
tance. Such points are often used as an error-correcting code. The lexicode
algorithm orders a space of points. A minimum distance is specified and an
empty collection of points is initialized. Traversing the set of points in order,
a point is added to the collection if it is at least the minimum distance from
the points already chosen.

copy number The number of copies we make when we allow a solution to
reproduce.

Costas array A square array with one dot in each row and column such that
the vectors connecting pairs of dots each occur at most once.

crossing number The number of edges that cross one another in a drawing
of a combinatorial graph. The smallest crossing number of any drawing of a
given graph is the crossing number of the graph itself.

crossover The process of blending two structures to make one or more new
structures. There are many types of crossover; see the following entries in the
glossary.

478 Evolutionary Computation for Modeling and Optimization

crossover, adaptive Crossover that changes in a manner that permits selec-
tion to enhance the effectiveness of crossover. There are many potential ways
to implement adaptive crossover, e.g., with a crossover template or by having
variable strength for possible crossover points.

crossover, conservative (also called pure crossover) Crossover that has the
property that crossing over two copies of a single parent yields copies of that
parent as the resulting children. The standard one- or two-point crossover for
strings is conservative, subtree crossover is not conservative.

crossover, multi-point A binary variation operator in which several points
are chosen randomly in a linear genome, and then the material between
those points is contributed alternately from each parent to the children. See
crossover, one-point and crossover, two-point.

crossover, nonaligned Nonaligned crossover relaxes the constraint placed
on most string-genome binary variation operators that the material exchanged
between copies of parents to make children be from corresponding parts of the
same genome. In non aligned crossover, substrings of the parental genome with
distinct starting points are exchanged. Typically, the lengths of the strings
exchanged agree.

crossover, nonconservative A crossover operator for which the result of
applying it to a pair of parents that are identical to one another need not
produce children that are copies of the parents.

crossover, null This is a formal name for not having a crossover operator.
Null crossover exchanges no material between parents.

crossover, one-point A binary variation operator in which a point is chosen
randomly in a linear genome and then suffixes of the parents starting at the
chosen point are exchanged to obtain the children. See crossover, two-point,
and crossover multipoint.

crossover operator A variation operator that blends parts of two parent
structures to make one or more new child structures. A major part of the
design of a representation for a problem is selecting the crossover operator.
One possible choice is no operator, and if one is used, it is the source (or
obstacle) of inheritance of parental characteristics.

crossover, permutation Permutations are ordered lists of a set of elements
in which each element appears once. This means that standard string crossover
operators are useless (they often produce nonpermutations). As a result, there
are many techniques from repair operators to random key encodings for per-
forming crossover in permutations. See Chapter 7 for examples.

crossover, pure See crossover, conservative.

crossover, single-point The same as one-point crossover.

Glossary 479

crossover, subtree A binary variation operator for tree-structured chromo-
somes that picks a subtree at random in each parent and then exchanges
those subtrees. It is the standard example of nonconservative crossover, en-
ables bloat in many cases, and has been called a macromutation with some
justification.

crossover, two-point A binary variation operator in which a pair of points
are chosen randomly in a linear genome, and then the material between
those points is exchanged to obtain the children. See crossover, one-point
and crossover, multipoint.

crossover, uniform A binary variation operator in which the contribution
of each parent to each child is determined at random at each locus. For a
string chromosome, for example, uniform crossover would flip a coin at each
character to decide which parental character went to each child. The probabil-
ity distribution of this binary operation can control the degree of habitability
versus blending of parental characteristics.

cross-validation The practice of reserving some data to later validate a
model or predictor generated from data. If, for example, a least squares fitness
function was used to fit a model to data, then the most fit models are some-
times very bad. This is because they have, in effect, memorized the training
data without picking up any real underlying data model. Reserving some data
to check the model’s effectiveness on data not used in creating the model is a
sensible method of detecting and rejecting such “over training.”

cycle type, of a permutation An unordered list of the lengths of cycles in
a permutation given in cycle notation. See Chapter 7 for a definition of cycle
notation. The cycle type is a list of positive integers summing to n, e.g., the
cycle type of (0 1 2)(3 4)(5 6) is 3 2 2.

data mining The transformation of data into information. A common goal
of data mining is to take voluminous data, e.g., every purchase that customers
make at a chain of convenience stores, and produce useful information, e.g.,
putting beer on sale will increase diaper sales. Evolutionary computation can
be used to do data mining, but it is a relatively minor player. Evolutionary
computation also provides a good target for data mining. Genetic program-
ming produces interesting bits of code. Finding them in the morass of output
can be tricky and is a type of data mining. Data mining has a second meaning
in the social sciences: overuse of a single data set. Don’t be surprised if a social
scientist has a negative reaction to the term data mining.

deceptive fitness function A fitness function is deceptive if outside of a
small neighborhood of the global optimum, movement toward the optimum
actually reduces fitness.

480 Evolutionary Computation for Modeling and Optimization

decider A parse tree used in GP automata to drive finite state transitions.
The role of the decider is to process the input data down to a small amount
of information.

developmental biology The field of biology that studies how the informa-
tion in the genome that specifies the growth and development of an organism
is expressed. In evolutionary computation, developmental biology is the pro-
cess of transforming the chromosome into the structure evaluated for fitness.
Many evolutionary computation systems have no developmental biology. The
Sunburn system and cellular encoding are examples of EC systems that use a
nontrivial artificial version of developmental biology.

direct encoding Using a direct encoding means to store, as the structures
you are evolving, exactly the structures used by your fitness function.

Divide the Dollar A game in which both players bid. If the bids total a
dollar or less then both players are paid their bid; otherwise, they receive
nothing. This game was constructed by John Nash as an extreme example
of a game with many Nash equilibrium. Any pair of bids X, 100 − X forms
a Nash equilibria and so knowing the Nash equilibria of the game does not
predict the game’s behavior well.

discontinuity A place in a function where it makes an abrupt jump in value.
A standard example of such a function is the cost of a package as a function
of its weight. The cost jumps abruptly at certain weights.

DNA Abbreviation for deoxyribonucleic acid. DNA is the primary information-
storage molecule in most known living creatures. (Arguably some living crea-
tures, e.g., RNA viruses, use RNA to store information.) The chromosomes,
or representation, used in an evolutionary computation system are sometimes
colloquially called the system’s “DNA”. Please avoid this usage, it confuses
potential biological collaborators.

DNA bar code In this text, a DNA bar code is an error-correcting code
using the edit metric over the four-letter DNA alphabet. The term also means
a stretch of DNA that is unique to an organism and can be used to identify
it.

dynamic programming A method of tracing the shortest path between two
points in a metric space. Using in this text to find the edit distance between
DNA strings. See Section 15.3 for details. Dynamic programming can also be
used for tasks such as robot path planning and enumerating the number of
paths between two points in a graph.

dynamical system A process that moves points in a space. It can to so deter-
ministically or stochastically, and the motion may be continuous or discrete.
Most evolutionary algorithms are discrete stochastic dynamical systems. Evo-
lution moves the points making up the population around the gene space.

Glossary 481

Many other sorts of dynamical systems exist but they are beyond the scope
of this text.

echo machine A single-state finite state machine that returns its input as
output. Used as the starting point for editing in the cellular representation
for finite state machines given in Section 14.2.

edit distance The distance computed by the edit metric. See edit metric.

edit metric A distance measure on the space of strings over a given alphabet.
The distance between two strings in the edit metric is the minimal number
of single-character insertions, deletions, or substitutions required to turn one
string into the other. The edit metric is a formal metric and obeys the three
metric space axioms.

Efficient Node Use problem A type of maximum problem for the PORS
(plus-one-recall-store) environment. Given a fixed number of nodes the Ef-
ficient Node Use problem seeks the PORS tree that generates the largest
possible number.

ephemeral constant A type of constant used in genetic programming. In a
genetic programming system operating on real values or integer data it is usual
to have terminals that are constants. Either the system will maintain a list
of constants to be used as terminals, or constants will be generated randomly
whenever a terminal constant is needed in a parse tree. These randomly gen-
erated constants that appear and disappear with the trees that contain them
are called ephemeral constants. The genetic programming in this text is all of
the sort that uses ephemeral constants.

error correcting code A collection of strings (code words) that are chosen
so that many errors are required to transform one into another. If only code
words are transmitted, then the large number of errors criterion means that
small numbers of errors can be corrected by changing the word received into
the code word it most closely resembles.

Euclidian distance The square root of the sum of the squares of the differ-
ences of the coordinates of two points. In the plane, with each point having
two coordinates, the Euclidian distance from (x1, y1) to (x2, y2) is

d =
√

(x1 − x2)2 + (y1 − y2)2

evolution Biologically, evolution is the variation of allele frequencies in a
population over time. In abstract evolution is the sort of change that happens
over time when a population that reproduces inaccurately is subject to some
form of selection.

evolution strategies A type of evolutionary computation usually applied to
parameter estimation, e.g., model fitting. They were developed by I. Rechen-

482 Evolutionary Computation for Modeling and Optimization

berg, H. P. Schwefel, and others in Germany in the 1970s. Evolution strategies
use a very sharp type of selection and employ self-adaptation. A small number
of best solutions are chosen in each generation, and many variations of each of
these are generated. The solutions include not only the parameter values that
are being optimized but also parameters that control how to vary those pa-
rameters. They are similar to evolutionary programming, though evolutionary
programming uses more gentle selection than evolution strategies use.

evolutionarily stable strategy (ESS) An evolutionarily stable strategy is
defined in the context of a population evolving to play a game, e.g. Prisoner’s
Dilemma. An ESS is a strategy so that if the entire population is made of that
strategy then no single individual can survive if they appear in the population.
Colloquially, a population consisting of a single ESS cannot be invaded.

evolutionary programming A type of evolutionary computation originally
conceived by Lawrence J. Fogel in 1960. Like other forms of evolutionary com-
putation, it operates on populations of solutions. The original form does not
use binary variation operators like crossover, but does employ sophisticated
forms of self-adaptation in which individuals in the population have evolving
parameters that control their own variation operators. In some ways, evolu-
tionary programming is similar to evolution strategies but typically uses far
less sharp forms of selection.

fake bell curve A function with a single maximum whose basin of attraction
is all of R

n. It is shaped like the famous bell curve but is a simpler function.
The univariate fake bell curve is

f(x) =
1

x2 + 1

The general fake bell curve in n dimensions is

f(x1, x2, . . . , xn) =
1

(
∑n

i=1 x2
i) + 1

fan-out (used in logic circuits) The fan-out of a logic gate is the largest
number of other gates its output can drive. In logical theory fan out is not an
issue but when designing real circuits there is a limit to the number of other
devices a logic gate can drive.

feature selection This term originates in pattern recognition. A feature is
something that can be computed from each member of a data set. When using
evolutionary computation as a machine learning technique, or when using any
sort of machine learning or automatic classification, selecting good features
from the input data can enhance performance. Evolutionary computation can
be used to perform feature selection, as in the hyperspectral example in Chap-
ter 1.

Glossary 483

finite state machine A device that takes inputs and looks up appropriate
outputs from an internal table in a manner dependent on the machine’s inter-
nal state. The internal state permits the machine to look up different outputs
depending on the history thus far. This internal state is thus a form of mem-
ory. The outputs may either be associated with the transitions to a next state
or may be associated with the states themselves. These two different types of
finite state machines are called Mealy and Moore machines, respectively. See
Chapter 6.

finite state predictor A finite state machine used to predict an input se-
quence.

finite state transducer A finite state machine that is used to transform a
string or sequence of symbols. Rather than recognizing something the machine
outputs symbols as new symbols come in.

fitness biased reproduction This is the analogue of “survival of the fittest”
in evolutionary computation. It is the practice of making better solutions more
likely to reproduce.

fitness function A heuristic measure of the quality of solutions. The fitness
function is used to tell which solutions are better than others. There may be
several fitness functions that are appropriate to a given problem.

fitness landscape The graph of the fitness function. The dependent variable
drawn from the set of fitness values. The independent variables are dawn from
the same space that the population is drawn from. The evolving population
can be thought of as moving on this landscape. This landscape metaphor is
useful for thinking about evolutionary computation but in the case of complex
representation or high-dimensional problems, can be a little hard to picture.

fitness trial Used when there are many possible cases of the problem of
interest, e.g., the Tartarus problem with its many possible starting boards. A
fitness trial is a single case in a fitness evaluation, which typically uses the
sum or average of many fitness trials to estimate fitness.

fixed point For a function f , a point such that f(x) = x.

fractal An object whose dimension is not a whole number. Clouds, ferns, and
snowflakes are examples of natural objects that have good fractal models.

fractal attractor See basin of attraction. An iterated function system has a
set of points that its moving point approaches as the system is iterated. This
is the sole basin of attraction or attractor of the iterated function system when
it is viewed as a dynamical system. This attractor is typically a fractal, a fact
that makes iterated function systems of interest to people who study fractals.

function optimizer An algorithm or piece of software that can find points in
the domain of a function that yield the largest or smallest values possible for

484 Evolutionary Computation for Modeling and Optimization

the dependent variable. Evolutionary computation can be used for function
optimization, but many other techniques exist as well.

game theory The study of the theory and strategy of games. The material
in this text on Prisoner’s dilemma is an example of game theory. Evolutionary
stable strategies and Nash equilibria are game-theoretic ideas.

Gaussian distribution A probability measure on the real numbers given by
the famous bell curve,

f(z) =
1√
2π

e−z2/2

It is also called the normal distribution. See Appendix B for more information.

Gaussian mutation A mutation operator (unary variation operator) for
real variables representations based on the Gaussian distribution; see same. A
Gaussian mutation can make changes of any size but has a strong tendency
to make small changes.

gene duplication In biology, gene duplication is the copying of the DNA
containing a gene so that an organism has one or more copies of the gene.
Gene duplication enables discovery of new gene function because a gene with
multiple copies can have mutations to one copy while retaining critical func-
tion in another copy. Some analogy to gene duplication may take place when
using the GP automaton or MIPs net representations.

generation An updating of the entire population via breeding. In its most
extreme form, a generation is the replacement of the entire population of an
evolutionary algorithm by new structures. An evolutionary algorithm that
does this is said to be generational The population-updating techniques of
an evolutionary algorithm lie on an axis from generational to steady state.
Steady-state algorithms use mating events in which a minimal amount of
breeding takes place before a new creature is placed into the population.

generational See generation.

genetic algorithm A form of evolutionary computation typified by using
a string representation, typically a string of bits, crossover, and mutation.
Genetic algorithms lack self adaptation in their original form. Many varia-
tions exist that attempt to dynamically locate correct representation for a
given problem. Invented by John Holland and substantially generalized by his
students.

genetic programming A form of evolutionary computation featuring variable-
sized genomes that encode formulas or pieces of computer code. The most
common representation for genetic programming is a tree-structured chromo-
some, but there are many other structures (linear structures such as ISAc
lists, complex structures such as GP automata). Invented by John Koza and
John Rice.

Glossary 485

gladiatorial tournament selection A form of tournament selection in
which pairs of individuals compete until two winners are found. These winners
are permitted to breed, and their children replace the winners.

global optimum An optimum that takes on the maximum possible fitness
value. It need not be unique, but multiple global optima must take on the
same fitness value. See also optimum, local optimum.

GP automata A representation used to evolve small computer programs. A
GP automaton is a modified finite state machine. Each state has a parse tree
associated with it that serves to abstract information from the environment to
drive transitions. The parse trees are called deciders Examples of application
domains for GP automata are grid robot tasks such as Tartarus, optical char-
acter recognition, and control of simulated chemical reactions. See Chapter
10.

Graduate School Game A two-player simultaneous game with two moves:
cooperate and defect. This game is a modification of iterated prisoner’s
dilemma in which the highest score comes from taking turns defecting. The
game is supposed to evoke a couple that take turns putting one another
through graduate school. See Section 6.3.

graph based evolutionary algorithm (GBEA) A type of evolutionary
algorithm that uses a combinatorial graph as a population structure that
limits the spread of information via breeding.

greedy algorithm An algorithm that tries to satisfy an objective function
(fitness function) by making choices that pay the largest possible immediate
benefit. Examples include Kruskal’s algorithm for a minimal-cost spanning
tree and Conway’s lexicode algorithm.

greedy closure evolutionary algorithm An evolutionary algorithm in
which a greedy algorithm is part of the fitness evaluation. The representation
for this type of evolutionary algorithm is a partial structure that is completed
by a greedy algorithm. Fitness of the partial structure is measured by the
quality of the complete structure after it is built by the greedy algorithm. An
example of this type of evolutionary algorithm appears in Section 15.3.

greedy packing (used in the bin-packing problem in Chapter 7) Given a set
of bins and an order in which to consider goods, goods are placed in the first
bin with sufficient room to hold them. In order to pack the bins, the order in
which the goods are considered is evolved.

grid robot A form of virtual robot that exists in a world built on a Cartesian
grid. See Chapters 10 and 12.

Hamming ball A ball in the Hamming metric. It is the set of all strings no
more than some fixed Hamming distance from a given string (the center).

486 Evolutionary Computation for Modeling and Optimization

Hamming distance The distance computed by the Hamming metric. See
Hamming metric.

Hamming metric A distance measure for distances between strings that are
the same length. The Hamming distance between two strings is the number
of positions in which their characters are not the same. The Hamming metric
is a formal metric obeying the three metric space axioms.

Hamming sphere A sphere in the Hamming metric. It is the set of all strings
at some fixed Hamming distance from a given string (the center).

headless chicken crossover A binary variation operator resembling stan-
dard crossover. Instead of performing crossover between two population mem-
bers a single population member is selected and then crossed over with a new,
randomly generated structure. Typically the random structure is generated
in the same fashion as a member of the initial population. Headless chicken
crossover is most often used in genetic programming. See macromutation.

Herbivore task A grid robot task that is used to model foraging by herbi-
vores. (A herbivore is an animal that gets its energy by eating plants.) The
usual grid robot actions of turning left or right and moving forward are aug-
mented by a fourth action called eating. When an eat action is executed any
box in front of the grid robot vanishes. See Chapter 12.

hexer A game with dice used to help people gain an intuitive understanding
of Markov chains. A number of dice, usually 4, are used. On the first move all
the dive are thrown by the player. If there are no sixes then the player loses.
If all the dice are sixes the player wins. If some sixes are thrown then the sixes
are put in a six pool and the game enters an iterative phase. All dice not in
the six pool are thrown. If there are no sixes then a die is removed from the
six pool and the player throws again. If no sixes are available in the six pool
when no sixes are thrown the player loses. If all the dice are placed in the six
pool the player wins. It is an odd feature of hexer that using four dice gives
the worst chance of winning.

hill climbing An optimization technique that operates on a function or fit-
ness landscape. It operates by moving in the direction of increasing fitness or
functional value (decreasing value if minimization is the goal. Hill climbing
serves as a baseline technique for evolutionary algorithms, as a potential type
of helpful mutation, and as an optimization technique in its own right. Hill
climbing may be highly sophisticated, e.g., following the gradient of a dif-
ferentiable function, or quite simple, e.g., repeatedly generate new examples,
saving them if they are better than the current best.

hybridization (of algorithms) When a problem is solved by combining
different algorithmic techniques the results is a hybrid algorithm. The greedy

Glossary 487

closure evolutionary algorithm in Chapter 15 is an example of a hybrid of
Conway’s lexicode algorithm with an evolutionary algorithm.

hybridization (of populations) An evolutionary algorithm technique that
seeks to improve results by combining creatures from distinct populations.
In this text it is used in evolving grid robots. Many populations are evolved
for some number of generations. The best creature from each populations are
then copied and combined to create a new starting population. This technique
does improve the results for some grid robot problems.

hyperspectral data Hyperspectral data is spectral data (light intensity or
reflectances) that involve hundreds to thousands of frequencies of light. The
adjective “hyper” means “far more than used previously.”

hypercube A generalization of the usual cube in three dimensions. The usual
cube is a 3-hypercube. A square is a 2-hypercube (the number gives dimen-
sion). The tesseract is a 4-hypercube. Hypercubes are interesting in that they
are abstract descriptions of the partial order of subsets of a set, a structure
of adjacency for the Hamming metric on binary strings of a given length, a
combinatorial graph, a geometric polytope, and many other things.

injection A function that one-to-one.

intron In biology, an intron is a piece of a gene that does not code for protein
and that is not on the ends of the gene. Introns are thought to sometimes
have a regulatory function or play a role in managing gene crossover but their
DNA is not subject to the same selection pressure as DNA that actually codes
for protein. By analogy, unused parts of a data structure in a member of a
population in evolutionary computation are called introns. The term is most
commonly used in genetic programming. See bloat.

iterated function system A collection of functions used to create a fractal.
Each of the functions must be a contraction map. A moving point is chosen,
and then the functions are applied to it with the next function applied chosen
uniformly at random with replacement from all available functions. For graph-
ics applications, the moving point is plotted, yielding a fractal. This requires
that the system undergo burn in. The set of all places the moving point could
reach is the full fractal, called the attractor of the iterated function system.

ISAc (If-Skip-Action) list A representation for evolving programs. An ISAc
list uses a data vector of inputs. The list is a list of ISAc nodes. Each node
contains two pointers into the data vector, an action, and a pointer to some
other part of the ISAc list. A node is executed by comparing the two data
items, e.g., is the first object larger than the second? If the comparison is true,
then the node’s action is executed. The nodes are executed in order, except in
the case of a jump action, which moves execution to the other node pointed
to by the current node’s pointer into the ISAc list. The available actions

488 Evolutionary Computation for Modeling and Optimization

that could be placed in a node’s action field include jump, a null operation
called NOP, and actions relevant to the environment in which the ISAc list
is operating. In a Tartarus environment, for example, the possible actions are
NOP, jump, left, right, forward. See Chapter 12.

least squares fit The practice of fitting a model to data by minimizing the
sum of squared error of the model on the data. This minimization may be
performed by adjusting parameters of the model, as in the least squares fit
of a line, or may be performed by a procedure that also searches a space of
possible models such as genetic programming.

indirect encoding Using an indirect encoding means that the objects stored
in the evolving population are interpreted or developed before they are passed
to your fitness function.

k-max function A fitness function on strings over an alphabet with k let-
ters. It returns the count of whatever character appears the most often. The
function has k modes, the k strings composed of a single character. It is an
example of a polymodal fitness function for string representation evolution-
ary algorithms. Except for its polymodality, it is structurally similar to the
one-max function.

Lamarckian evolution Lamarck held an incorrect, but in his times plausi-
ble, view that acquired characteristics could be inherited. Standard evolution
would hold that a giraffe’s long neck was the result of selection for the longest
available necks in the current population together with slow production of
even longer necks by mutation. Lamarck’s theory held that necks lengthened
because the giraffes were stretching up to reach high leaves and that in addi-
tion, children would start with the neck their parents had achieved after years
of stretching. The molecular mechanisms of inheritance in biology cannot sup-
port Lamarck’s idea for the most part but it can be used to build software.
The most common method is to create a mutation operator that performs
some sort of local search of the best structure in the area of the search space
near the population member being mutated.

Lamarckian mutation A mutation operator that searches the space of all
genes within some fixed number of mutations of the gene being mutated and
returns the best result. See Lamarckian evolution.

Lambda (λ) A string containing no characters; the empty string.

lambda-transition (λ-transition) A transition in a finite state machine
that produces no output or response. Used in GP automata as the “think”
action to permit multiple deciders to contribute to a single action.

Law Of Averages (LOA) Strategy A strategy for playing the game Rock
Paper Scissors that assumes that your opponent believes in the law of averages.
The law of averages, which is false, states that a random experiment will

Glossary 489

display a bias that tends to return it to its average behavior. A coin that has
flipped many heads would, according to the law of averages, flip an excess
of tails until it got back to somewhere near 50/50 heads and tails. The nice
thing about the law of averages is that many people believe it. For Rock
Paper Scissors, the strategy plays to beat the move used the least so far by
an opponent.

lazy evaluation A technique from artificial intelligence that involves failing
to evaluate expressions until they are required to yield some value that leads
to a visible result. In a spreadsheet, for example, the cells of the sheet contain
formulas that depend on one another. The user sees some portion of the sheet.
When new values are entered the sheet could recompute every cell but needs
only compute the ones the user is able to see and those that the cells the user
can see depend on. This is more than not recomputed cells that do not change
value at all. Cells that should change value are not recomputed until the are
looked at or until the spreadsheet is saved.

least squares fit A test for how well a model fits a collection of data. The
values of the model for the independent variables of the available data points
are computed to predict the independent values. The squared error of the pre-
dicted and actual values is computed by summing the squared of the differ-
ences of the actual and predicted values. Fitting a model is done by minimizing
the squared error of the model from its data. Squared error is used as a fitness
function (to be minimized) in fitting a model with evolutionary computation.
See Section C.4 for the derivation of a least squares linear model.

lexical fitness The practice of using a lexical partner fitness function. This
is a second fitness function that serves as a tie-breaker.

lexical partner A second fitness function used to break ties in fitness values
is a lexical partner for the fitness function it is supposed to aid. The name
comes from lexical or dictionary ordering. Since the second fitness function,
the lexical partner, can only break ties it is infinitely less important than
the first fitness function, just as the first letter of a word is infinitely more
important than the second in determining it position in an alphabetical list.

local mating rule In graph-based evolutionary algorithms, the method of
choosing which neighbor of a creature already chosen to breed is to be the
second parent together with the method of placing the offspring in the popu-
lation.

local optimum An optimum that does not take on the best possible fitness
value. It is the best only in its “local neighborhood.” See also optimum, global
optimum.

logic gate An electrical circuit that implements a Boolean function. In this
text these circuits are simulated as artificial neural networks.

490 Evolutionary Computation for Modeling and Optimization

macromutation A unary variation operator that makes a large change in
the structure it operates on. The term comes from the debate over the sta-
tus of subtree crossover in genetic programming. In the view of its inventors,
subtree crossover blends characteristics of the parents. Others think that sub-
tree crossover often makes novel structures substantially unrelated to either
parent. Thus, the question, “is subtree crossover a macromutation?” There is
experimental evidence supporting both sides of the argument, and the true
status of subtree crossover appears to depend on the details of the genetic
programming system being used and the problem being solved. There is also
evidence that some amount of macromutation is not a bad thing. See headless
chicken crossover.

Markov chain A state-conditioned probability space in which the chance of
an event occurring in the next sample of the space depends on the current
state. See Section B.2.

Markov model A model with a space of events that has a state space and
probabilities of moving between the states. Used to summarize knowledge
about depending probabilities, e.g., as in the model of DNA given in Section
15.1. A hidden Markov model is one in which the probabilities in the model
are estimated from data.

mating event A single act of reproduction. In an algorithm that uses
crossover, a mating event is the selection of two parents, the process of copy-
ing them, possibly crossing the copies over, mutating the copies, and then
possibly placing the copies back in the population.

maximum problem A type of problem in genetic programming. A maximum
problem seeks to generate the maximum possible value with a given set of
operations and terminals and some restriction on size. The size restriction
might be on the depth of the tree or on its total number of nodes.

Mealy machineA finite state machine in which the outputs of the machine
are associated with the transitions. See Moore machine.

mean A high-tech word for average.

metric space Any space or collection of points that has a distance function.
A distance function takes pairs of points to the non negative reals in a manner
that computes the distance between those points. The three defining proper-
ties of distance are as follows: the distance from a point to itself is zero; the
distance between two distinct points is positive; and the distance around two
sides of a triangle is at least as far as the distance along the remaining side.
An example is standard Euclidian distance in the plane.

minimal description problem A task in the plus-one-recall-store program-
ming test bed. Given a number n find a PORS tree that computes n and that

Glossary 491

has as few nodes as possible. This is a task for which it is challenging to write
a fitness function.

MIPs net A representation used for genetic programming. MIPs stands for
multiple interacting programs. A MIPs net is a collection of parse trees that
have terminals that hold the output of the other trees in the net. A MIPs
net can have a strict ordering so that MIPs nets can see only trees before
them in the order. There are called feed-forward MIPs nets, in analogy to
the corresponding neural net notion. MIPs nets can also permit all trees to
potentially access all other trees, in which case they are said to be recurrent.
See artificial neural net.

mode A local maximum, typically in a probability distribution or fitness
function.

model of evolution The process whereby population members are selected
to breed and chosen to die. See Chapter 2 for a discussion.

monotone function A univariate function that either only increases or only
decreases as the independent variable increases. Monotone functions either
preserve or completely reverse the order of their inputs while possibly changing
their values.

Monte Carlo integration A numerical integration technique that randomly
samples the function begin integrated. Used for high-dimensional functions as
a way of avoiding the explosion in size of a regular grid of samples as dimension
increases.

Monte Carlo method A slightly archaic name for simulations that involve
sampling or random numbers. Evolutionary algorithms can be seen as a type
of Monte Carlo method. Named after a famous casino.

Moore machine A finite state machine in which the outputs of the machine
are associated with the states. See Mealy machine.

motif A short pattern with wild cards, usually over the protein, DNA, or
RNA alphabets.

moving point When generating a fractal with an iterated function system
or chaos automaton, the moving point is a point being operated on by the
contraction maps in the iterated function system or chaos automata. The
moving point is the point that sweeps out the fractal and that is plotted to
generate an image of the fractal.

multicriteria optimization Optimizing with more than one fitness func-
tion. Since there are often multiple desirable properties, e.g., durability and
cost, that fight with one another, multicriteria optimization often comes up
in applications.

492 Evolutionary Computation for Modeling and Optimization

Multiple Interacting Programs See MIPS net.

Multiplexing problem A logic gate specification problem. A multiplexer
has n data inputs and k address inputs, n = 2k. The binary number given at
the k inputs selects which of the n inputs will be the output of the multiplexer.

mutation A variation operator that makes random changes in a single struc-
ture in the population is called a mutation. There are a vast number of differ-
ent mutation operators. Selection of the mutation operator(s) is a fundamental
part of the design of an evolutionary algorithm. A mutation operator is sup-
posed to make small changes in the structure it operates on, providing an
ongoing source of variation in the population.

mutation rate The rate at which mutations happen. Usually measured in
number of mutations per new structure.

Nash equilibrium A collection of strategies for playing a game. It requires
that if a group of players are using the strategies then a unilateral change
by any one player will lower his score. Everyone defecting is an example of a
Nash equilibria of the Prisoner’s dilemma.

neighborhood A small region in a space. Typically a neighborhood is “of a
point,” which means that the point is at the center of the neighborhood.

neural net A network of connected neurons. The connections have associated
numbers called weights. These weights establish the strength of the connec-
tions and, together with the pattern of connections, control the behavior of
the net. Neural nets are programmed by adjusting the strengths of the con-
nections. See neuron.

neuron The units out of which neural nets are built. A neuron is connected
to other neurons with weights, accepting the sum of the weights times their
outputs as its input. The neuron also has a transfer function that transforms
its input into its output.

neutral mutation A mutation that does not affect fitness. Neutral mutations
may happen by accident, for instance mutating an unused state in a finite
state machine. It is also possible to construct intentional neutral mutations
that enhance population diversity. In the k-max problem one might change
the identity of the characters, e.g., at k = 4 exchange all ones for zeros and
twos for threes. This will not change fitness but will greatly change the results
of crossing over with other members of the population.

neutral selection Running an evolutionary algorithm with a fitness function
that returns a constant value, with no selection. Neutral selection experiments
are used to characterize the rate at which information spreads in a selection
scheme. As an example, examine the neutral selection experiments in Chapter
13 that characterize the selection behavior of graphs.

Glossary 493

niche specialization (in evolutionary computation) The practice of reducing
the fitness of an organism if there are many other similar organisms. There
are many types of niche specialization depending on the details of how simi-
larity of organisms is measured and how the number of similar organisms is
transformed into a fitness penalty.

niche specialization, domain A type of niche specialization that mea-
sures similarity by comparing the chromosomes (data structures) of popu-
lation members. An evolutionary algorithm using a string chromosome that
compared the strings via Hamming distance would be an example of domain
niche specialization. The problem of finding a reasonable similarity measure
on chromosomes limits the utility of this technique for some representations.

niche specialization, range A type of niche specialization that measures
similarity by comparing fitnesses. It is simple but can take a similar creatures
that are very different in their underlying data structures.

node An operation or terminal in a parse tree. Both operations and terminals
are stored in the same sort of structure and are distinguished by the fact that
operations take arguments (inputs), while terminals do not.

nonaligned crossover See crossover, nonaligned.

nonconservative crossover See crossover, nonconservative.

North Wall Builder A grid robot task. The robot is placed next to a single
box. The usual moves, left, right, forward, and rules for pushing boxes from
the Tartarus task apply. If the square that initially held the box is ever empty
then a new box is placed there. Fitness is computed, after a fixed number
of moves by the robot, by proceeding from the north side of the board to
the south until obstructed by a box. Grids visited during this process are
subtracted from the total number of grids in the board to give the score. For
details and variations see Chapter 12.

one-max function A fitness function on binary strings that counts the num-
ber of ones. Is is a standard example of a unimodal fitness function for string
representation evolutionary algorithms. It is also a case of the string evolver
with an all-ones reference string.

one-to-one A property a function can have. A function is one-to-one if no
point in the range is the value of more than one point in the domain. The
function y = 3x+2 is one-to-one; each y value is associated with one x value.
The function y = x2 is not one-to-one, since, for example, both 2 and −2 are
taken to 4.

onto A property a function can have. A function is onto if every value in
the range actually occurs. The function y = tan(x) is onto because every real

494 Evolutionary Computation for Modeling and Optimization

number is the tangent of some angle. The function y = x2 is not onto the set
of real numbers, because no negative number occurs as a y-value.

operation A node in a parse tree that both accepts and returns values.

optimum (of a fitness function or fitness landscape) A point with a better
fitness value than all the other points near to it. See also local optimum, global
optimum.

optional game A game in which refusing to play is one of the possible moves.

Packing problem The problem of placing a collection of goods, of integer
size, into a collection of bins, also of integer size. A packing is represented as
an assignment of goods to bins such that the total size of the goods in each
bin is not more than the size of the bin. The problem is used in Chapter 7
in a hybrid algorithm. The order in goods are presented to a greedy packing
algorithm is evolved.

parity problem (function) (gate) Discovering an implementation of the
parity function. The parity function is a Boolean function reporting true if an
odd number of its inputs are true. A parity gate is a logic gate that computes
the parity function. The parity problem and its negation are, in a sense, the
hardest functions to implement because they depend on all their inputs in any
situation. Most logic functions have some set of inputs where, given the value
of all but one of the inputs, the remaining input doesn’t affect the output
if you change it. For parity all inputs always matter. This makes parity a
“hardest” problem.

parse tree A dynamically allocated data structure, composed of individual
nodes, that can store mathematical or symbolic formulas. The basic data
structure stores a single operation, constant, or input value and pointers to
nodes storing its arguments. A parse tree is also a diagram of a formula that
shows the order in which its parts are evaluated. The data structure is derived
from the diagramming technique.

Pascal’s triangle (see Appendix B) A method of displaying the binomial
coefficients. Except for the ones bordering the triangle, each entry is the sum
of the two above it. Each row, numbered with zero-base counting, contains
the entries

(
n
0

)
,
(
n
1

)
,
(
n
2

)
, . . . ,

(
n
n

)
, whereby n is the second entry in the row.

Pascal’s triangle is named after Blaise Pascal, who did foundational work in
enumeration and probability.

Pavlov In the context of this text, a strategy for playing Iterated Prisoner’s
Dilemma. The player cooperates initially, and thereafter cooperates with its
opponent when they both made the same move in the previous play. Pavlov
is an error-correcting strategy, in that it can recover from a noise event when
playing against a copy of itself.

Glossary 495

PCR primer An abbreviation for polymerase chain reaction primer; see Sec-
tion 15.2. A primer, in this context, is a short stretch of DNA that anneals to
a longer strand of DNA, initializing a polymerase reaction. Polymerase is an
enzyme that can take single DNA bases and add them to a strand of DNA,
making a complementary copy. Run over and over with the correct primers
the polymerase reaction can exponentially amplify a particular type of DNA.

penalty function A function that gives a valuation to the violation of some
condition or rule. Penalty functions are used to build up or modify fitness
function by reducing the fitness of a member of a population by some function
of the number of undesirable features it has.

Perato frontier The set of all Perato-optimal objects is the Perato frontier
for a problem with two or more quality measures. The frontier exhibits the
trade-offs between the quality measures. See Perato optimal.

Perato optimal If we are comparing objects with two or more quality mea-
sures then one dominates another if it is better in all quality measures. A
strategy that cannot be dominated is said to be perato optimal.

permutation An ordering of a set of distinct objects. Also, a bijection of a
finite set with itself. Permutations are discussed extensively in Chapter 7.

permutation matrix A square matrix with a single one in each row and
column and zeros elsewhere. Permutation matrices are associated with corre-
sponding permutations by allowing the ones to designate a “this row goes to
this column” relationship that specifies a permutation. Permutation matrices
are discussed in Chapter 7.

Petersen graph The Petersen graph, shown above left, is a famous combi-
natorial graph. Many theorems in graph theory are of the form, “if a graph
is not (does not contain) the Petersen graph, then . . . ,” and so the graph is
well know, even having had a book named after it. The Petersen graph can
be generalized as two cycles joined by spokes. A generalized Petersen graph is
shown above right, the (8, 3)-Petersen graph with two eight-cycles, the inner

496 Evolutionary Computation for Modeling and Optimization

of which proceeds by jumps of size three. A careful definition of the Petersen
graph appears in Appendix D.

phase change A frontier where the character of some quantity changes. The
standard example of distinct phases are the ice, liquid, and steam phases of
water. In a function a phase change is an abrupt change in some characteri-
zation of the function’s behavior, e.g., a function that oscillated for positive
inputs and remained constant for negative inputs might be said to have a
phase change at zero.

Plancha eco-stove A design of wood-burning stove. One type was designed
via evolutionary computation; see Chapter 1.

plus-one-recall-store (PORS) A very simple genetic programming lan-
guage with a single binary operation (plus, integer addition), a single unary
operation that returns its arguments value and also stores that value in a
memory (store), and two terminals, one (the integer) and recall, which re-
turns the value in the memory. There are a number of problems that use this
language. See Chapter 8.

plus-times-half (PTH) A maximum problem used in genetic programming.
The operations plus and times are available together with the constant 1

2 .
This problem is typically used with tree-depth-limited genetic programming
rather than the tree-size-limited genetic programming common in this text.
Producing a maximal value requires that the addition operator add constants
to a number bigger than one and that that number then be multiplied by
itself.

point mode A mode (high or low point) in a function or search space that
has no other points at the same height (depth) in a small neighborhood. The
optimum of f(x) = 5−x2 is an example of a function with a point mode. The
optima of

g(x, y) =
sin(x2 + y2)
x2 + y2 + 1

are examples of nonpoint modes. They form a circle in which each highest
point has an infinite number of highest points within any positive radius of it.

point mutation In biology, a point mutation is a change to a single base
of DNA. In evolutionary algorithms a point mutation is a minimal mutation.
In a bit string representation the analogy to biology is very plain: a point
mutation flips the value of a single bit. When the representation is an array of
real numbers the analogy becomes less exact because a distribution is required
to describe what changes can be made at one point in the array. For more
complex representations the meaning of point mutation is less clear. Point
mutations are also called one-point mutations and may be used to build up
other operations such as two-point, n-point, and so on.

Glossary 497

pointer mutation A mutation used in ISAc lists that modifies one of the
two pointers into the data vector in an ISAc node.

Poisson distribution A discrete distribution that appears as the limiting
case of the binomial for a very large number of trials with a very small prob-
ability of success. See binomial distribution, Bernoulli trial. The Poisson dis-
tribution is useful in writing an efficient implementation of uniform mutation
in a string representation. Rather than checking the probability of mutating
each character of a string the Poisson distribution is used to generate a num-
ber of characters that will be mutated. These are then selected and mutated,
substantially reducing the quantity of random numbers needed.

population The collection of solutions on which an EC system operates. The
term is draw from biology. Population size and structure are both critical
design parameters for an evolutionary algorithm.

polymerase chain reaction See PCR primer.

0 1 23

4

5

6

7

8

9

10

polyomino (generalization of domino) A collection of squares arranged so
that all the squares that meet, meet full face to full face and so that the shape,
as a whole, is connected. An example, with numbered squares, is shown above.

polysymbot A representation in which a single structure contains specifica-
tions for multiple symbots.

population seeding An ordinary evolutionary algorithm generates an initial
population at random. Population seeding is the practice of adding superior
genes to the initial population, or, possibly, creating an entire population
from superior genes. These genes can be from previous evolution, designed
according to heuristics, or created with expert knowledge.

PORS See plus-one-recall-store.

predator–prey model A mathematical model of a predator and a prey
species. An example is given in Chapter 1.

498 Evolutionary Computation for Modeling and Optimization

primitive (mod p) A number n is said to be primitive (mod p) if p is prime
and the powers n0, n1, n2, . . . include all the nonzero numbers (mod p). In this
next such numbers are used to construct Costas arrays.

Prisoners Dilemma A simple two-player simultaneous game that serves as
a mathematical model of cooperation and conflict. The game may be played
once or many times (iterated). This game is discussed in the later sections of
Chapter 6 and Section 14.2. The game is described and applications to the
real world discussed in the book The Evolution of Cooperation, by Robert
Axelrod.

probabilistic mutation See uniform mutation.

probability The probability of an event is the limiting fraction of the number
of times the event will occur if the experiment in which the event can occur is
repeated an infinite number of times. The meaning of probability is a subject
of deep and ongoing debate, and that debate is beyond the scope of this text.

PTH See plus-times-half.

Public Investment Game A multiplayer game. Each player is given some
amount of money. They may keep any or all of the money. The money they
choose not to keep is placed in a common pool. The common pool money
is then multiplied by some factor larger than one and the resulting payout
divided evenly among all the players. The game is intended to model public
investment, e.g., in building roads with funding via taxation. The game is
interesting because the maximum total payout comes when all money is placed
in the common pool, but the highest payout goes to the player who invests
the least in the common pool. To place this in the context of road building,
a citizen that evades his taxes keeps his money and has the use of the roads.
The roads, however, were built with less money and are hence presumably
not as good as they could have been. In this text, the game is modified by
adding a required minimum investment (law) and penalty for not making the
minimum investment (fine).

random key encoding A representation for storing permutations. A sorting
key is a field in a database that is used to sort the records of the database. If we
place random numbers in an array then those numbers can be vied as encoding
the permutation that would sort them into ascending or descending order. This
is called a random key encoding for permutations. It permits evolutionary
computation software that works with real valued genes to encode and evolve
permutations. Random key encoding is discussed in Chapter 7.

Random (Strategy) In the context of this text, a strategy for playing pris-
oner’s dilemma in which the player chooses uniformly at random between
cooperation and defection in each step.

Glossary 499

random variable The numerical outcome of an experiment with more than
one possible outcome. Flipping a coin and assigning one to heads and zero to
tails is an example of such an experiment. The value actually obtained in a
particular flip of the coin is an example of a random variable.

range abstraction (operator) A statistical summary of some contiguous
part of a data set. Range abstractions are summaries of parts of a data set
that may have more predictive value than the raw data because they filter
noise or are simpler then the raw data. Range abstractions are used in an
example in Chapter 1.

range niche specialization See niche specialization, range.

range operator See range abstraction.

rank selection A method of choosing members of a population to reproduce
or die. Population members are ranked and then chosen in proportion to their
rank. When selecting for reproduction, the best creature has rank n and the
worst has rank one. The reverse holds when selecting creatures to die. This
method is similar to roulette selection, but buffers against the impact of very
compact or very broad spreads in the population fitness.

recurrent For the neural net definition of this term, see neural net. A state in
a Markov chain is recurrent if the chain never permanently leaves the state. A
Markov chain is said to be recurrent if all its states are recurrent. The property
of recurrence is more generally ascribed to a system that never permanently
abandons any of its possible configurations. Uniform mutation, thus, can be
said to be recurrent because it can recreate any possible structure if the correct
random numbers come up.

repair operator A repair operator is used to compensate for destructive
crossover. When a crossover operator creates an invalid structure a repair
operator is used to make a small number of changes to restore validity. This
text avoids repair operators for the most part, though some of the crossover
techniques used with permutations could be viewed as incorporating repair
operators.

representation The method of coding and manipulating potential solutions
in the computer is the representation. Representation includes not only data
structure but also variation operators. Changing the representation can com-
pletely transform system behavior and so choice of representation is critical
in evolutionary computation.

Ripoff A strategy for playing the Iterated Prisoners Dilemma. The strategy
defects initially. If the opponent ever defects, Ripoff cooperates on the next
move and plays Tit-for-Tat thereafter. If the opponent does not defect then
Ripoff alternates defection and cooperation thereafter. Ripoff was discovered

500 Evolutionary Computation for Modeling and Optimization

by an evolutionary algorithm in which the population contained immortal
Tit-for-Two-Tats players.

Rock Paper Scissors A two-player simultaneous game with three possible
moves. The moves are rock, paper, and scissors. Rock beats scissors, scissors
beats paper, and paper beats rock. If the players make the same move, they
tie. Rock paper scissors is discussed in Chapter 14.

root The topmost node in a parse tree. Its output is the output of the tree.

roulette selection A method of choosing members of a population to re-
produce or die. Population members are in proportion to their fitness or, in
some cases, to a monotone strictly positive function of their fitness. Roulette
selection is a general technique for selecting according to an empirical distri-
bution. It is used in this way for efficient implementation of probabilistic (or
uniform) mutation, operating on a tabulation of the Poisson distribution. See
Section 2.7. Roulette selection is named in analogy to a Roulette wheel.

roulette wheel selection Same as roulette selection.

round robin tournament A tournament in which each possible pair of
players compete.

Royal Road function A fitness function on string genes in which fitness is
given for getting entire blocks correct. The original Royal Road function used
a length-64 genes with eight disjoint blocks of eight bits. A fitness of +8 was
awarded if all bits in a block were 1’s. The function can be generalized by
changing the length and block size. The function is valuable because of its
explicit blocks which permit analysis of an algorithms ability to discover and
preserve blocks.

SAW Abbreviation for self-avoiding walk. See self-avoiding walk.

selection This is the process that picks population members to breed or to
survive or both. An evolutionary algorithm uses selection and requires it to
be biased in favor of more fit organisms. The model of evolution incorporates
the selection procedure.

self-avoiding walk An evolutionary computation problem using a string gene
representation over the alphabet up, down, left, right. The members of the
alphabet represent moves on a grid from a fixed starting point. The fitness
function is the number of grids visited. The length of the string of moves is
chosen so that there are exactly enough moves to visit each square once. A
perfect solution is thus a self-avoiding walk, or walk that repeats no square.

sequence An infinite list or string drawn from some set.

Shannon entropy The Shannon entropy of a probability distribution P is
the expected value of the negative log of the probabilities of the elements of

Glossary 501

the distribution. The Shannon entropy counts the number of bits needed, on
average, to report the outcome of an experiment that has the distribution P .

Shannon’s theorem A result proved by Claude Shannon that says that there
is a way to transmit information on a noisy channel so that the information lost
to the noise can be, with arbitrarily high but nonunit probability, be arbitrarily
close to that which would be lost if the pieces of information trashed by noise
were known in advance. Shannon’s proof is nonconstructive and so does not
say how to find a system that transmits the information in the maximally
noise-resistant fashion. The mathematical discipline of coding theory grew
out of attempts to find a system for defeating noise that Shannon’s theorem
proved must exist.

shape evolution A system for evolving polyominos given in Chapter 14.
Shape evolution serves as a simple example of cellular encoding.

shortest path problem The problem of finding the shortest path connecting
two points. In this text we explore a very simple version of this problem,
finding a path from 0, 0) to (1, 1) across a featureless landscape.

Sierpiński triangle A fractal, shown above, see Section 15.4 for a discussion.
The Sierpiński triangle is interesting in that there are several different fractal
algorithms that generate representations of it. In this texts it is generated
with a simplified iterated function system called a chaos game.

similarity radius The distance inside of which to things are considered sim-
ilar for the purpose of niche selection.

similitude A map from a metric space to itself that displaces, rotates, and
then contracts the space. Similitudes are all contraction maps and are used in
chaos automata as well as iterated function systems.

similitude mutation A mutation of a chaos automaton that modifies one of
the parameters of a similitude within the automaton. See Section 15.5.

simple evolutionary fit Selecting a model for a data set and then finding
the parameters of the model with an evolutionary algorithm. See Chapter 9
for comparisons with other methods.

502 Evolutionary Computation for Modeling and Optimization

simplexification An operation on a vertex of a combinatorial graph or the
entire graph. When applied to a single vertex, the vertex is replaced by a
number of vertices equal to its degree. All of the new vertices are adjacent to
one another (thus forming a simplex). Each former neighbor of the replaced
vertex is made adjacent to one of the new vertices so that each of the new
vertices has one of the replaced vertices former neighbors as a neighbor. The
choice of new vertex adjacent to old vertex is irrelevant, since all choices yield
isomorphic graphs. Simplexification of an entire graph is simplexification of
each vertex in the graph.

simultaneous game A game in which the players move at the same time,
or at least without knowledge of the other players current move. Examples
include Prisoner’s Dilemma, Divide-the-Dollar, and Rock Paper Scissors.

single tournament selection See tournament selection.

Sombrero

-15
-10

-5
0

5
10

15 -15

-10

-5

0

5

10

15-2

0

2

Sombrero function Shown above, the cosine of the distance from the origin.
A function with a single-point optimum and an infinite number of nonpoint
optima.

standard normal distribution A Gaussian distribution with a mean of zero
and a standard deviation of one.

Glossary 503

steady state An evolutionary algorithm that performs a minimal amount
of breeding (a single mating event) before placing a new structure in the
population. See generation.

stochastic hill climber An optimization algorithm that generates random
variations of a current best configuration and retains the variation if it is
better or no worse than the current best. Since an evolutionary algorithm
has unary variation operators available it is easy to build a stochastic hill
climber along the way to building an evolutionary algorithm. The stochastic
hill climber can be used to select among potential mutation operators and to
yield baseline performance for the evolutionary algorithm. See hill climbing.

stochasticity A five-dollar word for randomness.

string evolver A string representation evolutionary algorithm. Mostr string
evolvers have a very simple fitness function: match to a fixed reference string.
The One-max problem is a string evolver with the all ones string as the ref-
erence. String evolvers with this simple fitness function are not intrinsically
interesting but can be used to understand the impact of parameter varia-
tion, e.g. mutation rate, tournament size, on simple evolutionary algorithms.
The Royal Road function is a somewhat more challanging fitness function
for a string evolver. The self-avoiding walk problem in Chapter 2 supplies an
example of a string evolver with a fairly complex fitness function. The trans-
poson insertion site alignment problem in Chapter 15, while apparently fairly
simple, is an example of an applied problem solver with a string evolver.

subtree A tree inside a parse tree, rooted at one of its nodes. Strictly speaking
a whole parse tree is a subtree rooted at the root node of the tree. Subtrees
that are not the whole tree are called proper subtrees.

sum of squared error See least squares.

Sunburn An evolutionary algorithm for designing very simple star fighters
that fight in a one-dimensional arena. See Chapter 4 for details. Sunburn uses
a nonstandard model of evolution called gladitorial tournament selection.

subtree crossover A form of crossover used on parse trees. A node in each
parse tree is chosen and the sub-trees rooted at those nodes are exchanged.
Subtree crossover is highly disruptive and nonconservative. It is sometimes
called a macromutation.

surjection A function that is onto.

symbolic regression Using genetic programming to perform least squares
fit. The suggestion is that because it searches the space of models, that genetic
programming is performing symbolic computations to fit the model.

symbot A type of very simple virtual robot. Described in Chapter 5.

504 Evolutionary Computation for Modeling and Optimization

Tartarus A grid robot task. Tartarus places a single grid robot into a world
with walls and some number of boxes. The grid robots task is to move the
boxes into the corners or against the walls of the world. The typical Tartarus
task has a 6 × 6 grid with 6 boxes. See Chapter 10.

terminal A node in a parse tree that returns a value. It may be a constant
or a means of passing values to the parse tree from outside.

Tit-for-Tat A strategy for playing Iterated Prisoner’s Dilemma. The player
cooperates initially and returns its opponent’s last move thereafter. Tit-for-
Tat is a bad strategy in a noisy environment but a very good one when noise
is absent.

Tit-for-Two-Tats A strategy for playing Iterated Prisoner’s Dilemma. The
player cooperates unless the opponent has defected against it in the last two
moves.

total order A partial order with the additional property that for any two
objects a and b, either a is related to b or b is related to a.

tournament A small group selected from a population. See tournament se-
lection.

tournament selection Any model of evolution is which a small group, the
tournament, is selected and its members compared to decide who will breed
and who will die. There are several variations. Single tournament selection
permits the two best within a single tournament group to breed and replace
the two worst. Double tournament selection uses two tournament groups, and
the best in each group is chosen to breed. Replacement may be within the
group or in the population using some other replacement method.

transposition Exchanging two elements of an ordered list or permutation.
Any permutation may be turned into any other by applying the correct se-
quence of transpositions.

transposition mutation A mutation operator for ordered genes (permuta-
tions).

transposon A biological term. A piece of genetic code capable of moving
from one part of a creature genome to another. There are many kinds of
transposons. In Chapter 15 an evolutionary algorithm is used to align sites
where a transposon inserted into the genome of corn.

Traveling Salesman problem A difficult optimization problem using or-
dered genes. A case of the problem consists of a list of cities together with the
cost of travel between each pair of cities. The objective is to find a cyclic order
to visit the cities that minimizes the total cost. This problem is explored in
Chapter 7.

Glossary 505

tree-depth limited In genetic programming, subtree crossover can cause
the size of the parse trees to explode. Tree-depth-limited genetic programming
controls size by pruning away any nodes beyond a certain depth from the root
node of the tree after crossover. Compare with tree-size-limited genetic pro-
gramming. Tree-depth-limited genetic programming is the most widespread
and original type.

tree-size limited In genetic programming, subtree crossover can cause the
size of the parse trees to explode. Tree-size-limited genetic programming con-
trols size by promoting an argument of the root node of the tree to become the
whole tree (chopping) after crossover whenever the number of nodes in the tree
becomes too large. Compare with tree-depth-limited genetic programming.

triangle inequality The observation that going around two sides of a triangle
is at least as far as going along the third side. The triangle inequality is one
of the three properties a function must satisfy to be a metric.

truth table A tabulation of the output of a logic function given its inputs.
Examples appear in Chapter 11.

unary variation operator Another term for mutation. A unary variation
operator takes a single structure and creates a variation on it.

uniform exclusive crossover A crossover operator on sets intended to pre-
serve the set property that elements are not repeated. When two sets undergo
uniform exclusive crossover two children are produced. Any elements in com-
mon to the parent sets are placed in both children. The remaining elements
are divided uniformly at random between the children. Uniform exclusive
crossover is used for the the error-correcting code seeds in Section 15.3.

uniform mutation A unary variation operator typically used for string rep-
resentations. Uniform mutation has a fixed, low probability of changing each
character in the string. More generally, uniform mutation is a operator that
can change any or all parts of a structure. One nice theoretical property of
uniform mutation is that it is recurrent and hence ensures eventual conver-
gence.

uniform real point mutation A unary variation operator that makes a
point mutation with low fixed probability in each entry of a real array rep-
resentation. The mutation itself is with a uniform distribution on a small
interval symmetric about zero.

unimodal Having a single mode or optimum.

unimodal problem A problem having a single optimum, i.e., one global
optimum and no local optima other than the global one.

unpenalized local population size A term related to niche specialization.
In niche specialization, the fitness of individuals is penalized if too many

506 Evolutionary Computation for Modeling and Optimization

accumulate “close” to one another. The unpenalized local population size of
a niche specialization scheme is the maximum number of creatures that can
be close before the penalties kick in.

useful mating Mating (crossover) between dissimilar creatures. A heuristic
notion used to count wasted crossovers that turn to similar parents into two
children similar to those parents and also to count potentially useful crossover
between dissimilar parents that may explore new territory.

Vacuum Cleaner task A grid robot task. In a featureless world the Vacuum
Cleaner task asks the robot to visit every square of the grid.

variation operators An umbrella term for operations such as crossover and
mutation that produce variations of members of an evolving population. A
variation operator is called unary, binary, etc. depending on how many differ-
ent members of the population it operates on. Mutation operators are unary
variation operators. Crossover operators are binary variation operators.

VCC fitness function Abbreviation for violations of the Costas condition.
The VCC function accepts a permutation and returns the number of times the
associated permutation matrix violates the Costas condition, that no vector
joining two nonzero entries of the matrix be repeated between any other two
entries.

vector A one-dimensional array of real numbers.

VIP A VI(rtual) P(olitician). A nonviolent variation of the type of evolution-
ary algorithm used in Sunburn. See Section 4.4.

virtual robotics Robotics simulated inside the computer as opposed to per-
formed with physical hardware. Both symbots and grid robots are examples
of virtual robots.

weighted fitness functions Combining two or more measures of quality into
a single fitness function by taking a sum of constants times the quality mea-
sures yields a weighted fitness function. The constants are called the weights
and establish the relative importance of the different fitness measures.

walk A sequence of vertices in a graph so that adjacent members of the
sequence are also adjacent in the graph. A walk may repeat vertices where a
path in a graph may not.

A

Example Experiment Report

This appendix gives an example report for Experiment 2.1. It shouldn’t be
followed slavishly. Individual instructors will have their own expectations for
what makes a good lab report and will make them known. We suggest that
lab reports contain the following:

• Overview Explain what the experiment is and why it is being done.
– Which features of evolutionary computation are under examination?
– How are they being examined?
– What do you hope to find out? State your hypothesis.

• Methods Describe the methods used.
– Give a description, possibly pseudocode, for the algorithm(s) you used.
– State the source of your code (instructor, self, help from whom).
– State the number of runs and the type of runs you made.

• Results. Clearly describe your results.
– Give a summary, usually in the form of table(s) or graph(s), of your

results. Present those results as clearly as possible.
– Organize the results so that items that belong together are together.

• Conclusions and Discussion. Explain what happened and why you
think it happened.
– State what significance the results have in terms of the test environment

and the features of evolutionary computation under investigation.
– State problems you encountered in gathering data.
– Explain your results, including alternative explanations if you see them

and give logical support for the explanations.

508 Evolutionary Computation for Modeling and Optimization

The Impact of the Model of Evolution
on String Evolver Performance

John Q. Student
October 17, 2004

Overview

This experiment looks at the effect of changing the model of evolution for a
string evolver. The performance of a string evolver is defined as the number
of generations required to find the first instance of a perfect match to the
reference string. For each of seven models of evolution, 100 runs of a string
evolver were performed. The models of evolution used were (1) single tourna-
ment selection with tournament size 4, (2) roulette selection and locally elite
replacement, (3) roulette selection and random replacement, (4) roulette se-
lection and absolute fitness replacement, (5) rank selection and locally elite
replacement, (6) rank selection and random replacement, and (7) rank selec-
tion and absolute fitness replacement.

The issues discussed in class before we performed the experiment were
as follows. Some needed characters for a string evolver may be present in
low-fitness individuals. If this is the case, then lower selection pressure will
help, avoiding the delay needed for mutation to place the character in a high-
fitness individual. Of the methods examined, single tournament selection has
the lowest selection pressure, roulette selection the highest. Saving the best
results so far (elitism) may also play a critical role. All the techniques except
random replacement save the best gene so far (or one superior to it, as in
random elite replacement).

Methods

The experiments for all seven models of evolution operated on a population of
60 strings. The reference string was 20 characters long (“the reference string”)
over the ASCII printable characters, codes 32–127. In each generation, one-
half the population was replaced to make the other six models of evolution
agree with single tournament selection. One hundred evolutionary runs were
performed for each model of evolution. The number of generations until a
solution was located were recorded.

If a run required in excess of 10,000 generations to find a solution, that
run was ended without a solution and recorded as a failure.

I wrote the code used for the experiment; it is given in Appendix 1 of
this report. The code uses a single numerical switch to change the model of
evolution being used. In the generation routine in the code there are a pair of
switch statements turning on the model of evolution. The first performs selec-
tion (including all of tournament selection); the second performs replacement
(except for tournament selection, which has replacement tightly integrated
with selection).

I used the random number generator supplied by the instructor.

Example Experiment Report 509

Results

Mean and standard deviation of time to solution for the various models of
evolution, together with data on failures, are given in the table below:

Model of Evolution Mean Std. Dev. Failures
Single tournament, size 4 258.5 82.8 0
Roulette selection, locally elite replacement 316.5 89.8 0
Roulette selection, random replacement n/a n/a 100
Roulette selection, absolute fitness replacement 394.6 157.8 0
Rank selection, locally elite replacement 361.1 84.6 0
Rank selection, random replacement n/a n/a 100
Rank selection, absolute fitness replacement 389.2 82.1 0

The results clearly show that random replacement is not a good idea. For the
five models of evolution not involving random replacement, the following table
gives 95% confidence intervals on the mean time to solution. This confidence
interval uses the fact that the mean of a repeated experiment is normally
distributed. The 95% confidence interval is

µ ± 1.96s√
n

,

where µ is the mean, s is the sample standard deviation, n is the number of
trials performed, and 1.96 is the value of Zα/2 for confidence α = 0.05 in the
normal distribution. The table is given in increasing order of mean time to
solution:

Model of Evolution 95% C.I.
Single tournament, size 4 (242.4, 274.6)
Roulette selection, random elite replacement (298.9, 334.1)
Rank selection, random elite replacement (344.5, 377.7)
Rank selection, absolute fitness replacement (373.1, 405.3)
Roulette selection, absolute fitness replacement (363.7, 425.5)

Conclusions and Discussion

The initial hypothesis that saving the best result so far is important, i.e.,
using a fitness ratchet, seems to be correct. Random replacement apparently
overwrote good results often enough to prevent the algorithms from function-
ing inside the permitted time horizon. Clearly, both models of evolution using
random replacement were far worse than all the others.

Single tournament selection was a clear winner, with a significantly better
mean time to solution, using the confidence intervals in the second table. Ab-
solute fitness replacement seems worse than locally elite replacement, but the

510 Evolutionary Computation for Modeling and Optimization

effects are somewhat confounded. In second place after tournament selection
was roulette selection with random elite replacement; it is significantly better
than the other methods. The table seems to give weak evidence that roulette
is better than rank selection and that random elite is better than absolute
fitness replacement.

The evidence suggests that preservation of diversity is a good thing, but
a good deal less conclusively than the evidence in favor of a fitness ratchet.
The winner in overall performance was the method that preserved diversity the
best, as stated in class, but the second-best diversity preserver, rank selection,
came in pretty much last. Increasing the number of trials may help resolve
the question.

Rank selection does preserve diversity better than roulette selection in the
face of a large fitness gradient. It destroys diversity better when there is a
very small fitness gradient. Given the small size of the population, there may
have been a relatively small fitness gradient for much of the time in each run.
I thus conclude that the evidence in favor of diversity preservation from the
tournament selection results should be given greater weight. A series of ex-
periments varying tournament size (a larger tournament implies less diversity
preservation) may provide valuable independent evidence.

Example Experiment Report 511

Appendix 1: Code Listing

/* Experiment 2.1 for Evolutionary Computation
* for Modeling and Optimization
*
* Models of evolution:
* 0 - Size 4 single tournament selection
* 1 - Roulette selection and random elite replacement
* 2 - Roulette selection and random replacement
* 3 - Roulette selection and absolute fitness replacement
* 4 - Rank selection and random elite replacement
* 5 - Rank selection and random replacement
* 6 - Rank selection and absolute fitness replacement
* use these as the first argument to "generation" in the main program
* loop to select which model of evolution you are using.
*/

#include <iostream>
#include <cmath>

using namespace std;

#include "Random378.h"

//model of evolution to use, see above comment for codes
#define modevo 6
//characters in the string for the string evolver
#define string_length 20
//population size
#define population_size 60
//number of trials to run
#define trials 100
//Timeout number
#define timeout 10000
//reference string
#define ref "The reference string"

/* Function Prototypes */
//set initial algorithm parameters
void initialize_algorithm();

//compute the fitness of a string
int fitness(char population_member[string_length]);

//create a new random population
void initialize_population(

char population[population_size][string_length],//population members
int fit[population_size], //fitness
int &bestfit //best fitness tracker

);

//proportional selection, used for roulette and rank selection
//selects a population index in proportion to the values
//all values must be nonnegative!
int proportional(int values[population_size]);

//run a generation of evolution with the given model of evolution
void generation(

int model_evo, //model of evolution
char population[population_size][string_length],//population members
int fit[population_size], //fitness
int &bestfit //best fitness tracker

);

512 Evolutionary Computation for Modeling and Optimization

main(){//main program

char population[population_size][string_length]; //population
int fit[population_size]; //fitnesses
int trial_counter,gen_counter; //loop indices
int bestfit; //best fitness tracker
int times[trials]; //record time to solution
double mean,variance,value; //statistical scratch variables
int failures; //counts number of timeouts
int successes; //trials-failures

initialize_algorithm(); //seed the random number generator
failures=0;
for(trial_counter=0;trial_counter<trials;trial_counter++){//loop over trials

bestfit=0; //initialize fitness tracking variable
initialize_population(population,fit,bestfit); //new population
gen_counter=0; //initialize generation counter
while((bestfit<string_length)&&(gen_counter<timeout)){//generation loop

generation(modevo,population,fit,bestfit);
gen_counter++;

}
cout << "Trial " << trial_counter+1 << " solution or timeout in "

<< gen_counter << " generations." << endl;
times[trial_counter]=gen_counter;

}
failures=successes=0;
mean=variance=0.0; //initialize statistical accumulators
for(int i=0;i<trials;i++){//sum fitness, squared fitness

if(times[i]<timeout){
value=((double)times[i]); //prevent integer wrap around
mean+=value;
variance+=(value*value);
successes++;

} else failures++;
}
if(successes>2){//report mean and varience if they mean anything

mean/=successes; //compute mean
//compute variance
variance/=successes;
variance-=(mean*mean);
cout << "With N=" << successes << " trials that terminated." << endl;
cout << "Mean generations to solution " << mean << "." << endl;
cout << "Standard deviation " << sqrt(variance) << "." << endl;

}
cout << "There were " << failures << " failures." << endl;

}

Example Experiment Report 513

//set initial algorithm parameters
void initialize_algorithm(){

seedMT(9120782); //change the random number seed to get
//a different sample of the outcomes

}

//compute the fitness of a string
int fitness(char population_member[string_length]){

int i,cnt; //loop index, fitness counter

cnt=0; //intialize counter
for(i=0;i<string_length;i++){//traverse the string

if(population_member[i]==ref[i])cnt++; //check for match in each position
}
return(cnt); //return the number of agreements

}

//create a new random population
void initialize_population(

char population[population_size][string_length], //population members
int fit[population_size], //fitness
int &bestfit //best fitness tracking

){

int i,j; //loop index variables

for(j=0;j<population_size;j++){//loop over population
//The following fills each position of the population member with
//a printable ASCII string, codes 32-127
for(i=0;i<string_length;i++)population[j][i]=lrandMT()%96+32;
//compute the initial fitnesses
fit[j]=fitness(population[j]);
if(fit[j]>bestfit)bestfit=fit[j];

}
}

514 Evolutionary Computation for Modeling and Optimization

//proportional selection, used for roulette and rank selection
//selects a population index in proportion to the values
//all values must be nonnegative!
int proportional(int values[population_size]){

int total,dart; //total value and the proportional selection dart
int i; //loop index

total=0;//zero the value acucmulator
for(i=0;i<population_size;i++)total+=values[i]; //sum the values

//if there is nothing to select on, select randomly
if(total==0)return(lrandMT()%population_size);

//otherwise
dart=lrandMT()%total; //throw the dart

for(i=0;i<population_size;i++){//figure out where the dart landed
dart-=values[i]; //subtract the ith value
if(dart<0)return(i); //if it goes negative, there we are

}

//warn the user
cerr << "Selection failure" << endl;

//return an in-range value
return(lrandMT()%population_size);

}

Example Experiment Report 515

//run a generation of evolution with the given model of evolution
void generation(

int model_evo, //model of evolution
char population[population_size][string_length], //population members
int fit[population_size], //fitness
int &bestfit //best fitness tracker
){

int sortindex[population_size]; //Sorting index and value buffer
int i,j; //loop indices
int rv,sw; //sorting and unsorting variables
int cp; //crossover point
int rp; //random position for mutation
int p1,p2; //population index of first and second parents
int flag; //rank stop flag

//new population for nontournament models of evolution
char newpop[population_size/2][string_length]; //genes
int newfit[population_size/2]; //fitness data

switch(model_evo){//selection code and tournament selection
case 0: //tournament selection, size four

for(i=0;i<population_size;i++)sortindex[i]=i; //initialize sortindex

for(i=0;i<population_size;i++){//randomize the population order
rv=lrandMT()%population_size; //get a random position
//swap current and random sorting indices
sw=sortindex[i];sortindex[i]=sortindex[rv];sortindex[rv]=sw;

}

for(i=0;i<population_size;i+=4){//loop by tournaments
//Knuth-hardsort the tournament to decreasing fitness order
if(fit[sortindex[i]]<fit[sortindex[i+3]]){//compare 0:3

sw=sortindex[i];sortindex[i]=sortindex[i+3];sortindex[i+3]=sw;
}
if(fit[sortindex[i+1]]<fit[sortindex[i+2]]){//compare 1:2

sw=sortindex[i+1];sortindex[i+1]=sortindex[i+2];sortindex[i+2]=sw;
}
if(fit[sortindex[i]]<fit[sortindex[i+1]]){//compare 1:1

sw=sortindex[i];sortindex[i]=sortindex[i+1];sortindex[i+1]=sw;
}
if(fit[sortindex[i+2]]<fit[sortindex[i+3]]){//compare 2:3

sw=sortindex[i+2];sortindex[i+2]=sortindex[i+3];sortindex[i+3]=sw;
}
if(fit[sortindex[i+1]]<fit[sortindex[i+2]]){//compare 1:2

sw=sortindex[i+1];sortindex[i+1]=sortindex[i+2];sortindex[i+2]=sw;
}
//Sorted

//reproductions: copy the parents over the dead to create children
//performing the crossover as you do so
cp=lrandMT()%string_length; //compute crossover point
for(j=0;j<cp;j++){//copy parents to crossover point

population[sortindex[i+2]][j]=population[sortindex[i]][j];
population[sortindex[i+3]][j]=population[sortindex[i+1]][j];

}
for(j=cp;j<string_length;j++){//copy parents from crossover point to end

population[sortindex[i+2]][j]=population[sortindex[i+1]][j];
population[sortindex[i+3]][j]=population[sortindex[i]][j];

}

//Now perform mutation in both children
rp=lrandMT()%string_length; //select position of mutation
population[sortindex[i+2]][rp]=lrandMT()%96+32; //put in new character
rp=lrandMT()%string_length; //select position of mutation

516 Evolutionary Computation for Modeling and Optimization

population[sortindex[i+3]][rp]=lrandMT()%96+32; //put in new character

//update fitness information for both children
fit[sortindex[i+2]]=fitness(population[sortindex[i+2]]);
if(fit[sortindex[i+2]]>bestfit)bestfit=fit[sortindex[i+2]];
fit[sortindex[i+3]]=fitness(population[sortindex[i+3]]);
if(fit[sortindex[i+3]]>bestfit)bestfit=fit[sortindex[i+3]];

}
break; //end of tournament selection

case 1: //roulette selection
case 2:
case 3:

for(i=0;i<population_size/2;i+=2){//select pairs of parents
//roulette selection of parents
p1=proportional(fit);
p2=proportional(fit);

//reproductions: copy the parents to new populations
//performing the crossover as you do so
cp=lrandMT()%string_length; //compute crossover point
for(j=0;j<cp;j++){//copy parents to crossover point

newpop[i][j]=population[p1][j];
newpop[i+1][j]=population[p2][j];

}
for(j=cp;j<string_length;j++){//copy parents crossover to end

newpop[i][j]=population[p2][j];
newpop[i+1][j]=population[p1][j];

}

//Perform mutation of the children
rp=lrandMT()%string_length; //select position of mutation
newpop[i][rp]=lrandMT()%96+32; //new character
rp=lrandMT()%string_length; //select position of mutation
newpop[i+1][rp]=lrandMT()%96+32; //new character

//compute new fitnesses
newfit[i]=fitness(newpop[i]);
if(newfit[i]>bestfit)bestfit=newfit[i];
newfit[i+1]=fitness(newpop[i+1]);
if(newfit[i+1]>bestfit)bestfit=newfit[i+1];

}
break; //done with roulette selection

case 4: //rank selection
case 5:
case 6:

//create the rank array
for(i=0;i<population_size;i++)sortindex[i]=i; //initialize sortindex
do {//bubble sort the population into descending fitness order

flag=0;
for(j=0;j<population_size-1;j++){

if(fit[sortindex[j]]>fit[sortindex[j+1]]){
sw=sortindex[j];sortindex[j]=sortindex[j+1];sortindex[j+1]=sw;
flag=1;

}
}

}while(flag);
//sort is 0..populationsize-1, need to add one to get ranks
for(i=0;i<population_size;i++)sortindex[i]++;
//rank array is created

for(i=0;i<population_size/2;i+=2){//select pairs of parents
//rank selection of parents
p1=proportional(sortindex);
p2=proportional(sortindex);
//reproductions: copy the parents to new populations
//performing the crossover as you do so

Example Experiment Report 517

cp=lrandMT()%string_length; //compute crossover point
for(j=0;j<cp;j++){//copy parents to crossover point

newpop[i][j]=population[p1][j];
newpop[i+1][j]=population[p2][j];

}
for(j=cp;j<string_length;j++){//copy parents crossover to end

newpop[i][j]=population[p2][j];
newpop[i+1][j]=population[p1][j];

}

//Perform mutation of the children
rp=lrandMT()%string_length; //select position of mutation
newpop[i][rp]=lrandMT()%96+32; //new character
rp=lrandMT()%string_length; //select position of mutation
newpop[i+1][rp]=lrandMT()%96+32; //new character

//compute new fitnesses
newfit[i]=fitness(newpop[i]);
if(newfit[i]>bestfit)bestfit=newfit[i];
newfit[i+1]=fitness(newpop[i+1]);
if(newfit[i+1]>bestfit)bestfit=newfit[i+1];

}
break; //done with rank selection

}

switch(model_evo){//replacement code - except for tournament selection
case 0: //do nothing - tournament selection is finished

break;
case 1: //random elite replacement
case 4:

for(i=0;i<population_size;i++)sortindex[i]=i; //initialize sortindex
for(i=0;i<population_size;i++){//randomize the population order

rv=lrandMT()%population_size; //get a random position
//swap current and random sorting indices
sw=sortindex[i];sortindex[i]=sortindex[rv];sortindex[rv]=sw;

}

//perform the random elite replacement
for(i=0;i<population_size/2;i++){//for all new strutures

//compare with a population member selected randomly without replacement
if(newfit[i]>=fit[sortindex[i]]){//child is at least as good

//replace creature and fitness information
for(j=0;j<string_length;j++)population[sortindex[i]][j]=newpop[i][j];
fit[sortindex[i]]=newfit[i];

}
}
break; //done with random elite replacement

case 2:
case 5:

for(i=0;i<population_size;i++)sortindex[i]=i; //initialize sortindex
for(i=0;i<population_size;i++){//randomize the population order

rv=lrandMT()%population_size; //get a random position
//swap current and random sorting indices
sw=sortindex[i];sortindex[i]=sortindex[rv];sortindex[rv]=sw;

}
//perform the random replacement
for(i=0;i<population_size/2;i++){//for all new strutures

//replace creature and fitness information
for(j=0;j<string_length;j++)population[sortindex[i]][j]=newpop[i][j];
fit[sortindex[i]]=newfit[i];

}
//since we may have overwritten the best creature we now need
//to recompute the bestfit variable
bestfit=0;
for(i=0;i<population_size;i++)if(fit[i]>bestfit)bestfit=fit[i];
break; //done with random replacement

case 3: //random elite replacement

518 Evolutionary Computation for Modeling and Optimization

case 6:
//Order the population by fitness

for(i=0;i<population_size;i++)sortindex[i]=i; //initialize sortindex
do {//bubble sort the population into increasing fitness order

flag=0;
for(j=0;j<population_size-1;j++){

if(fit[sortindex[j]]>fit[sortindex[j+1]]){
sw=sortindex[j];sortindex[j]=sortindex[j+1];sortindex[j+1]=sw;
flag=1;

}
}

}while(flag);

//perform the absolute fitness replacement
for(i=0;i<population_size/2;i++){//for all new strutures

//replace creature and fitness information
for(j=0;j<string_length;j++)population[sortindex[i]][j]=newpop[i][j];
fit[sortindex[i]]=newfit[i];

}
break; //done with absolutereplacement

}

}

B

Probability Theory

This appendix reviews some terms and mathematical notions from probability
theory used in this book that may not have appeared in your program of study
or which you may have forgotten. Ubiquitous in the theory of artificial life is
the notion of a Markov chain, a set of repeated trials that are not independent.
On the way to the elementary parts of the theory of Markov chains, we will
review a good deal of basic probability theory.

B.1 Basic Probability Theory

A distribution D is a triple (Q, E, P) consisting of a set of points Q, a col-
lection of events E that are subsets of Q, and a function P : E → [0, 1] that
assigns probabilities to events. How would we represent the familiar example
of flipping a fair coin in this notation?

Example 38. Flipping a fair coin When D represents flipping a fair coin,
we have point set Q ={heads, tails}, events E = {{},{heads},{tails},{heads,
tails}}, and probability assignment

P ({}) = 0,
P ({heads}) = 0.5,

P ({tails}) = 0.5,

P ({heads, tails}) = 1.

Probabilities are real numbers in the unit interval. There is one additional
requirement to make a triple (Q, E, P) a distribution. As long as the set Q is
finite or countably infinite, we demand that∑

q∈Q

P ({q}) = 1. (B.1)

520 Evolutionary Computation for Modeling and Optimization

In the event that Q is uncountable, we demand that∫
q∈Q

P ({q}) = 1. (B.2)

Typically, we confuse singleton sets with their sole member so that we de-
fine P (q) := P ({q}) for each q ∈ Q. You may wonder why we have points and
events. Since events are built out of points, their presence seems redundant.
There are two reasons. First, events consisting of many points in the distri-
bution are often the actual objects of interest. Second, in the case in which
Q is an uncountably infinite set (like the real numbers), the probability of
singleton point events is typically zero. This forces us to deal with multi-point
events to get anything done.

Example 39. The uniform distribution on [0, 1] A uniform distribution
is one in which all points are equally likely. Notice that the distribution in
Example 38 was uniform on two points. On an uncountable set, we achieve a
uniform distribution by insisting that events of the same size be assigned the
same probability by P . Two events A and B are the same size if∫

a∈A

dx =
∫

b∈B

dx.

A little work will show that for the uniform distribution on [0, 1], we may take

P (x) = 1.

We compute the probability of an event by computing the integral of P (x)
on that event. Notice that we have been vague about specifying what E is
in this example. Events that are built from intervals by the operations of
intersection, union, and complementation are safe. For a better treatment, a
course in measure theory is required.

A trial is the result of sampling a point from a distribution, flipping a coin,
for example. A way of looking at the probability of an event is that it is the
chance that a point in the event will be chosen in a trial. A set of repeated trials
is a collection of trials taken one after the other from the same distribution or
a sequence of distributions. We can place a product distribution on repeated
trials by letting the points in the product distribution be the possible sets of
outcomes of a repeated trial and then inducing the events and their associated
probabilities in the natural manner.

Example 40. A product distribution Suppose we flip 3 coins. We then have
an example of 3 repeated trials sampled from the distribution given in Exam-
ple 38. The set of 3 trials forms a single trial in a (3-fold) product distribution.
The points of this distribution are

{{H,H,H}, {H,H, T}, {H,T,H}, {H,T, T},

Probability Theory 521

{T, H, H}, {T, H, T}, {T, T, H}, {T, T, T}}.

The set of events consists of all 256 subsets of the set of points. Each single-
point event has probability 1/8, and the probability of an event is the number
of points in it divided by 8.

Two events A and B are said to be independent if

P (A ∩ B) = P (A) · P (B).

An example of two independent events is as follows. If we flip two coins and put
a product distribution on the 4 possible outcomes, then the events “the first
coin comes up heads” and “the second coin comes up tails” are independent. If
you want to know the probability of several independent events all happening,
then you multiply their probabilities. The probability of getting 3 heads on 3
flips of a fair coin, for example, is 1

2 · 1
2 · 1

2 = 1
8 . (Each of 3 independent flips

has probability 1
2 of producing a head. Multiply them to get the probability

of 3 heads in a row.)
If two events are not independent, then they are said to be dependent.

Suppose, for example, we have a pot containing 5 black and 5 white balls, and
we have two trials in which we draw balls out of the pot at random. If we do
not replace the first ball before drawing the second, then the probability of
drawing a black or white ball is dependent on what we drew the first time.
In both trials, the events are {black} or {white}, but the distribution of the
second draw is changed by the first draw. The events “first ball is white” and
“second ball is white” are dependent in the product distribution of the two
trials.

If two events are such that either one happening completely precludes the
other happening, then the events are said to be disjoint. Mathematically, A
and B are disjoint if

P (A ∪ B) = P (A) + P (B).

If you want to know the probability of one of several disjoint events happening,
then you simply sum their probabilities. Each of the faces of a fair 6-sided
die has probability 1/6 of being rolled, and all 6 events are disjoint. The
probability of rolling a prime number on a 6-sided die is P (2)+P (3)+P (5) =
1/6 + 1/6 + 1/6 = 1/2. (Try asking a friend to call “prime” or “nonprime”
on a die instead of “heads” or “tails” on a coin. A humorous argument often
ensues, especially in the presence of those who believe 1 to be prime.)

If a distribution is on a set of numbers, then a distribution has an expected
value. One computes the expected value of a distribution on a set of numbers
by summing the product of the numbers with their respective probabilities.
Take, for example, the numbers 1 through 6, as generated by a fair die. The
probability of each is 1/6, and so the expected value of the roll of a single die
is 1

6 ·1+ 1
6 ·2+ 1

6 ·3+ 1
6 ·4+ 1

6 ·5+ 1
6 ·6 = 3.5. The notion of expected value is a

mathematical generalization of the more familiar notion of average. Formally,

522 Evolutionary Computation for Modeling and Optimization

if D = (Q, E, P) is a distribution for which Q ⊆ R, then the expected value
E(D) is given by

E(D) =
∑
q∈Q

q · P (q). (B.3)

Many introductory probability classes deal largely with sets of independent
repeated trials or sets of disjoint events, because they are far easier to work
with mathematically. The modus operandi of evolution is to have strongly
dependent trials. Rather than maintaining the same distribution by replacing
balls in the pot between trials, we throw away most of the balls we draw and
produce new balls by combining old ones in odd fashions. This means that
dependent probability models are the norm in artificial life. The independent
models are also useful; they can, for example, be used to understand the
composition of the initial population in an evolutionary algorithm.

B.1.1 Choosing Things and Binomial Probability

The symbol
(
n
k

)
, pronounced “n choose k” is defined to be the number of

different sets of k objects that can be chosen from a set of n objects. There is
a simple formula for the choice numbers:(

n

k

)
=

n!
k!(n − k)!

. (B.4)

In choosing k objects out of n there are n choices for the first object, n − 1
choices for the second, and so on until there are

n · (n − 1) · · · (n − k + 1) =
n!

(n − k)!
(B.5)

ways to choose the set. These choices, however, have an implicit order, and
so in choosing k objects, there are k! distinct orders in which we could choose
the same set. Dividing by k! yields the desired formula. Since choosing and
failing to choose objects are dual to one another, we obtain the useful identity(

n

k

)
=
(

n

n − k

)
, (B.6)

which also clearly follows from algebraic manipulation of the formula B.4.
The choice numbers are also called the binomial coefficients, because of their
starring role in the binomial theorem.

Theorem 7. (Binomial theorem)

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k.

Probability Theory 523

A Bernoulli trial is a trial from a distribution D = (Q, E, P) for which
|Q| = 2. These two events happen with probability p and 1 − p. One of
the events is typically called a success, and the other is called a failure. The
probability of success is p. The binomial probability model is used to compute
the probability of seeing some number of successes in an independent set of
repeated Bernoulli trials.

Theorem 8. (Binomial probability model) If we are doing a set of n inde-
pendent Bernoulli trials with probability p of success, then the probability of
obtaining exactly k successes is(

n

k

)
pk(1 − p)n−k.

The binomial probability model looks like a piece sliced out of the binomial
theorem with p and (1 − p) taking the place of x and y. This is the result
of identical counting arguments producing the binomial probability model
and the terms of the binomial theorem. If we are to have k successes, then
we also have n − k failures. Since the events are independent, we multiply
the probabilities. Thus, any given sequence of successes and failures with k
successes has probability pk(1 − p)(n−k). Since the successes form a k-subset
of the trials, there are

(
n
k

)
such sequences. We multiply the probability of a

single sequence with k successes by the number of such sequences to obtain
the probability of getting k successes: the binomial probability model.

Example 41. Suppose that we have a population of 60 strings of length 20 that
were produced by choosing characters “0” or “1” with a uniform distribution.
What is the largest number of 1’s we would expect to see in a member of the
population? Answer this question by finding the number of 1’s such that the
expected number of creatures with that many 1’s is (i) at least 1 and (ii) as
small as possible.
Answer:

The expected number of creatures with k 1’s is just the population size
times the result of plugging p = 1/2, n = 20 into the binomial probability
model. For 60 creatures, the expected number of creatures with 14 1’s is
2.217. The expected number of creatures with 15 1’s is 0.8871. So, 14 is a
reasonable value for the largest number of 1’s you would expect to see in such
a population.

A quick way of generating binomial coefficients is to use Pascal’s triangle,
the first 11 rows of which are shown in Figure B.1. It is left to you to deduce
how the triangle was generated and how to find a given binomial coefficient
in the triangle.

B.1.2 Choosing Things to Count

In this section, we will use cards as our probability paradigm. We will use the
machinery developed to learn something about single tournament selection.

524 Evolutionary Computation for Modeling and Optimization

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1
1 11 55 165 330 462 462 330 165 55 11 1

1 12 66 220 495 792 924 792 495 220 66 12 1
1 13 78 286 715 1287 1716 1716 1287 715 286 78 13 1

1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1
1 15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 15 1

Fig. B.1. Pascal’s Triangle from n=0 to n=15.

Some familiarity with poker is assumed; consult Hoyle or a friend if you are
unfamiliar with this game.

Example 42. What is the number of 5-card poker hands that can be dealt?
Answer:

Compute the number of ways to choose 5 out of 52 cards, that is,(
52
5

)
=

52!
5! · 47!

= 2,598,960.

To get the probability of a given type of poker hand, you simply divide
the number of ways to get the hand by the number of total hands. The next
three examples illustrate this.

Example 43. What is the probability of getting three of a kind?
Answer:

First let’s solve the problem, “how many different poker hands are there
that count as three of a kind?” Three of a kind is a hand that contains 3 cards
with the same face value and 2 other cards with 2 other distinct face values.
To get 3 cards the same, we choose the face value, choose 3 of the 4 cards
with that face value, and then choose 2 of the other 49 cards, i.e., there are(

13
1

)
·
(

4
3

)
·
(

49
2

)
= 61,152

poker hands that contain 3 cards with the same face value.
We are not done yet! This counting includes hands with 4 cards the same

(“four of a kind”) and with 3 cards with one face value and the other 2 with

Probability Theory 525

another face value (a “full house”). Both of these are better than three of a
kind and so do not count as three of a kind.

To get the correct count, we must therefore count the number of ways to
get four of a kind and a full house and subtract these from the total. Four of
a kind is quite easy: simply choose a face value, choose all 4 cards of that face
value, and then choose one of the 48 other cards. There are(

13
1

)
·
(

4
4

)
·
(

48
1

)
= 624

ways to get four of a kind.
A full house is a little harder: choose 1 of the 13 face values to be the

“three the same,” choose 3 of those 4 cards, then choose 1 of the 12 remaining
face values to be the “two the same,” and then choose 2 of the 4 cards with
that face value. In short, there are(

13
1

)
·
(

4
3

)
·
(

12
1

)
·
(

4
2

)
= 3744

different ways to get a full house.
Putting this all together, there are

61,152 − 624 − 3744 = 56,784

ways to get three of a kind.
To get the probability of getting three of a kind, we divide by the total

number of poker hands.

P (three-of-a-kind) =
56,784

2,598,960
≈ 0.02185.

Example 44. How many ways are there to get two of a kind?
Answer:

Again, we start by counting the number of hands that are two of a kind: 2
cards with the same face value and the other 3 with distinct face values. Since
a large number of different types of good poker hands contain 2 cards with
the same face value, it would be laborious to follow the count-and-subtract
technique used in Example 43. We will, therefore, compute directly.

First, we select 1 of the 13 face values for our “two the same” and then
choose 2 of those 4 values. This leaves 12 face values from which we must
select 3 distinct face values to fill out the hand. Once we know these 3 face
values, it follows that we must choose 1 of the 4 cards within each of these
face values. This gives us(

13
1

)
·
(

4
2

)
·
(

12
3

)
·
(

4
1

)3

= 1,098,240

ways to get two of a kind.

526 Evolutionary Computation for Modeling and Optimization

Dividing by the total number of poker hands, we get

P (two-of-a-kind) =
1,098,240
2,598,960

≈ 0.42256903.

One odd fact about poker hands is that the more valuable ones are easier
to count. This is because they are not themselves related to still more valuable
hands above them. The flush, a hand in which all 5 cards have the same suit,
is quite easy to count, especially since a royal flush or a straight flush are, via
linguistic technicality, still flushes.

Example 45. What is the probability of getting a flush?
Answer:

First count the number of flush hands. We must choose 1 of 4 suits and
then pick which 5 of the 13 cards in that suit we want. Thus, there are(

4
1

)
·
(

13
5

)
= 5148

different ways to get a flush, yielding

P (flush) =
5148

2,598,960
≈ 0.001981.

Now, with the mental machinery all charged up to count things using
choose, we can explore an issue concerning single tournament selection with
tournament size 4. What is the expected number of children a creature partic-
ipating in single tournament selection will have in each generation? First, let
us agree that when two parents have two children, each incorporating some
fraction of each parent’s gene, this counts as one child per parent. This means
that, in single tournament selection, the expected number of children of a par-
ent is one times the probability that that parent will be placed by the random
selection in a tournament in which it is one of the two most fit. Clearly, this
probability can be computed from a creature’s rank in the population in a
given generation. (We will assume that when there are ties in fitness, they do
not lead to ties in rank, but rather, rank is selected among equally fit creatures
uniformly at random.)

Theorem 9. The expected number of children of a creature with rank k out
of a population of n creatures using single tournament selection as the model
of evolution is (

n−k
3

)
+
(
n−k

2

)(
k−1
1

)
(
n−1

3

) .

Proof:
There are two disjoint events that together make up the event in which we

are interested, a creature being one of the 2 most fit creatures in its group of

Probability Theory 527

4. Either it can be the top creature, or it can be the second in its group of 4.
The number of choices of other creatures that leave the creature in question
at the top is simply the number of creatures less fit than it choose 3,

(
n−k

3

)
. If

it is the second creature, then we choose 2 creatures from those less fit,
(
n−k

2

)
,

and 1 from those more fit,
(
k−1
1

)
. Since these events are disjoint, they add.

Finally, divide by the number of possible ways to choose 3 creatures to obtain
a probability. Finally, notice that in tournament selection, this probability is
equal to the expected number of children. �

To give a feel for how the expected number of children is distributed,
we show the probabilities for a population of size 24 in Example 46. It is
interesting to note that the probability of death is exactly one minus the
probability of having children in this model of evolution when the tournament
size is 4. As an exercise, you could compute the probability based on rank of
becoming a parent or of dying for tournament sizes other than 4.

Example 46. Probability of tournament selection

Rank Expected Children Rank Expected Children
1 1 13 0.4658
2 1 14 0.3981
3 0.9881 15 0.3320
4 0.9656 16 0.2688
5 0.9334 17 0.2095
6 0.8927 18 0.1553
7 0.8447 19 0.1073
8 0.7905 20 0.0666
9 0.7312 21 0.0344
10 0.6680 22 0.0119
11 0.6019 23 0
12 0.5342 24 0

B.1.3 Two Useful Confidence Intervals

In many of the experiments in this book, we record the time until success, in
generations or mating events, for a large number of populations. When there
are variations in the evolutionary algorithms used to produce those times, we
can ask which variation of the algorithm worked better. Let us imagine that we
are studying the difference between single-point and probabilistic mutation in
a string evolver of the sort used in Chapter 2. Figure B.2 gives a graph of the
fraction of populations that contain a copy of the reference string as a function
of the number of generations. The graphs show that single-point mutation
outperforms probabilistic mutation at whatever rate it was performed. The
question remains, “is the difference significant?”

528 Evolutionary Computation for Modeling and Optimization

Answering the question of significance can be done precisely. What you
do is compute the probability that two experiments could be as different as
they are by chance. To do this we construct confidence intervals. A confidence
interval with a given p-value for a quantity q is a range of values ql ≤ q ≤ qh

such that the probability that the true value of q is between ql and qh is
p. A general treatment of confidence intervals is given in any mathematical
statistics book. We will treat two different sorts of confidence intervals: for
the value of the probability of success for a Bernoulli trial and for the mean
of a sampled random variable.

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200 1400 1600 1800 2000

"exp1.dat"
"exp8.dat"

Fig. B.2. Fraction of populations with a correct answer as a function of number of
generations. (The solid line graphs the data from a string evolver using single point
mutation. The dotted line graphs the data from a string evolver using probabilistic
mutation.)

Definition B.1 A random variable X with distribution D = (Q, E, P) is
a surrogate for choosing a point from Q with probability as specified by P .

A random variable X associated with flipping a coin has the distribution
given in Example 38. It has two possible outcomes: “heads” and “tails.” A
random variable can be thought of as an instance of its distribution.

Probability Theory 529

There are two important quantities associated with a random variable over
a set of numbers: its mean and variance. The mean of a random variable is
just its expected value (see Equation B.3). We denote the mean of a random
variable X by the symbol µX . Restating Equation B.3 for a random variable
X with distribution D = (Q, E, P), we have

µX = E(X) =
∑
q∈Q

q · P ({q}), (B.7)

or
µX = E(X) =

∫
Q

q · P (q) · dq. (B.8)

The variance of a random variable is the degree to which it tends to differ from
its mean. It is denoted by σ2

X . Formally, the variance of a random variable X
is given by

σ2
X = E((X − µX)2) = E(X2) − µ2

X . (B.9)

The variance is denoted by σ2
X in part because the square root of the variance

is also a commonly used quantity, the standard deviation.

Definition B.2 The standard normal distribution, denoted by N(0, 1),
is a distribution with Q = R and

P (E) =
1√
2π

∫
E

e−x2/2 · dx.

The mean of this distribution is 0 and the variance is 1. The normal dis-
tribution with mean µ and standard deviation σ, denoted by N(µ, σ), is a
distribution with Q = R and

P (E) =
1√
2π

∫
E

e− (x−µ)2

2σ2 · dx.

α zα

0.05 1.64
0.025 1.96
0.01 2.33
0.005 2.57

Table B.1. Some useful values of the z-statistic.

The area under the standard normal for various values of the independent
variable is called the z-statistic. If α is a probability then zalpha is the value

530 Evolutionary Computation for Modeling and Optimization

such that, for a standard normal random variable X, P (X > zα) = α. Notice
that, because the standard normal is symmetric, we might as well have said
that zα is the number for which P (X < −zα) = α. Some values of the z-
statistic are given in Table B.1.

We now have the pieces we need to construct confidence intervals.

Theorem 10. Suppose we have a random variable with mean µ and standard
deviation σ. Then if we compute the mean m and standard deviation s of n
samples from the distribution there is a probability α that the true mean is in
the interval: (

m − zα/2
s√
n

, m + zα/2
s√
n

,

)

Theorem 11. If we perform n Bernoulli trials and obtain k successes. Then
there is a probability α that the probability of success is in the interval⎛

⎝k

n
− zα/2

√
k
n

(
1 − k

n

)
n

,
k

n
+ zα/2

√
k
n

(
1 − k

n

)
n

⎞
⎠

Theorem 11 not only permits you to estimate the true probability of suc-
cess for a binomial variable but permits you to compare different types of
Bernoulli trials by comparing their confidence estimates.

B.2 Markov Chains

To analyze a series of trials that are not independent, the first mathematical
technology to try is Markov chains. A Markov chain is a set S of states together
with transition probabilities ps(t) of moving from state t to state s for any two
s, t ∈ S. When you use a Markov chain, you start with an initial distribution
on the states of the chain. If you know in which state you are starting, then
the initial distribution will have probability one of being in that starting state.
If your starting state is the distribution of an initial random population yet to
be created, then you may have some initial probability of being in each state.
The examples in this section should help clarify this notion.

We will be dealing only with Markov chains that have fixed transition prob-
abilities. In this sort of Markov chain, the numbers ps(t) are fixed constants
that have no dependence on history. We restrict our focus for clarity’s sake
and warn you that stochastic models of evolution, a topic beyond the scope of
this text, will involve Markov chains with history-dependent transition prob-
abilities.

Example 47. Suppose we generate a sequence of integers by the following rule.
The first integer is 0 and subsequent members of the sequence are generated
by flipping a coin and adding 1 to the previous number if the coin came up

Probability Theory 531

heads. The states of this Markov chain are S = {0, 1, 2, . . .}. The transition
probabilities are

ps(t) =

{
0.5 if s = t or s = t + 1,

0 otherwise,

and the initial distribution of states is to be in state 0 with probability 1.

It is easy to see that the integers generated are in some sense random, but
the value of a member of the sequence is strongly influenced by the value of
the previous member. If the current number is 5, then the next number is 5
or 6, with no chance of getting a 7, even though it is very likely that we will
eventually get a 7. Here is a more complex example.

Example 48. Suppose we play a game, called Hexer, with 4 dice as follows.
Start by rolling all 4 dice. If you get no 6’s, you lose. Otherwise, put the 6’s
aside in a “six pool” and reroll the remaining dice. Each time you make a roll
that produces no 6’s, you pick up a die from the six pool to be used in the
next roll. If you roll no 6’s with an empty six pool, you lose. When all the
dice are in the six pool, you win. In all other cases, play continues.

Hexer is a Markov chain with states {s0, s1, s2, s3, s4, L} corresponding to
losing or the number of dice in the six pool. Attaining state s4 indicates a win.
The initial distribution is to be in state s0 with probability 1. The transition
probabilities are summarized in the transition matrix:

s
ps(t) s0 s1 s2 s3 s4 L

s0 0 0.3858 0.1157 0.0154 0.0008 0.4823
s1 0.5787 0 0.3472 0.0694 0.0046 0

t s2 0 0.6944 0 0.2778 0.0278 0
s3 0 0 0.8333 0 0.1666 0
s4 0 0 0 0 1 0
L 0 0 0 0 0 1

Hexer transition matrix

A transition matrix for a Markov chain is a matrix [ai,j] indexed by the
states of the Markov chain with ai,j = pj(i).

Example 48 gives conditions for the game Hexer to end. The terminal
states in which the games ends are s4 and L. The definition of Markov chain
we are using doesn’t have a notion of terminal states, so we simply assign such
states a probability of 1 of following themselves in the chain and then explain
separately whether a state ends the chain or is repeated indefinitely whenever
we reach it. The name for such states in Markov chain theory is absorbing
states.

If we have a Markov chain M with states S, then a subset A of S is said to
be closed if every state that can follow a state in A is a state in A. Examples

532 Evolutionary Computation for Modeling and Optimization

of closed subsets of the state space of Hexer are {L}, {s4}, and the entire set
of states.

If S does not contain two disjoint closed subsets, we say that M is inde-
composable. If for two states x, y ∈ S it is possible for x to follow y and for y
to follow x in the chain, then we say that x and y communicate. A subset A of
S is a communicating class of states if any two states in A communicate. The
set {s0, s1, s2, s3} is a communicating class in the Markov chain for Hexer.

If there is a distribution d on the states such that for any initial distribution
the limiting probabilities of being in each of the states converges to d, then
we say that M is stable and we call d the limiting distribution. (The limiting
probability of a state is just the limit as the number of steps goes to infinity
of the number of times you have been in the state divided by the number of
steps you have run the Markov chain.)

Notice that for Hexer there are two different “final” distributions as the
number of steps goes to infinity: probability 1 of being in state L and proba-
bility 1 of being in state s4. So, the Hexer Markov chain is not stable.

A stable initial state is a distribution d such that if you start with the
distribution d on the states, you keep that distribution. If M is the transition
matrix of a Markov chain and d is the row vector of probabilities in d, then
d is a stable initial distribution if

d · M = d.

It is not hard to show that the limiting distribution of a Markov chain, if
it exists, is also a stable initial distribution. The following theorems, offered
without proof, go a long way toward characterizing a very nice class of Markov
chains.

Theorem 12. An indecomposable Markov chain has at most one stable initial
distribution.

Theorem 13. Stable Markov chains are indecomposable.

If there is a partition of the set of states of a Markov chain

{A0, A2, . . . , Ak−1} , k ≥ 2,

such that the only states that can follow the states in Ai are the states in Ai+1
(addition mod k), then we say that a Markov chain is periodic with period k.
The largest k for which a Markov chain is periodic is called the period of the
Markov chain, and if there is no k ≥ 2 for which a Markov chain is periodic,
then we call the Markov chain aperiodic.

Theorem 14. If a Markov chain is indecomposable, aperiodic, and has states
that constitute a single communicating class, then either

(i) The Markov chain has no limiting distribution and the limiting proba-
bilities of each state are zero, or,

(ii) The Markov chain has a limiting distribution and is stable.

Probability Theory 533

The next two examples are Markov chains that fit (i) and (ii) of Theorem
14 respectively.

Example 49. Suppose we modify Example 47 as follows. Roll a 6-sided die
instead of flipping coins. Add 1 for a 5 or a 6, subtract 1 for a 1 or a
2, and otherwise leave the number unchanged. The states are now S =
{. . . ,−2,−1, 0, 1, 2, . . .} and the transition probabilities become

ps(t) =

{
1/3 if s = t − 1, t, or t + 1,

0 otherwise.

It is not hard to see there is a single closed set of states, the whole state space,
and that every state communicates with every other state. A bit of thought
also shows that this Markov chain is aperiodic. This implies that Theorem 14
applies. Since we could choose our initial distribution to have probability one
on any state, it follows that each state must have the same limiting probability
as each other state. Since you cannot divide 1 into infinitely many equal pieces,
there cannot be a limiting distribution, and so we are in case (i) of the theorem.

Example 50. Suppose we have a 4-state Markov chain with states {a, b, c, d}
and transition matrix ⎡

⎢⎢⎣
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25

⎤
⎥⎥⎦ .

It is obvious from inspection that this Markov chain satisfies the hypothesis
of Theorem 14. Since there are finitely many states, the limiting probability
cannot be zero, and so this chain is of the type described by (ii). It is in fact
easy to see that the limiting distribution is (0.25, 0.25, 0.25, 0.25).

If a Markov chain has a stable limiting distribution, it is called the sta-
tionary distribution of the Markov chain. It isn’t hard to approximate the
stationary distribution of a Markov chain with a few states if you know it has
one. Suppose M is a Markov chain with n states and transition matrix T . Pick
an initial distribution d and then compute the sequence {d,d · T,d · T 2, . . .}.
If M is stable, this sequence will converge to the stationary distribution. Es-
sentially, repeated multiplication by the transition matrix will turn any initial
distribution into the stationary distribution in the limit. For many choices of
d (but not all), the sequence obtained by repeated multiplication by T will
exhibit approximate periodicity if M is periodic.

Let us conclude with a simple Markov chain example that solves an estima-
tion problem in artificial life. While reading this example, keep in mind that
there are assumptions and estimates involved; do not accept these blindly.
Any assumption, no matter how much you need it to cut down the problem
to manageable size, should be repeatedly examined. With that caveat, let us
proceed.

534 Evolutionary Computation for Modeling and Optimization

Example 51. Suppose we are running a string evolver on the alphabet {0, 1}
that uses an evolutionary algorithm with tournament selection and tourna-
ment size 2. If we have 60 creatures of length 20 and use single-point mutation,
what is the expected time-to-solution?
Answer:

Assume that the point mutation must change the value of the locus it
mutates. Also, assume that the reference string is “11111111111111111111.”
(Problem 11 showed that the choice of reference string is irrelevant to the
solution time. This choice lets us use the results of Example 41.) With this
reference string, the creature’s fitness is the number of 1’s in its gene.

The first step in solving this problem is to figure out how good the best
creature in the population is. (If, for example, we had 220 creatures, there
would be an excellent chance that the solution would exist in the initial ran-
dom population.) We solved this problem in Example 41; the answer is that
the best creature has an expected fitness of 14.

The model of evolution (tournament selection) breaks the population into
randomly selected sets of two creatures, copies the better over the worse in
each group, and then performs a (bit flip) point mutation on the copy. This
means that all creatures are following the same path to the reference string
at the same rate. (Imagine how hard this example would be if we allowed
crossover.) We therefore assume that the time-to-solution can be computed
by following the best creature.

Let M be the Markov chain whose states are {0, 1, . . . , 20} representing
the fitness of the best creature. The model of evolution ensures that the best
creature will survive and that improvement always comes in the form of a
single 0 being transformed into a 1. From this we can compute the transition
probabilities to be

ps(t) =

⎧⎪⎨
⎪⎩

(20 − t)/20 if s = t + 1,

t/20 if s = t,

0 otherwise.

Our current guess at an initial distribution is

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)

(that is, the best creature has fitness 14). Our expected time, in generations,
to improve the best creature would be the reciprocal of the probability that
it will improve (why?). Summing over the needed improvements, this gives us
an estimate of

19∑
t=14

20
20 − t

= 49

generations.

Probability Theory 535

We actually have the information needed to build the transition ma-
trix, and the true initial distribution of the population is available; it is
d = (p0, p1, . . . , p20), where

pi =
(

20
i

)(
1
2

)20

.

We could get a much better estimate of time-to-solution by taking the true
initial distribution and multiplying it by the transition matrix (with a com-
puter) until the generation in which the probability of beginning in state 20
is at least 1/60. Keep in mind that instead of following the best creature, we
are now tracking the whole population of 60 creatures, so 1/60 of a chance of
being in state 20 gives us an expectation of one creature in state 20.

If we do this, our estimate becomes 21 generations, less than half of the
far cruder and easier estimate above. In any case, an estimate of this sort
should never be seen as a precise answer, but rather as a ballpark figure that
tells you whether your simulation needs to be run for a few minutes, an hour,
overnight, or on a generation of hardware not available until slightly after the
FAA certification of a craft capable of interstellar travel.

C

A Review of Calculus and Vectors

In the real-function optimization treated in Chapter 3, an obvious choice for
a Lamarckian mutation operator for a continuous function is to head uphill
(when maximizing) or downhill (when minimizing). However, when you’re
optimizing a function of 25 variables, it becomes very hard to know which
way is uphill using limited human intuition. When testing a real function
optimizer, it can be quite embarrassing to make a test function, constructively
place a large number of optima in the test function, and then find that the
roots of the derivative of the function corresponding to your test optima have
migrated into the parts of the complex plane off of the real axis (if you don’t
get the joke, review your calculus). A taste of this sort of test problem design
appears in Problem 48. It’s also nice, when making trivial initial tests of a
real-function optimizer, to know the true optima of your test function.

Calculus is a key skill needed to do any of these things. It also is the key to
steepest-descent techniques, important benchmarks that an alife system must
beat to be worth the attention of optimizers. This appendix reviews a few
selected features of calculus useful for problems in this book. We urge you to
become skilled with calculus if you are not already.

C.1 Derivatives in One Variable

If you have a simple function, f(x) = x2 for example, you can compute how
fast f(x) is changing on an interval [a, b] by computing f(b)−f(a)

b−a . On the
interval [1, 3], our example function changes by a total of 9 − 1 = 8. Since the
interval is 3 − 1 = 2 units wide, the rate of change on the interval is 8/2 = 4.
This is all very well and good for applications like issuing traffic tickets to red
sports cars or figuring the profit you made per apple during the class fruit
sale, but it’s not enough to point the way uphill in 10 dimensions.

To do this, we need to be able to answer the question “What is the rate
of change of f(x) on the interval [1, 1].” Applying the average change tech-
nique causes you to divide by zero, not an easy feat and one prohibited by

538 Evolutionary Computation for Modeling and Optimization

law in some mathematical jurisdictions. The way you avoid dividing by zero
is to compute the average change on a whole sequence of intervals that get
smaller and smaller and always include the point at which you want to know
the change of f(x). These average rates of change will, if f(x) is a nice (dif-
ferentiable) function, start looking alike and will converge to a reasonable
value.

For the function f(x) = x2, this reasonable value is always 2x. We call this
reasonable value by many names including the instantaneous rate of change
of f(x) and the derivative of f(x). The formal notation is

Dxf(x) = 2x, or
d

dx
f(x) = 2x, or f ′(x) = 2x.

If you want to be able to compute derivatives in general, take an honors
calculus class (one with proofs). If you want to be able to compute derivatives
for the usual functions that appear on a pocket calculator, the rules are given
in this appendix in two tables: Derivative Rules for Functions and Derivative
Rules for Combinations of Functions. These tables are not an exhaustive list,
but they include, in combination, every continuously differentiable function
used in this book.

The most important and confusing rule is the chain rule, which lets you
nest functions: Dx(f(g(x))) = Dxf(g(x)) · Dxg(x). Here are a few examples
to illustrate the rules.

Example 52. Compute : Dx cos(x2 + 1).
Answer:

The form for cos(u) says that Du cos(u) = − sin(u). The derivative of x2+1
is 2x (use the scalar multiple rule, the sum of functions rule, and the powers
of a variable rule). Combining these results via the chain rule (set u = x2 +1)
tells us that

Dx cos(x2 + 1) = − sin(x2 + 1) · 2x.

A Review of Calculus and Vectors 539

Derivative Rules for Functions

Powers of a variable Dxxn = n · xn−1

Trig. functions Dx sin(x) = cos(x)
Dx tan(x) = sec2(x)
Dx sec(x) = sec(x) tan(x)
Dx cos(x) = − sin(x)
Dx cot(x) = − csc2(x)
Dx csc(x) = − csc(x) cot(x)

Log and exponential Dxln(x) = 1
x

Dxex = ex

Hyperbolic Trig. Dx sinh(x) = cosh(x)
Dx tanh(x) = sech2(x)
Dx sech(x) = − sech(x) tanh(x)
Dx cosh(x) = sinh(x)
Dx coth(x) = − csch2(x)
Dx csch(x) = − csch(x) coth(x)

Inverse Trig. Dx arcsin(x) = 1√
1−x2

Dx arctan(x) = 1
1+x2

Dx arcsec(x) = 1

|x|·
√

x2−1

Inverse Hypertrig. Dx arcsinh(x) = 1√
x2+1

Dx arctanh(x) = 1
1−x2

Dx arcsech(x) = −1

x·
√

1−x2

Example 53. Compute: Dx

√
x2 + 2x + 3

Answer:
The first step is to rephrase the square root as a power so that the rule for

powers of a variable may be used on it (the rule is stated in terms of the nth
power, but n may in fact be any real number, e.g., 1/2). Doing this transforms
the problem to Dx(x2 +2x+3)1/2. Now, the powers of a variable rule tells us
that Dxu1/2 = 1

2u−1/2, and combining the scalar multiple, sum of functions,
and powers of a variable rule tells us that Dx(x2 + 2x + 3) = 2x + 2. So, the
chain rule says that

Dx

√
x2 + 2x + 3 =

1
2
(x2 + 2x + 3)− 1

2 · (2x + 2) =
x + 1√

x2 + 2x + 3
.

540 Evolutionary Computation for Modeling and Optimization

Derivative Rules for Combinations of Functions

Scalar multiples Dx(C · f(x)) = C · Dxf(x), C a constant.

Sum of functions Dx(f(x) + g(x)) = Dxf(x) + Dxg(x)

Product Rule Dx(f(x) · g(x)) = Dxf(x) · g(x) + f(x) · Dxg(x)

Quotient Rule Dx
f(x)
g(x) = Dxf(x)·g(x)−f(x)·Dxg(x)

g2(x)

Reciprocal Rule Dx
1

f(x) = −Dxf(x)
f2(x)

Chain Rule Dx(f(g(x))) = Dxf(g(x)) · Dxg(x)

Example 54. Compute Dx

(
cos(1−x)

x2+1

)
.

For this problem we need the quotient rule as well as the chain rule to
resolve cos(1 − x). The chain rule says that Dx cos(1 − x) = − sin(1 − x) ·
Dx(1 − x), and since Dx(1 − x) = −1, we get Dx cos(1 − x) = sin(1 − x) once
we cancel all the minus signs. Putting this result into the quotient rule yields

Dx

(
cos(1 − x)

x2 + 1

)
=

(x2 + 1) · sin(1 − x) − 2x · cos(1 − x)
(x2 + 1)2

.

C.2 Multivariate Derivatives

One of the goals of this appendix is for you to learn to point uphill in any num-
ber of dimensions. The last section contained useful building blocks, but only
in one dimension. In order to work in more dimensions, we need multivariate
functions and vectors.

The vectors, n-tuples of numbers drawn from R
n, are simply formal ways of

writing down directions and magnitudes. In R
2, if we take the positive y-axis

to be north and the positive x-axis to be east, then the vectors (1, 1) and (7, 7)
both point northeast and encode distances of

√
2 and 7·

√
2 respectively. There

are a number of standard operations on vectors that will be handy. The vector
sum or just sum of two vectors v = (r1, r2, . . . , rn) and u = (s1, s2, . . . , sn) in
R

n is defined to be

v + u = (r1 + s1, r2 + s2, . . . , rn + sn).

The scalar multiple of a vector v = (r1, r2, . . . , rn) by a real number c is given
by

c · v = (c · r1, c · r2, . . . , c · rn).

A Review of Calculus and Vectors 541

The norm or length of a vector v = (r1, r2, . . . , rn) is given by

‖v‖ =
√

r2
1 + r2

2 + · · · + r2
n.

A unit vector is a vector of length one. The vector

1
‖v‖ · v

is called the unit vector in the direction of v. Such unit vectors are useful for
specifying the direction of Lamarckian mutations when the size is found by
other means.

The entries of the vectors that point up- or downhill are going to be partial
derivatives, and the vector that points up- or downhill is the gradient. A
partial derivative is a derivative taken with respect to some one variable in a
multivariate function. When you take the partial derivative with respect to a
variable u, you use the same rules as for single-variable derivatives, treating
u as the sole variable and all the other variables as if they were constants.
Since normal derivatives (with respect to x) are denoted by Dx or d

dx , partial
derivatives are denoted by the symbol ∂, as shown in Examples 55 and 56.

Example 55. If f(x, y) =
(
x3 + y2 + 3xy + 4

)5, then

∂f

∂x
= 5 ·

(
x3 + y2 + 3xy + 4

)4 · (3x2 + 3y),

and
∂f

∂y
= 5 ·

(
x3 + y2 + 3xy + 4

)4 · (2y + 3x).

Example 56. If f(x, y) = cos
(√

x2 + y2
)
, then

∂f

∂x
= − sin

(√
x2 + y2

)
· 2x√

x2 + y2
,

and
∂f

∂y
= − sin

(√
x2 + y2

)
· 2y√

x2 + y2
.

Notice that in complicated expressions, the variables that are held constant
still appear extensively in the final partial derivative.

If f : R
n → R is a continuously differentiable function of n variables,

f(x1, x2, . . . , xn), then the gradient of f is defined to be

∇f =
(

∂f

∂x1
,

∂f

∂x2
, . . . ,

∂f

∂xn

)
.

The gradient points uphill. To be more precise, if we are at a point in n-
dimensional space and are examining an n variable function f that has a

542 Evolutionary Computation for Modeling and Optimization

gradient, then the direction in which the function is increasing in value the
fastest is ∇f . The two vectors

∇f

‖∇f‖ and (−1) · ∇f

‖∇f‖

are unit vectors in the direction of maximum increase and maximum decrease
of the function.

Example 57.

f(x1, x2, . . . , xn) =
1

x2
1 + x2

2 + · · · + x2
n + 1

is an n-dimensional version of the fake bell curve discussed in Section 2.2.
Examine the gradient

∇f =
(−2x1

x2
1 + · · · + x2

n + 1
,

−2x2

x2
1 + · · · + x2

n + 1
, · · · ,

−2xn

x2
1 + · · · + x2

n + 1

)
.

For any point in R
n, each coordinate of the gradient is minus twice the value

of the point in that coordinate divided by a positive number that is the same
for all coordinates. This means that the gradient always points back toward
the origin in each coordinate. Closer examination will show that the gradient
points toward the origin globally as well as coordinatewise and that the length
of the gradient vector corresponds to the steepness of the slope of the fake
bell curve. Sketching the gradient at various points when n = 2 is instructive.

C.3 Lamarckian Mutation with Gradients

If f : R
n → R is a continuously differentiable function, then the gradient

gives us a mutation operator that can be used in place of the more cumber-
some Lamarckian mutation described in terms of multiple point mutations in
Section 2.3. For the real function optimizers described in Chapter 3, we used
a notion of point mutation in which we chose a maximum mutation size per
coordinate of ε and mutated our genes (lists of points in R

n) by adding ε times
a number uniformly distributed in the range −1 ≤ x ≤ 1 to the value of a
randomly chosen coordinate. The new Lamarckian mutation operator consists
in adding the vectors

ε · ∇f

‖∇f‖ or − ε · ∇f

‖∇f‖

when maximizing or minimizing f , respectively.

A Review of Calculus and Vectors 543

C.4 The Method of Least Squares

One standard minimization problem done in multivariate calculus is model-
fitting with the method of least squares. First, pick a function with unknown
parameters (treat them as variables) that you think fits your data well. Then,
compare that function to your data by subtracting the values at selected
points, squaring that difference, and then summing those squares. Then, use
calculus to minimize the result. Recall that a function of several variables has
its maxima and minima at points where all of its partial derivatives are zero.
So, simply solve the system of equations obtained by setting the derivative
with respect to each parameter of the sum of squared error to zero. Unless you
are already familiar with the method of least squares, the preceding discussion
is quite likely an impenetrable fog, and so an example is in order.

We will do the standard example, fitting a line to data. A line has two
parameters, its slope and intercept. So, the function being fitted is

y = ax + b,

where a and b are the slope and intercept, respectively.
Imagine we have n data points {(x1, y1), (x2, y2), . . . , (xn, yn)}. Then the

sum of squared error is

E2(a, b) =
n∑

i=1

(axi + b − yi)2.

Extracting the partial derivatives with respect to a and b, we obtain the system
of equations

∂E2

∂a
=

n∑
i=1

2 · (axi + b − yi)xi = 0,

and
∂E2

∂b
=

n∑
i=1

2 · (axi + b − yi) = 0.

Applying the linearity property of the summation and a little algebra yields
linear equations in standard form:

a ·
n∑

i=1

x2
i + b ·

n∑
i=1

xi =
n∑

i=0

xiyi,

and

a ·
n∑

i=0

xi + b · n =
n∑

i=1

yi.

With these formulas, we can find the a and b that minimize squared error
with respect to the data set. It is often worth going a small extra distance

544 Evolutionary Computation for Modeling and Optimization

and solving the linear systems in general to obtain formulas for a and b in
terms of the sums of products of data elements. To this end we present

a =
n
∑n

i=1 xiyi −
∑n

i=1 xi

∑n
i=1 yi

n
∑n

i=1 x2
i − (

∑n
i=1 xi)

2 , (C.1)

and

b =
∑n

i=1 x2
i

∑n
i=0 yi −∑n

i=1 xi

∑n
i=1 xiyi

n
∑n

i=1 x2
i − (

∑n
i=1 xi)

2 . (C.2)

If you are putting these into software, you will want to note that the
denominators of Equations C.1 and C.2 are identical. If you are prone to
using formulas in place of thought, you are warned not to use these formulas
on a single data point. Here is a mathematical issue that you may wish to
ponder: when doing multivariate optimization by finding points where the
partial derivatives equal zero, it is often necessary to go through a number
of contortions to show that the critical points found are in fact minima or
maxima and not just saddle points. There was a unique critical point in the
above minimization. Why is it a minimum? Hint: to what analytic class of
functions does E2(a, b) belong?

While the computation of the least squares best fit line is both the most
widely used and the simplest nontrivial example of the method of least squares,
many other models can be fit with least squares. Perhaps of more interest to
you is the fact that the least squares line fit can be transformed to fit other
models.

Suppose that we wished to fit an exponential model of the form

y = b · eax.

Simply note that if y = b · eax, where b is the initial value of the function at
x = 0 and a is the growth rate, then it is also the case that ln(y) = ax+ ln(b).
This means that if we take the natural log of the y-coordinates of our data
set and then do a least squares fit of a line to the resulting transformed data
set, then the slope of the line will be the growth rate of the model and the
intercept will be the log of the initial value.

A similar technique can be used to fit a model of the form

y =
1

ax2 + b
.

The derivation is left as an exercise for you.
The method of least squares can also be used to compare the quality of

models. When we evolve data interpolators, we use it in exactly this fashion,
judging a data interpolator to have higher fitness if its function has lower
squared error with respect to the data. In some applications, mean squared
error can serve as a fitness function (it is minimized).

D

Combinatorial Graphs

D.1 Terminology and Examples

In this appendix, we will go over the terminology and some elementary theory
of combinatorial graphs. An excellent and complete introduction to the topics
appears in [58].

Definition D.1 A combinatorial graph or graph G is a set V(G) of ver-
tices together with a set E(G) of edges. Edges are unordered pairs of vertices
and as such may be thought of as arcs connecting pairs of vertices. The two
vertices that make up an edge are its ends and are said to be adjacent.

An example of a graph appears in Figure D.1. The graph has 16 vertices
and 32 edges. In spite of their simplicity, graphs have a boatload of terminol-
ogy. Prepare to remember.

Definition D.2 If a vertex is part of the unordered pair that makes up an
edge, we say that the edge and vertex are incident.

Definition D.3 The number of edges incident with a vertex is the degree of
the vertex.

Definition D.4 If all vertices in a graph have the same degree, we say that
the graph is regular. If that degree is k, we call the graph k-regular.

The example of a graph given in Figure D.1 is a 4-regular graph. It is, in
fact, the graph of vertices and edges of a 4-dimensional hypercube.

Definition D.5 A graph is said to be bipartite if its vertices can be divided
into two sets, called a bipartition, such that every edge has an end in each
set.

546 Evolutionary Computation for Modeling and Optimization

Definition D.6 A subgraph of a graph G is a graph H whose vertex and
edge sets are both subsets of V (G) and E(G).

Definition D.7 A graph is said to be connected if it is possible to start at
any one vertex and then follow a sequence of pairwise adjacent vertices to any
other.

Definition D.8 A graph is k-connected if the deletion of fewer than k edges
cannot disconnect the graph.

Fig. D.1. An example of a graph.

The example of a graph given in Figure D.1 is bipartite. Following is the
so-called first theorem of graph theory.

Theorem 15. The number of vertices of odd degree in a graph is even.

Proof:
Count the number of pairs of incident vertices and edges. Since each edge

is incident on two vertices, the sum is a multiple of two. Since each vertex
contributes its degree to the sum, the total is the sum of all the degrees. A
sum of integers with an even total has an even number of odd summands, and
so the number of odd degrees is even. �

Combinatorial Graphs 547

This theorem and its proof are included for two reasons. The first is to
demonstrate the beautiful technique involved: count something two different
ways and then deduce something from the equality of the two answers. The
second is to show that even in a very general structure like graphs there
are some constraints. Suppose, for example, that you have an evolutionary
algorithm that is evolving 3-regular graphs. If you have a mutation that adds
vertices, then it must add them in pairs, since a 3-regular graph has an even
number of vertices. In some of the other examples, we will see other constraints
on graphs. There are quite a lot of named families of graphs. Here are some
that are used in this text.

Definition D.9 The complete graph on n vertices, denoted by Kn has n
vertices and all possible edges. An example of a complete graph with 12 vertices
is shown in Figure D.2.

Definition D.10 The complete bipartite graph with n + m vertices, de-
noted by Kn,m has vertices divided into disjoint sets of n and m vertices and
all possible edges that have one end in each of the two disjoint sets. An ex-
ample of a complete bipartite graph with 8 (4+4) vertices is shown in Figure
D.2.

Definition D.11 The n-cycle, denoted by Cn has vertex set Zn. Edges are
pairs of vertices that differ by 1 (mod n) such that the vertices form a ring
with each vertex having two neighbors. A cycle in a graph is a subgraph that
happens to be a cycle.

Definition D.12 A path on n vertices is a graph with n vertices that results
from deleting one edge from an n-cycle. A path in a graph is a subgraph
that happens to be a path.

Definition D.13 The n-hypercube, denoted by Hn has the set of all n-
character binary strings as its set of vertices. Edges consist of pairs of strings
that differ in exactly one position. A 4-hypercube is shown in Figure D.2.

Definition D.14 The n × m torus, denoted by Tn,m has vertex set Zn ×
Zm. Edges are pairs of vertices that differ either by 1 (mod n) in their first
coordinate or by 1 (mod m) in their second coordinate, but not both. These
graphs are n × m grids that wrap (as tori) at the edges. A 12 × 6 torus is
shown in Figure D.2.

Definition D.15 The generalized Petersen graph with parameters n and
k is denoted by Pn,k. It has two sets of n vertices. The two sets of vertices
are both considered to be copies of Zn. The first n vertices are connected in a
standard n-cycle. The second n vertices are connected in a cycle-like fashion,

548 Evolutionary Computation for Modeling and Optimization

but the connections jump in steps of size k (mod n). The graph also has edges
joining corresponding members of the two copies of Zn. The graph P32,5 is
shown in Figure D.2.

K12 P32,5 T12,6

H4 K4,4

Fig. D.2. Examples of complete, Petersen, torus, hypercube, and complete bipartite
graphs. (These examples are all smaller than the graphs actually used, but are
members of the same family of graphs.)

Definition D.16 A sequence of pairwise adjacent vertices that is allowed to
repeat vertices is called a walk.

Definition D.17 A graph that has no cycles as subgraphs is said to be
acyclic. An acyclic connected graph is called a tree.

Paths are examples of trees. There are a large number of constructions
possible on graphs, a few of which are given here.

Definition D.18 The complement of a graph G, denoted by G, is a graph
with the same vertex set but a complementary set of edges.

The complement of a 5-cycle is, for example, another, different, 5-cycle;
the complement of a 4-cycle is two disconnected edges.

Combinatorial Graphs 549

Definition D.19 If we take a vertex of degree k and replace it with a copy of
Kk so that each member of V (Kk) is adjacent to one of the neighbors of the
replaced vertex, we say that we have simplexified the vertex. Simplexification
of a graph is defined as simplexification of all its vertices.

Simplexification is not a construction used much in elementary graph the-
ory, but it is useful for the graph-based evolutionary algorithms discussed in
Chapter 13. A picture of a graph and its simplexification are given in Figure
D.3.

Fig. D.3. K5 and K5-simplexified.

Definition D.20 A random graph is the result of sampling a particular
graph from a random process that produces graphs.

There are more types of random graphs than you can shake a stick at. We
again give a few examples.

Definition D.21 A random graph with edge probability α is generated
by examining each possible pair of vertices and, with probability α, placing an
edge between them. The number of vertices is determined in advance.

Definition D.22 A random regular graph can be generated by a form of
random walk, as follows, with thanks to Mike Steel for the suggestion. Begin
with a regular graph. A large number of times (think at least twice as many
times as the graph has edges) perform the following edge swap operation. Pick
two edges that have the property that (i) their ends form a set of 4 vertices and
(ii) those 4 vertices have exactly two edges, {a, b} and {c, d}, between them in
the graph. Delete those two edges and replace them with the edges {a, c} and
{b, d}. Again, the number of edges is chosen in advance.

550 Evolutionary Computation for Modeling and Optimization

Definition D.23 To get a random toroidal graph with connection ra-
dius β, place vertices at random in the unit square. Connect with edges all
pairs of vertices at distances at most β in the torus created by wrapping the
edges of the unit square.

Definition D.24 A random simplicial graph is created by first choosing a
number n of vertices, a number k of simplices, and a collection of allowed sizes,
e.g., {3} or {7, 8, 9, 10}. The graph is generated by performing the following
move k times. A size m is selected at random from the list of allowed sizes.
A set of m vertices is selected at random. All pairs of vertices in the selected
set not already joined by edges are joined by edges.

Definition D.25 A simplexification-driven random graph is created by
picking an initial graph and repeatedly choosing a vertex at random and sim-
plexifying it. Since simplexification adds a number of vertices equal to the
degree of the vertex it acts on less one, some planning is needed.

D.2 Coloring Graphs

There is a plethora of problems that involve coloring the vertices or edges of
a graph.

Definition D.26 A vertex coloring of a graph is an assignment of colors
to the vertices of a graph. A vertex coloring of a graph is said to be proper
if no two adjacent vertices are the same color.

Definition D.27 The minimum number of colors required for a proper vertex
coloring of a graph G is the chromatic number of the graph, denoted by
χ(G).

Bipartite graphs, for example, have chromatic number 2 (see if you can
prove this in one or two lines).

Knowing the chromatic number of a graph is valuable, as can be seen in
the following application. Suppose that we have a group of people from which
are drawn several committees. Construct a graph with each committee as a
vertex and with edges between two vertices if the committees in question share
at least one member. Let colors represent time slots for meetings. A proper
coloring of the vertices of this graph corresponds to a meeting schedule that
allows every member of every committee to be present at each meeting of that
committee. The chromatic number is the least number of slots needed for such
a schedule.

Definition D.28 An edge coloring of a graph is an assignment of colors
to the edges of a graph. An edge coloring of a graph is proper if no two edges
incident on the same vertex are the same color.

Combinatorial Graphs 551

Definition D.29 The minimal number of colors required for a proper edge
coloring of a graph G is the edge chromatic number of a graph, denoted
by χE(G).

Proper edge colorings are useful in the development of communications
networks. Suppose we have a large number of sites that must send status or
other information to all other sites. These sites are the vertices of the graph,
and the edges represent direct communications links. If we assume that each
site can communicate with only one other site at a time, then a proper edge
coloring of the graph is an efficient algorithm for coordinating communica-
tions. If we have a proper edge coloring in n colors 0, 1, . . . , n − 1, then pro-
cessors talk over the edge colored i on each timestep congruent to i (mod
n). Minimizing the number of colors maximizes usage of the communications
links.

There are interesting coloring problems that do not involve proper color-
ings as well. In Ramsey theory, the goal is to color the edges of a complete
graph with some fixed number k of colors, and then find some minimal num-
ber of vertices such that any edge coloring in k colors forces a monochromatic
subgraph to appear that looks like Km, m < k. For example, if we color the
edges of a complete graph on 6 or more vertices red and blue, then there must
be a red or a blue triangle (K3). However, it is possible to bi-edge-color K5
without obtaining any monochrome triangles. Formally, we say that the Ram-
sey number R(3, 3) is equal to 6. If you are interested, try to find a red-blue
coloring of the edges of K5 that avoids monochromatic triangles.

Very few Ramsey numbers are known, and improving lower bounds on
Ramsey numbers is a very hard problem that one can attempt with evolu-
tionary algorithms. Recently, Brendan McKay spent 4.3 processor years on
Unix workstations showing that in order for a complete graph to have either
a red K4 subgraph or a blue K5 subgraph forced no matter how it was red-
and-blue edge colored, the graph must have at least 25 vertices. Formally,
R(4, 5) = 25. This is the hardest of the two-colored Ramsey numbers known
so far. There is only one 3-colored Ramsey number known at the time of
this writing, R(3, 3, 3) = 17 (neglecting the case in which monochromatic K2s
(edges) are forced). In other words, if we 3-color the edges of a complete graph
in 3 colors, then no matter what coloring we use, we must have a monochro-
matic triangle if the complete graph has 17 or more vertices.

The proof that the Ramsey numbers are finite will appear in any good
undergraduate combinatorics course, as will several more general definitions
of Ramsey numbers and a plethora of Ramsey-style problems. The Ramsey
numbers are pervasive in existence proofs in combinatorics and discrete math;
so, additional information about a Ramsey number usually turns out to be
additional information about many, many other problems as well.

552 Evolutionary Computation for Modeling and Optimization

D.3 Distances in Graphs

If we define the distance between two vertices to be the length of the shortest
path between them (and define the distance to be infinite if no such path
exists), then graphs become metric spaces.

Definition D.30 A metric space is a collection of points, in this case the
vertices of a graph, together with a function d (distance) from pairs of points
to the real numbers, that has three properties:

(i) For all points p, d(p, p) = 0;
(ii) For all pairs of points p �= q, d(p, q) > 0; and
(iii) For all triples of points p, q, r, d(p, q) + d(q, r) ≥ d(p, r).

The third property is called the triangle inequality.

Definition D.31 The diameter of a graph is the maximum distance between
any two vertices of a graph.

As we will see in Chapter 13, the diameter is sometimes diagnostic of the
behavior of a graph-based evolutionary algorithm.

Definition D.32 The eccentricity of a vertex is the largest distance from
it to any other vertex in the graph.

Notice that the diameter is then the maximum eccentricity of a vertex.

Definition D.33 The radius of a graph is the minimum eccentricity (and it
is not usually half the diameter, graphs aren’t circles).

Definition D.34 The center of a graph is the set of vertices that have min-
imum eccentricity.

Definition D.35 The periphery of a graph is the set of vertices that have
maximum eccentricity.

Definition D.36 The annulus of a graph comprises those vertices that are
not in the periphery or the center.

The several terms given above for different eccentricity-based properties
are useful for classifying the vertices of network graphs in terms of their prob-
able importance. Peripheral vertices tend to have lower traffic, while central
vertices often have high traffic.

Definition D.37 A dominating set in a graph is a set D of vertices with
the property that every vertex is either in D or adjacent to a member of D.

Combinatorial Graphs 553

For graphs representing guards and lines of sight, or vital services and
minimal feasible travel times to reach them, small dominating sets can be
quite valuable. There may be reasons that we want dominating sets that are
only in the periphery of a graph (imagine a town in which affordable land is
only at the “edge” of town). Vertices in the center of the graph are more likely
to be adjacent to lots of other vertices, and so it may be wise to choose them
when searching for small dominating sets. The problem of locating minimal
dominating sets is thought to be intractable, but evolutionary algorithms may
be used to locate tolerably small dominating sets.

D.4 Traveling Salesman

It is possible to generalize the notion of distance in graphs by placing weights
on their edges so that instead of adjacent vertices being at distance 1, they
are at a distance given by the edge weight. In this case the edge weights may
represent travel costs or distances.

Definition D.38 The Traveling Salesman problem starts with a com-
plete graph that has cities as its vertices and the cost of traveling between
cities as edge weights. What we desire is an ordered list of all the cities that
corresponds to a minimal-cost (total of edge weights) cycle in the graph that
visits all the cities.

Finding exact solutions to this problem is almost certain to be intractable
(NP-complete for the computer science majors among you), but evolutionary
algorithms can be used to find approximate answers (see Section 7.2). The
Traveling Salesman problem is a standard test problem for evolutionary algo-
rithms that operate on genes that are ordered lists without repetition (in this
case the list is the salesman’s itinerary).

D.5 Drawings of Graphs

Definition D.39 A drawing of a graph is a placement of the vertices and
edges of a graph into some space, e.g., the Cartesian plane.

There are a number of properties of drawings that can be explored, esti-
mated, or optimized with evolutionary algorithms. In Chapter 3, we discussed
evolutionary algorithms that tried to minimize the crossing number of a graph
when the edges were drawn as line segments.

Definition D.40 The crossing number of a graph is the minimum number
of times one edge crosses another in any drawing.

554 Evolutionary Computation for Modeling and Optimization

Definition D.41 A graph is said to be planar if it can be drawn with zero
edge crossings in the Cartesian plane.

Another property of a graph related to drawings is the thickness of a graph.

Definition D.42 The thickness of a graph is the minimum number of colors
in an edge-coloring of the graph that has the property that all the induced
monochromatic graphs are planar.

A planar graph thus has thickness 1. Thickness gives a useful measure of
the complexity of a graph. An electrical circuit with a thickness of 3 might
need to be put on 3 stacked circuit boards, for example. Many other problems
concerning drawings of graphs exist but require a knowledge of topology be-
yond the scope of this text. If you are interested, look for books on topological
graph theory that discuss the genus of a graph or the M-pire (empire) prob-
lem. The problem of embedding topological knowledge in a data structure
that is to be manipulated by an evolutionary algorithm is a subtle one.

References

1. Dan Ashlock. GP-automata for dividing the dollar. In Proceedings of the Second
Annual Conference on Genetic Programming, pages 18–26. IEEE Publications,
Piscataway, New Jersey, 1997.

2. Dan Ashlock. Data crawlers for optical character recognition. In Proceedings of
the 2000 Congress on Evolutionary Computation, pages 706–713. IEEE Publi-
cations, Piscataway, New Jersey, 2000.

3. Dan Ashlock and Mark Joenks. ISAc lists, a different representation for program
induction. In Genetic Programming 98, proceedings of the third annual genetic
programming conference., pages 3–10, San Francisco, 1998. Morgan Kaufmann.

4. Daniel Ashlock and James B. Golden III. Computation and fractal visualization
of sequence data. In Evolutionary Computation in Bioinformatics, chapter 11.
Morgan Kaufmann, 2002.

5. Daniel Ashlock and James B. Golden III. Chaos automata: Iterated function
systems with memory. Physica D, 181:274–285, 2003.

6. Daniel Ashlock and James Lathrop. A full characterized test suite for genetic
programming. In Proceedings of the 1998 Conference on Evolutionary Program-
ming, pages 537–546, New York, 1998. Springer-Verlag.

7. Robert Axelrod. The Evolution of Cooperation. Basic Books, New York, 1984.
8. Thomas Back, Ulrich Hammel, and Hans-Paul Schwefel. Evolutionary com-

putation: Comments on the history and current state. IEEE Transactions on
Evolutionary Computation, 1(1):3–17, 1997.

9. Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D. Francone.
Genetic Programming: An Introduction. Morgan Kaufmann, San Francisco,
1998.

10. Michael F. Barnsley. Fractals Everywhere. Academic Press, Cambridge, MA,
1993.

11. James C. Bean. Genetic algorithms and random keys for sequencing and opti-
mization. ORSA Journal on Computing, 2(2):154–160, 1994.

12. Randall D. Beer and John C. Gallagher. Evolving dynamical neural networks
for adaptive behavior. Adaptive Behavior, 1:92–121, 1992.

13. Hans-Georg Beyer. The Theory of Evolution Strategies. Springer, New York,
2001.

14. Valentino Braitenberg. Vehicles, experiments in synthetic psychology. MIT
Press, Cambridge, Mass., 1984.

556 References

15. Richard A. Brualdi and Vera Pless. Greedy codes. Journal of Combinatorial
Theory(A), 64:10–30, 1993.

16. C. Dietrich, F. Cui, M. Packila, D. Ashlock, B. Nikolau, and P.S. Schnable.
Maize mu transposons are targeted to the 5’ utr of the gl8a gene and sequences
flanking mu target site duplications throughout the genome exhibit non-random
nucleotide composition. Genetics, 160:697–716, 2002.

17. Theodosius Dobzhansky. Nothing in biology makes sense except in the light of
evolution. The American Biology Teacher, 35:125–129, 1973.

18. Chitra Dutta and Jyotirmoy Das. Mathematical characterization of chaos game
representations. Journal of Molecular Biology, 228:715–719, 1992.

19. David B. Fogel. The evolution of intelligent decsion making in gaming. Cyber-
netics and Systems: An International Journal, 22:223–236, 1991.

20. David B. Fogel. Evolving behaviors in the iterated prisoner’s dilemma. Evolu-
tionary Computation, 1(1):77–97, 1993.

21. David B. Fogel. On the relationship between the duration of an encounter and
the evolution of cooperation in the iterated prisoner’s dilemma. Evolutionary
computation, 3(3):348–363, 1996.

22. David B. Fogel. Evolutionary Computation, the Fossil Record. IEEE Press,
Piscataway, New Jersy, 1998.

23. L. J. Fogel. Autonomous automata. Industrial Research, 4:14–19, 1962.
24. L. J. Fogel. On the organization of intellect. PhD thesis, UCLA, UCLA, 1964.
25. L. J. Fogel. Artificial intelligence through a simulation of evolution. In Bio-

physics and Cybernetics:Proceedings of the 2nd Cybernetic Sciences Symposium,
pages 131–155. Spartan Books, Washington, D.C., 1965.

26. R. M. Friedberg. A learning machine, part I. IBM Journal of Research and
Development, 2(1):2–13, 1958.

27. R. M. Friedberg. A learning machine, part I. IBM Journal of Research and
Development, 3(3):282–287, 1959.

28. Jonathan D. Gandrud, Dan Ashlock, and Elizabeth Blankenship. A note on
general adaptation in populations of painting robots. In Proceedings of the
2003 Congress on Evolutionary Computation, pages 46–53. IEEE Publications,
Piscataway, New Jersey, 2003.

29. David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley Publishing Company, Inc., Reading, MA, 1989.

30. Thore Graepel and Ralf Herbrich. The kernel Gibbs sampler. In NIPS, pages
514–520, 2000.

31. F. Gruau. Neural Network Synthesis Using Cellular Encoding and the Genetic
Algorithm. PhD thesis, France, 1994.

32. Frederic Gruau. Automatic definition of modular neural networks. Adaptive
Behaviour, 3(2):151–183, 1995.

33. Dan Gusfield. Algorithms on Strings, Trees, and Sequences. Cambrige University
Press, New York, 1997.

34. W. Daniel Hillis. Co-evolving parasites improve simulated evolution as an opti-
mization procedure. In Christopher Langton, editor, Artificial Life II, volume 10
of Santa Fe Institute Studies in the Sciences of Complexity, pages 313–324, Read-
ing, 1991. Addison-Wesley.

35. H. Joel Jeffrey. Chaos game representation of gene structure. Nucleic Acid
Research, 18(8):2163–2170, 1990.

36. Kenneth Kinnear. Advances in Genetic Programming. The MIT Press, Cam-
bridge, MA, 1994.

References 557

37. Kenneth Kinnear and Peter Angeline. Advances in Genetic Programming, Vol-
ume 2. The MIT Press, Cambridge, MA, 1996.

38. John R. Koza. Genetic Programming. The MIT Press, Cambridge, MA, 1992.
39. John R. Koza. Genetic Programming II. The MIT Press, Cambridge, MA, 1994.
40. John R. Koza. Genetic Programming III. Morgan Kaufmann, San Francisco,

1999.
41. Benjamin Lewin. Genes VII. Oxford University Press, New York, 2000.
42. Kristian Lindgren. Evolutionary phenomena in simple dynamics. In D. Farmer,

C. Langton, S. Rasmussen, and C. Taylor, editors, Artificial Life II, pages 1–18.
Addison-Wesley, 1991.

43. Kristian Lindgren and Mats G. Nordhal. Evolutionary dynamics of spatial
games. Physica D., 75:292–309, 1994.

44. Alfred J. Lotka. Elements of Mathematical Biology. Dover Publications, New
York, 1956.

45. Andrew Meade, David Corne, and Richard Sibly. Discovering patterns in mi-
crosatellite flanks with evolutionary computation by evolving discriminatory
DNA motifs. In Proceedings of the 2002 Congress on Evolutionary Computa-
tion, pages 1–6, Piscataway, NJ, 2002. IEEE Publications.

46. James D. Murray. Mathematical Biology. Springer, New York, 2002.
47. Vera Pless. Introduction to the Theory of Error-Correcting Codes. John Wiley

and Sons, New York, 1998.
48. T. S. Ray. An approach to the synthesis of life. In C. G. Langton, C. Taylor, J. D.

Farmer, and S. Rasmussen, editors, Artificial Life II, pages 371–408. Addison
Wesley, Reading MA., 1992.

49. Craig Reynolds. An evolved, vision-based behavioral model of coordinated group
motion. In Jean-Arcady Meyer, Herbert L. Roiblat, and Stewart Wilson, editors,
From Animals to Animats 2, pages 384–392. MIT Press, 1992.

50. Joao Setubal and Joao Meidanis. Introduction to Computational Molecular Bi-
ology. PWS Publishing, Boston, MA, 1997.

51. Neil J. A. Sloane. On-line encyclopedia of integer sequences.
52. Victor V. Solovyev. Fractal graphical representation and analysis of DNA and

protein sequences. Biosystems, 30:137–160, 1993.
53. Brian L. Steward, Robert P. Ewing, Daniel A. Ashlock, Amy Kaleita, and

Steve M. Shaner. Range operator enabled genetic algorithms for hyperspectral
analysis. In Intelligent Engineering Systems through Artificial Neural Networks,
volume 14, pages 295–300, 2004.

54. Gilbert Syswerda. A study of reproduction in generational and steady state ge-
netic algorithms. In Foundations of Genetic Algorithms, pages 94–101. Morgan
Kaufmann, 1991.

55. Astro Teller. The evolution of mental models. In Kenneth Kinnear, editor,
Advances in Genetic Programming, chapter 9. The MIT Press, 1994.

56. Thomas M. Thompson. From Error-Correcting Codes Through Sphere Packings
to Simple Groups. The Mathematical Association of America, Washington, 1984.

57. Gregory Urban, Kenneth Mark Bryden, and Daniel Ashlock. Engineering op-
timization of an improved plancha stove. Energy for Sustainable Development,
VI(2):9–19, 2002.

58. Douglas B. West. Introduction to Graph Theory. Prentice Hall, Upper Saddle
River, New Jersy, 2001.

558 References

59. Darrel Whitley. The genitor algorithm and selection pressure: why rank based
allocation of reproductive trials is best. In Proceedings of the 3rd ICGA, pages
116–121. Morgan Kaufmann, 1989.

60. David H. Wolpert and William G. Macready. No free lunch theorems for opti-
mization. IEEE Transactions on Evolutionary Computation, 1(1):67–82, April
1997.

Index

A∗, 144
action mutation, 325
Adaptive Behavior, 3
adjacency matrix, 94
An, 143
Angeline, Peter, 316
antisymmetric property, 369
array, 67
artificial life, 119
artificial neural nets, see neural nets,

295
Ashlock, Dan, 119
atom, 69
atomic, 69
automatically defined functions, see

parse trees
Axelrod, Robert, 18, 156, 157

basin of attraction, 364
Bean, James, 178
Beer, Randall, 119
Bernoulli trial, 108, 525
binary variation, 18
binomial probability, 524–525
binomial probability model, 525
binomial theorem, 524
biodiversity, 355
bioinformatics, 427–473
biology

amino acids, 464, 465
central dogma of molecular biology,

427
codons, 460, 462
DNA, 427, 462

DNA bar code, 452
DNA triplets, 465
EST, 452
exon, 469
expressed sequence tag, see EST
genetic code, 460
genetic library, 452
indels, 449
intron, 263, 420, 469
mRNA, 452, 469
primers, 437
protein, 462
reverse transcriptase, 428
ribosome, 427
RNA, 427
start codon, 464
stop codon, 460, 464
transposons, 428
Type I transposons, 428
Type II transposons, 428
Type III transposons, 428
viruses, 428

bloat, 263
Boolean parse tree

fitness function, 423
Bryden, Mark, 9

calculus, 537–544
derivatives

chain rule, 538
mulivariate, 540–542
one variable, 537–540
rules for combinations of functions,

540

560 Index

rules for functions, 538
gradient, 541–542
partial derivatives, 541

Catalan numbers, 216
cellular encoding, 383–425

complete, 394
definition, 383

CFD, 7
chaos automata, 467–471
chaos game, 458
chaos game fractals, 458–461
chaos GP automata, 473
chromosome, 15
city-insertion heuristic, 188
classical least squares fit, 233–238
closest-city heuristic, 187
co-evolution, 331
coevolution, 21–22, 43, 99, 103, 104, 141

Prisoner’s Dilemma, 158
combinatorial graphs, 92
complete graph, 92
complete set of operations, 279
computational fluid dynamics, 7
computational geometry, 93
connection topology, 313
context free grammar

basic PTH grammar, 420
Boolean parse tree grammar, 422
cauterization rules, 418
definition, 417
mutation, 425
No Sto-Sto grammar, 419
nonterminal symbols, 417
production, 417
production rules, 417
second PTH grammar, 421
starting nonterminal, 417
Tartarus decider grammar, 423
terminal symbols, 417
third PTH grammar, 421

context free grammars, 415–425
contingent evolution, 107
contraction map, 462, 464, 465, 468,

472, 473
Conway’s lexicode algorithm, 450–451
coparent, 354
Costas arrays, 199–208

definition, 199
fitness function, 203, 206

VCC fitness function, 203
Costas condition

number of violations, 203
coverage fitness, 53
cowdozer, 335
crater function, 87
cross validation, 10, 439
crossing number, 67, 92–97
crossover, 13, 17, 35, 41–46, 356

adaptive, 43
cellular encodings, 383
conservative, 44, 272
context free grammar, 415
Costas arrays, 204
disruptive, 178
finite state automata, 147
fractals, 466
function optimizer, 69
ISAc lists, 325
multiple-point, 42
neural nets, 302, 311
nonaligned, 204, 272
nonconservative, 278
null, 44
parse trees, 27, 211, 415
permutations, 176, 178

one-point partial preservation, 176
polyominos, 390
pure, 272
single-point, 41
string evolver, 41–46
subtree crossover, 211
Sunburn, 105
Tartarus, 271–272
template, 43
two-point, 42
two-time-scale problem, 44
uniform, 42
uniform exclusive, 455

crossover operator, 41
crossover point, 41

data fitting, 9
line, 543

data mining, 11
David Fogel, 154
deceptive function, 80
deciders, 285
degeneracy of a logic function, 376

Index 561

DeJong function, 74
DeJong, Kenneth, 72
developmental biology, 383
directed graph, 298
distortion, 81
Divide the Dollar, 165–166
DNA

count for a motif, 434
gapless alignment, 430
kth-order Markov model, 431
latitude of a motif, 435
nonrandomness of an alignment, 430
p-fitness of a motif, 434
pN -fitness of a motif, 434
PX , 430
synthetic count, 434
visualizing, 458–462

DNA bar codes, 444–458
domain niche specialization, 82

PORS, 232
double tournament selection, 36
dynamic programming, 88
dynamical system, 461

e, 172
Echo machine, 392
edge of a population, 355
edit distance, 449–450
efficient cleaning fitness function, 333
Efficient Node Use problem, 218, 230,

418–420, 424
elitism, 36, 374
empty string, 144
entropy of a population, 355
error-correcting code, 445–449

books, 448
code words, 447
fundamental rate, 447
minimum distance, 449
received words, 447
repetition code, 447

Euclidian distance, 75
evolution

allele, 11
controversy, 12–15
definition, 11
gene, 11
Lamarckian, 14
recessive gene, 264

evolutionarily stable strategy, 160
evolutionary algorithm

absolute fitness replacement, 37
children, 41
coparent, 354
cyclic single tournament selection, 41
developmental biology, 100
diversity, 356
double tournament selection, 36
elitism, 36
entropy, 355
fitness function, 35
fitness landscape, 14, 77–82

definition, 77
gene, 33
generation, 38
generational, 38, 362
greedy closure, 445
hybridization, 441
lazy evaluation, 309
locally elite replacement, 37
mating event, 38
model of evolution, 35–41, 71, 230
most common strategy, 401
new solutions, 356
parents, 41
population seeding, 133
population size, 50–51
random elite replacement, 38
random replacement, 37
rank replacement, 37
rank selection, 37, 61
roulette selection, 60–65
roulette vs. rank selection, 37
roulette wheel replacement, 37
roulette wheel selection, 37
steady-state, 38, 362
systematic selection, 354
useful mating, 355

evolutionary computation, 17–25, 60
evolvable fractals, 462–473

crossover, 466
index mutation, 466
similitude mutation, 466

experiment report, 509–520
experiments

absolute replacement, 374
Boolean parse trees, 422
coevolution, 387

562 Index

context free grammar, 418–424
Costas arrays, 203–206
DNA bar codes, 452, 453, 455, 456
elite replacement, 370, 374
finite state automata, 149–151,

395–399
Divide the Dollar, 165, 166
Graduate School game, 165
Prisoner’s Dilemma, 157, 160–162,

165
function optimizer, 49, 73–75, 79, 80,

82–84, 90, 91, 94
crossing numbers, 94
path length, 88

GP automata, 287–289, 291, 292,
376, 377

graph-based, 370, 371
1-max problem, 361
data fitting, 375
finite state automata, 368
function optimizer, 363, 364
Herbivore, 378
k-max problem, 362
logic functions, 370, 376, 377
neutral selection, 356, 358
North Wall Builder, 379
PORS, 374
random key encoding, 369
Royal Road problem, 362
self-avoiding walks, 364
Sunburn, 371
symbots, 371
Tartarus, 362, 377, 378
Traveling Salesman problem, 369

graphs, 408–412
Herbivore, 336, 337, 345–347
hybridization, 442
IFS, 466, 467, 469, 470
ISAc lists, 328–330, 334, 336, 337,

339, 340
least squares fit, 240–242, 246
lexical product, 128, 151, 229, 311,

339, 340, 368, 387, 396, 408, 412,
441

logic functions, 302–304, 306,
310–312, 315–318

MIPs nets, 317, 318
neural nets, 302–304, 306, 310–312
nonaligned crossover, 419

North Wall Builder, 339, 340, 345
Packing problem, 193–197
parse trees, 251–253, 256, 259–261,

263, 264, 276, 278, 279, 281, 282,
292, 315, 316

PORS, 218, 219, 222, 225–227,
229–231

PCR primer design, 439, 441, 442
permutations, 176–179
polyominos, 386–389
population seeding, 188, 189, 197,

206, 329, 334, 336, 337, 340, 369,
389, 419

PORS, 418–420
Prisoner’s Dilemma, 397, 399
PTH, 420–423
Rock Paper Scissors, 397–399
stochastic hill climber, 56, 57, 178
string evolver, 38, 39, 42–44, 47, 50,

52, 54, 57, 269–272, 292, 333, 336,
339, 345–347

self-avoiding walk, 56, 57
Sunburn, 105–107, 109, 110, 112, 113
symbots, 124, 125, 128, 129, 132–134,

136, 137, 139–141
Tartarus, 268–272, 276, 278, 279, 281,

282, 287–289, 291, 292, 328–330,
424

transposons, 431, 434, 435
Traveling Salesman problem, 184,

185, 188, 189
Vacuum Cleaner task, 333, 334
Virtual Politicians, 116

fake bell curve, 49, 50, 73, 74, 77, 78,
80, 82, 83, 86, 87, 261, 327, 363,
375, 542

fan-out, 314
feature selection, 10
features, 10
finite state automata, 143

baseline score, 161
cellular encoding, 391–401

current state, 392
connection topology, 400
crossover, 147
definition, 145
Echo machine, 392
GP automata, 285

Index 563

mutation, 148
Self-Driving Length function, 149
self-play string, 158

dominant, 160
String Prediction fitness function, 148

finite state predictors, 145–153
finite state transducer, 143
fitness function, 15, 17, 35

Boolean parse tree, 423
Costas arrays, 203
coverage fitness, 53
crossing number, 93
DNA primers

greedy fitness, 453
incremental reward fitness, 441
raw prediction fitness, 439

finite state automata
incremental reward fitness, 441
raw prediction fitness, 439
Self-Driving Length function, 149
String Prediction fitness function,

148
function optimizer, 35

penalty function, 82
graphs, 407–408, 411

eccentricity deviation, 407
large compact graph, 409

greedy closure fitness with Conway’s
algorithm, 453

greedy packing, 193, 199
Herbivore, 336
IFS, 466

bounded dispersed separation
fitness, 470

dispersed separation fitness, 470
normalized separation fitness, 467
separation fitness, 466

k-max, 361
lexical product, 128
North Wall Builder, 338, 339
Packing problem, 192–193
path length, 88, 90
permutations, 176, 177, 181
political campaign model, 114–116
polyominos, 383, 386–389
polysymbots, 141
PTH, 420
self-avoiding walk, 53
string evolver, 35

Sunburn, 99, 103
symbots, 123–134

Clear-the-Board, 140
Tartarus

box-wall function, 267
Traveling Salesman problem, 184
Vacuum Cleaner task

efficient cleaning fitness function,
333

VCC fitness function, 203
fitness landscape, 14, 67, 77–82, 88,

177–178, 180, 189, 194, 374, 473
basin of attraction, 364
definition, 77
gradient basin of attraction, 366
lexical product, 128

fitness trials
Tartarus, 291–294

Fogel, David, 3
Fourier series, 237
fractal

chaos game, 458
fractal representation, 465–467
function optimizer, 47–49, 69–77, 537,

542
crossover, 69
fitness function, 35
niche specialization, 84, 94
penalty function, 82
range niche specialization, 84
uniform real point mutation, 69

Gallagher, John, 119
game theory, 155

optional game, 165
Gaussian real point mutation, 70, 311
GBEAs, 351–381

definition, 354–355
generation, 23
genetic algorithms, 19
genetic programming, 25–29, see ISAc

lists, see GP automata, see parse
trees, 209–232

context free grammars, 415–425
GP automata, 285

Tartarus, 284–291
variation operators, 286–290

memory, 281–284
Tartarus, 274–280

564 Index

Gibbs sampler, 435
gladiatorial tournament selection, 99,

103
global optimum, 18, 36, 69
Goldberg, David, 22
GP automata, 285

cross mutation, 287
decider point mutation, 287
exchange mutation, 287
finite state point mutation, 286
null action, 288
replacement mutation, 287

GP logics, 314–319
gradient basin of attraction, 366
Graduate School Game, 400
Graduate School game, 164–165
graph, 545

acyclic, 548
adjacent, 545
annulus, 552
bipartite, 545
bipartition, 545
cellular encoding, 402–415
center, 552
chromatic number, 550
coloring, 550–551
complement, 548
complete bipartite graph, 547
complete graph, 547
crossing number, 553
degree, 545
diameter, 552
distances, 552–553
dominating set, 552
drawing, 553–554
eccentricity, 552
edge chromatic number, 551
edge coloring, 550

proper, 550
edges, 545
ends, 545
incident, 545
k-connected, 546
k-regular, 545
metric space, 552
n-cycle, 547
n-hypercube, 547
n × m torus, 547
path, 547

periphery, 552
Petersen graph, 547
planar, 553
radius, 552
random graph, 549
random graph with edge probability

α, 549
random regular graph, 549
random simplicial graph, 550
random toroidal graph, 549
simplexification, 548
simplexification-driven random

graph, 550
subgraph, 545
thickness, 554
tree, 548
vertex coloring, 550

proper, 550
vertices, 545
walk, 548

graph-based evolutionary algorithms,
see GBEAs

graphs, 92
(3, n)-cage, 410
absolute fitness replacement, 354
absolute parental replacement, 354
absolute replacement, 354
complete graph, 92, 357
crossing number, 92
cubic, 402
deferred replacement, 354
drawing, 92
eccentricity, 407
edge of a population, 355
edges, 92
elite double neighborhood replace-

ment, 355
elite neighborhood replacement, 355
elite parental replacement, 354
elite replacement, 354
fitness function, 407–408, 411

eccentricity deviation, 407
large compact graph, 409

girth, 410
hypercube, 357
immediate replacement, 354
invariant, 356
isomorphic, 360
k-connected, 402

Index 565

local mating rule, 354
n-cycle, 357
neutral behavior, 355–358
neutral selection experiment, 356
performance partial order, 369
Petersen graph, 357
planar, 92
random neighborhood replacement,

355
rectilinear, 92
rectilinear crossing number, 92
simplexification, 373
systematic selection, 354
torus, 357
vertices, 92
weight of a vertex, 378

greedy algorithm, 187, 192, 208
greedy closure evolutionary algorithm,

427, 445
seeds, 445

greedy packing
excess, 192
trial, 193

grid, 53
grid robots, 333–343, 377

reactive agent, 344
state conditioned agent, 344
stochastic agent, 344

halting problem, 30
Hamming distance, 47
Hamming metric, 47, 447
Herbivore, 335–337

adaptive character, 345
eat action, 335
fitness function, 336

Hexer, 532
hill climber, 55, 193–195, 374, 442
Hillis, W. Daniel, 21
hybridization, 441
hypercube, 448

ball, 448
Hamming balls, 448
sphere packing, 448

hyperspectral, 9
hyperspectral data, 9

If-Skip-Action lists, see ISAc lists
IFS, 461–462

attractor, 461
definition, 461
diameter, 467
normalized separation fitness, 467

ISAc lists, 321–349
action mutation, 325
circular, 324
crossover, 325
data vector, 322, 325
decrement x, 324
decrement y, 324
definition, 321
environment, 324
external actions, 324
external objects, 325
generating, 325
Herbivore, 335–337

adaptive character, 345
eat action, 335

increment register, 324
instruction pointer, 322
ISAc node, 321
jump action, 324
jump mutation, 325
linear, 324
mutation, 323
NOP action, 323
North Wall Builder, 337–340

fitness function, 338, 339
survival time, 338
uncovered squares, 338

point mutation, 325
pointer mutation, 325
Tartarus, 328–333
Vacuum Cleaner task, 333–335

efficient cleaning fitness function,
333

stand still action, 333, 335
variation operators, 325
zero register, 324

iterated function system, see IFS

Joenks, Mark, 114, 321
jump mutation, 325

k-max problem, 361–364
Koza, John, 25, 420

Lamarckian evolution, 14

566 Index

Lamarckian mutation, 46, 67, 69, 75,
76, 537, 541, 542

λ, 144
λ-transitions, 288
Larry Fogel, 143
lazy evaluation, 309
least squares, 543–544
least squares fit, 233–238

model, 235
parameters, 235

lexical product, 128, 199, 340, 408
dominant function, 128
neural nets, 311
North Wall Builder, 339
PORS, 229

Lindgren, Kristian, 270
LOA strategy, 398
local mating rule, 354
local optimum, 18, 36, 69
logic functions, 295–319

AND, 298
cascade, 303
evolving, 300–308
irreducible, 303
majority function, 299
NOT, 298
OR, 298
parity function, 303
truth tables, 298
XOR, 303

Mσ, 202
macromutation, 343
Markov chain, 348, 434, 531–536

absorbing states, 533
aperiodic, 533
closed subset, 533
communicating class of states, 533
fixed transition probability, 531
indecomposable, 533
limiting distribution, 533
period, 533
periodic, 533
stable, 533
stable initial state, 533
terminal states, 533
transition matrix, 532

Markov model, 431, 443
mating event, 38, 39, 41, 356, 359

maximum mutation size, 69
maximum problem, 420
Mealey machine, 145
metaselection algorithm, 72
Minimal Description problem, 218, 231
MIPs nets, 295, 316–318

gene duplication, 318
mutation

contraction, 317
enlargement, 317

mode, 47, 69
model of evolution, 35–41, 71, 230
monotone function, 81
Monte Carlo integration, 259
Moore machine, 145
Morgenstern, Oskar, 155
most common strategy, 401
motif, 429
moving point, 458–460, 462, 465–472

burn in, 460
updating, 459

moving-point process, 466–468, 470, 472
multicriteria optimization, 221
Multiple Interacting Program systems,

see MIPs nets
multiplexing problem, 376
mutation, 13, 17, 35, 46–50, 356

context free grammar, 425
crossing number, 96
efficient probabilistic, 62–63
finite state automata, 148
fractals

index mutation, 466
similitude mutation, 466

function optimizer
Gaussian real point mutation, 70
uniform real point mutation, 69

gene-doubling mutation, 271
gene-halving mutation, 271
GP automata

cross mutation, 287
decider point mutation, 287
exchange mutation, 287
finite state point mutation, 286
replacement mutation, 287

gradients, 542
grid robots, 341
helpful, 47
ISAc lists, 323, 333

Index 567

action mutation, 325
jump mutation, 325
point mutation, 325
pointer mutation, 325

Lamarckian, 46, 67, 69, 75, 76
macromutation, 343
MIPs nets, 317

gene duplication, 318
multiple-point, 46
neural nets

Gaussian real point mutation, 311
neutral mutation, 312
topological mutation, 311
weight mutation, 311

neutral mutation, 270
null, 46
overall mutation rate, 47
parse trees, 27

constant mutation, 252
leaf mutation, 316
operation mutation, 252
subtree mutation, 211
terminal mutation, 252

permutations, 175
point, 46
probabilistic, 46
PTH parse trees, 420
random key encoding, 179, 181
rate, 47
seed point, 455
seed word, 455
single-point, 46
size of, 90
string evolver, 46–50
Sunburn, 105
uniform, 46
uniform vs. Gaussian, 90

mutation operator, 46
mutation rate, 24

n-queens, 20
neighborhood, 76
neural nets, 3, 119–135, 295–300, 306

connection topology, 298, 313
connection-list-specified, 308
crossover, 302, 311
evaluating, 309–313
fan-out, 314
feed-forward, 298

Heaviside neuron, 298
loop, 298
neutral mutation operator, 312
recurrent, 298
topological mutation, 311
topology, 308–314
transfer function, 296
variation operators, 310–311
weight matrix, 309
weight mutation, 311

neuron, 295
neutral mutation, 14, 270

ISAc lists, 332
neural nets, 312

neutral selection experiment, 356
niche specialization, 22, 67, 82–87

domain, 82
function optimizer, 84, 94
PORS, 229
range, 84

nonaligned crossover, 204, 206, 272, 425
nonconservative crossover, 278
North Wall Builder, 337–340

fitness function, 338
time-averaged, 339

survival time, 338
uncovered squares, 338

NWB, see North Wall Builder

On Line Encyclopedia of Integer
Sequences, 173

one-max problem, 361–364
optimum, 18, 69
optional game, 165

Packing problem, 192–199
fitness function, 192–193, 199
hardness, 197
tight, 198

parity function, 303
parse trees, 25–29, 209–232

ADFs, 27, 255–258
arguments, 211
automatically defined functions, 27
bloat, 28, 263, 264
Boolean, 422–423
cellular representation, 418
chopping, 211
constant mutation, 252

568 Index

crossover, 27
deciders, 285
depth, 211, 263
describes a number, 224
designated intron, 264
disruption, 28
Efficient Node Use Problem, 229
Efficient Node Use problem, 218, 230
encoding functions, 26
ephemeral constants, 260
evaluating, 217
generating, 213
GP automata, 285
λ-transitions, 288
leaf mutation, 316
LISP-like notation, 26, 211, 212, 214,

215, 223
Minimal Description problem, 218,

231
Minimal Description tree, 221
MIPs nets, 316–318
mutation, 27
mutation rate, 216
nodes, 25
operation mutation, 252
operations, 25, 211
optimal, 219
root, 211
size, 211
subtree crossover, 211
subtree mutation, 211
terminal mutation, 252
terminals, 25, 211
tree form, 211
type checking, 214
value of, 218

partial order, 369
partitioning, 197
Pascal’s triangle, 525
path, 88
path length, 88–91
PCR primer design, 436–444
permutation, 169–208

crossover, 176, 178
cycle type, 173
evolving, 175–182
fitness function, 176, 177, 181
greedy packing fitness function, 193
identity, 172

inverse, 172
multiplication, 172
n-transposition mutation, 175
one-line notation, 175
one-point partial preservation

crossover, 176
order, 172
random key encoding, 179
reversal, 174
standard representation, 175
transposition, 174
transposition mutation, 175
VCC fitness function, 203

permutation matrix, 200
Petersen graph, 360, 407, 409, 410, 412
Planch EcoStove, 5
plus-one-recall-store, 209–232
Plus-Times-Half, see PTH
point mode, 47
point mutation, 46, 69, 76, 148, 211,

270, 311, 325
decider, 287
finite state, 286
Gaussian real, 70
uniform real, 69

pointer mutation, 325
Poisson distribution, 62–63

equation, 62
political campaign model, 114–117

fitness function, 114–116
polymerase chain reaction primers, see

PCR primers
polyomino, 384–391

bounding box, 386
definition, 384
emptiness, 386
simply connected, 400

polyominos
fitness function, 383, 386–389

polysymbot, 141
population, 18
population seeding, 133, 225, 329, 334,

336, 337, 340
PORS, 209–232, 417–420, 424

chop operation, 232
domain niche specialization, 232
lexical product, 229
niche specialization, 229
population seeding, 225–228

Index 569

range-niche specialization, 229–230
Rcl, 217
semantics, 217–224
Sto, 217
subroutine, 224, 230

predator–prey model, 5
primitive (mod p), 205
Prisoner’s Dilemma, 18, 22, 153–163,

270, 394–395, 397–401
cooperation and defection, 155
error-correcting strategy, 161
Iterated Prisoner’s Dilemma, 156
Optional Prisoner’s Dilemma, 165
payoff matrix, 155, 164
strategies, 157

Always Cooperate, 157, 158
Always Defect, 157, 158, 161
Pavlov, 158, 161, 162
Random, 157, 158
Ripoff, 162
Tit-for-Tat, 157, 158, 161
Tit-for-Two-Tats, 158

probability, 521–536
average, 523
basic theory, 521–531
binomial coefficients, 524
choose, 526, 528
choosing things, 524–525
confidence intervals, 529–531

definition, 530
dependent, 523
disjoint, 523
distribution, 521
events, 521
expected value, 523
failure, 525
function, 521
independent, 523
points, 521
poker, 525–528
product distribution, 522
set of repeated trials, 522
standard deviation, 531
success, 525
tournament selection, 528–529
trial, 522
uniform distribution, 522

PTH, 420–422
fitness function, 420

maximum problem, 420
Public Investment Game, 242–246

fine, 243
law, 243

random key encoding, 178–180
key, 178
mutation, 179, 181

random variable, 530
range abstraction, 10
range niche specialization, 84

function optimizer, 84
range operator, 11
range-niche specialization

PORS, 229–230
rank selection, 37, 61
Rapoport, Anatole, 157
real function optimizer, see function

optimizer
real time, 83
reflexive property, 369
remote sensing, 9
representation, 15, 19–21, 33, 69, 72

atomic, 69
evolvable fractals, 467
finite state automata, 147
function optimizer, 69, 75
logic functions, 370
pack symbots, 141
parse trees, 211
Prisoner’s Dilemma, 398
Sunburn, 99
symbots, 124, 133, 134, 136, 137
Tartarus, 377

representation problem, 20, 28, 42, 178
Rice, David, 25
Rice, John, 420
Rock Paper Scissors, 397–398, 400, 401

law-of-averages strategy, 398
rock-paper-scissors, 18
roulette selection, 37, 60–65
round robin tournament, 157
Royal Road function, 51, 75, 362

self-avoiding walk, 53
admissible, 53
inadmissible, 53

sequence, 144
Shannon entropy, 355

570 Index

Shannon’s theorem, 447
Shannon, Claude, 447
shape evolution, 384–391
Sierpiński triangle, 458
similarity radius, 82
similitude, 462, 465–466, 468, 470, 471,

473
similitude mutation, 469
simple evolutionary fit, 240–250
simplexification, 373
simulation

agent-based, 5
single tournament selection, 35
sombrero function, 73, 83, 84
standard normal distribution, 531
steady-state algorithm, 366
steepest-descent techniques, 537
stochastic hill climber, 55
stochasticity, 356
stove, 5

wood burning, 5
string evolver, 22–23, 35–65, 343–349

crossover, 41, 46
fitness function, 35
mutation, 46–50
nontrivial, 51–53
polymodal, 53–60

sum of squared error, 235, 543
Sunburn model, 99

crossover, 105
definition, 99–104
discussion, 109–114
effectiveness curve, 101
fitness function, 99, 103
gladiatorial tournament selection, 99,

103
implementation, 105–109
initial effectiveness, 107
maximal effectiveness coefficient, 107
mutation, 105
range-weighted effectiveness, 107
shield multiplication factor, 101
total effectiveness, 107

symbolic regression, 250–255
symbots, 119–142

basic symbot motion loop, 122
bodies, 133–135
Chameleon, 133
Clear-the-Board fitness function, 140

Cyclops, 133
description, 121–132
finding the source, 125
fitness function, 123–134

polysymbots, 141
idle speed, 122
lethal wall world, 123
neurons, 135–140
pack symbots, 140–142
polysymbot, 141
reflective world, 123
stopping world, 123
truncated inverse square law sources,

123
variation operators, 125
wall-less world, 123
worlds, 132, 133

synapses, 295
systematic selection, 354

T ∗, 227
T ∗

s , 227
Tartarus, 265–294, 328–333, 423–424

crossover, 271–272
dozer, 267
environment, 267–274
fitness function

box-wall function, 267
fitness trials, 291–294
genetic programming, 274–280
GP automata, 284–291
impossible board, 267, 292, 331
indexed memories, 281
memory, 281–284
random action, 329
state, 283
valid starting configuration, 267

Teller, Astro, 265, 281, 291
time-averaged fitness function, 339
tolerance, 71
topological graph theory, 554
total order, 372
tournament, 23
transitive property, 369
transposon, 427
transposon sequences, 427–436
Traveling Salesman problem, 182–192,

369, 553
definition, 182

Index 571

fitness function, 184
triangle inequality, 552
truth tables, 298
Ts, 226

unary variation, 18
unary variation operator, 46
uniform exclusive crossover, 455
uniform mutation, 46
uniform real point mutation, 69
unimodal, 47, 69, 99
unimodal problem, 177
unpenalized local population size, 87
useful mating, 355

Vacuum Cleaner task, 333–335
stand still action, 333, 335

variation operators, 13, 15, 35
finite state automata, 147–148
function optimizer, 69
GP automata, 286–290
ISAc lists, 325, 332

MIPs nets, 317
neural nets, 310–311
parse trees, 27, 211–212
string evolver, 41–50
Sunburn, 105
symbots, 125
Tartarus, 271–272

vectors, 540–542
length, 541
norm, 541
scalar multiple, 540
unit vector, 541
vector sum, 540

VIPs, 114
Virtual Politicians, 114
virtual robotics, 333–343
von Neumann, John, 155
vonRoeschlaub, Kurt, 119

walk, 53
Walker, John, 119

